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Abstract

It is now widely accepted that the standard inferential toolkit used by the scien-

tific research community—null-hypothesis significance testing (NHST)—is not

fit for purpose. Yet despite the threat posed to the scientific enterprise, there is

no agreement concerning alternative approaches for evidence assessment. This

lack of consensus reflects long-standing issues concerning Bayesian methods,

the principal alternative to NHST. We report on recent work that builds on an

approach to inference put forward over 70 years ago to address the well-known

“Problem of Priors” in Bayesian analysis, by reversing the conventional prior-

likelihood-posterior (“forward”) use of Bayes' theorem. Such Reverse-Bayes

analysis allows priors to be deduced from the likelihood by requiring that the

posterior achieve a specified level of credibility. We summarise the technical

underpinning of this approach, and show how it opens up new approaches to

common inferential challenges, such as assessing the credibility of scientific

findings, setting them in appropriate context, estimating the probability of suc-

cessful replications, and extracting more insight from NHST while reducing the

risk of misinterpretation. We argue that Reverse-Bayes methods have a key role

to play in making Bayesian methods more accessible and attractive for evidence

assessment and research synthesis. As a running example we consider a recently

published meta-analysis from several randomised controlled trials (RCTs) inves-

tigating the association between corticosteroids and mortality in hospitalised

patients with COVID-19.
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What is already known?
Standard methods of statistical inference have led to a crisis in the interpreta-
tion of research findings. The adoption of standard Bayesian methods is ham-
pered by the necessary specification of a prior level of belief.
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What is new?
Reverse-Bayes methods open up new inferential tools of practical value for evi-
dence assessment and research synthesis.

Potential impact for RSM readers
Reverse-Bayes methodology enables researchers to extract new insights from
summary measures, to assess the credibility of scientific findings and to reduce
the risk of misinterpretation.

1 | INTRODUCTION: THE ORIGIN
OF REVERSE-BAYES METHODS

“We can make judgments of initial probabili-
ties and infer final ones, or we can equally
make judgments of final ones and infer ini-
tial ones by Bayes's theorem in reverse.” I. J.
Good1(p29)

There is now a common consensus that the most
widely-used methods of statistical inference have led to a
crisis in both the interpretation of research findings and
their replication.2,3 At the same time, there is a lack of
consensus on how to address the challenge,4 as
highlighted by the plethora of alternative techniques to
null-hypothesis significance testing now being put for-
ward, see for example Wasserstein et al.5 and the refer-
ences therein. Especially striking is the relative dearth of
alternatives based on Bayesian concepts. Given their
intuitive inferential basis and output,6,7 these would seem
obvious candidates to supplant the prevailing frequentist
methodology. However, it is well-known that the adop-
tion of Bayesian methods continues to be hampered by
several factors, such as the belief that advanced computa-
tional tools are required to make Bayesian statistics prac-
tical.8 The most persistent of these is that the full benefit
of Bayesian methods demands specification of a prior
level of belief, even in the absence of any appropriate
insight. This “Problem of Priors” has cast a shadow over
Bayesian methods since their emergence over 250 years
ago,9 and has led to a variety of approaches, such as prior
elicitation, prior sensitivity analysis, and objective Bayes-
ian methodology; all have their supporters and critics.

One of the least well-known was suggested over
70 years ago10 by one of the best-known proponents of
Bayesian methods during the 20th century, I. J. Good. It
involves reversing the conventional direction of Bayes' theo-
rem and determining the level of prior belief required to
reach a specified level of posterior belief, given the evidence
observed. This reversal of Bayes' theorem allows the assess-
ment of new findings on the basis of whether the resulting
prior is reasonable in the light of existing knowledge.

Whether a prior is plausible in the light of existing knowl-
edge can be assessed informally or more formally using
techniques for comparing priors with existing data as
suggested by Box11 and further refined by Evans and
Moshonov,12 see also Nott et al.13,14 for related approaches.
Good stressed that despite the routine use of the adjectives
“prior” and “posterior” in applications of Bayes' theorem,
the validity of any resulting inference does not require a
specific temporal ordering, as the theorem is simply a con-
straint ensuring consistency with the axioms of probability.
While reversing Bayes' theorem is still regarded as unac-
ceptable by some on the grounds it allows “cheating” in the
sense of choosing priors to achieve a desired posterior
inference,15(p143) others point out this is not an ineluctable
consequence of the reversal.16(pp78�79) As we shall show,
recent technical advances further weaken this criticism.

Good's belief in the value of Reverse-Bayes methods
won support from E.T. Jaynes in his well-known treatise
on probability. Explaining a specific manifestation of the
approach (to be discussed shortly) Jaynes remarked: “We
shall find it helpful in many cases where our prior infor-
mation seems at first too vague to lead to any definite
prior probabilities; it stimulates our thinking and tells us
how to assign them after all”.17(p126) Yet despite the advo-
cacy of two leading figures in the foundations of Bayesian
methodology, the potential of Reverse-Bayes methods has
remained largely unexplored. Most published work has
focused on their use in putting new research claims in con-
text, with Reverse-Bayes methods being used to assess
whether the prior evidence needed to make a claim credible
is consistent with existing insight.18,19,20,21,22,23,24,25,26,27,28,29,30

The purpose of this paper is to highlight recent techni-
cal developments of Good's basic idea which lead to infer-
ential tools of practical value in the analysis of summary
measures as reported in meta-analysis. As a running exam-
ple we consider a recently published meta-analysis investi-
gating the association between corticosteroids and mortality
in hospitalised patients with COVID-19. Specifically, we
show how Reverse-Bayes methods address the current con-
cerns about the interpretation of new findings and their
replication. We begin by illustrating the basics of the
Reverse-Bayes approach for both hypothesis testing and
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parameter estimation. This is followed by a discussion of
Reverse-Bayes methods for assessing effect estimates in Sec-
tion 2. These allow the credibility of both new and existing
research findings reported in terms of NHST to be evalu-
ated in the context of existing knowledge. This enables
researchers to go beyond the standard dichotomy of statisti-
cal significance/non-significance, extracting further insight
from their findings. We then discuss the use of the Reverse-
Bayes approach in the most recalcitrant form of the Prob-
lem of Priors, involving the assessment of research findings
which are unprecedented and thus lacking any clear source
of prior support. We show how the concept of intrinsic
credibility resolves this challenge, and puts recent calls to
tighten p-value thresholds on a principled basis.31 In Sec-
tion 3 we describe Reverse-Bayes methods with Bayes fac-
tors, the principled solution for Bayesian hypothesis testing.
Finally, we describe in Section 4 Reverse-Bayes approaches
to interpretational issues that arise in conventional statisti-
cal analysis based on p-values, and how they can be used to
flag the risk of inferential fallacies. We close with some
extensions and final conclusions.

1.1 | Reverse-Bayes for hypothesis
testing

The subjectivity involved in the specification of prior dis-
tributions is often seen as a weak point of Bayesian infer-
ence. The Reverse-Bayes approach can help to resolve
this issue both in hypothesis testing and parameter esti-
mation, we will start with the former.

Consider a null hypothesis H0 with prior probability
π¼Pr H0ð Þ, so Pr H1ð Þ¼ 1�π is the prior probability of
the alternative hypothesis H1: Computation of the poste-
rior probability of H1 is routine with Bayes' theorem:

Pr H1jdatað Þ¼ Pr datajH1ð ÞPr H1ð Þ
Pr datajH0ð ÞPr H0ð ÞþPr datajH1ð ÞPr H1ð Þ :

Bayes' theorem can be written in more compact
form as,

Pr H1 jdatað Þ
Pr H0 jdatað Þ¼

Pr datajH1ð Þ
Pr datajH0ð Þ

Pr H1ð Þ
Pr H0ð Þ , ð1Þ

that is, the posterior odds are the likelihood ratio times
the prior odds. The standard “forward-Bayes” approach
thus fixes the prior odds (or one of the underlying proba-
bilities), determines the likelihood ratio for the available
data, and takes the product to compute the posterior
odds. Of course, the latter can be easily back-transformed
to the posterior probability Pr H1 jdatað Þ, if required. The
Problem of Priors is now apparent: in order for us to

update the odds in favour of H1, we must first specify the
prior odds. This can be problematic in situations where,
for example, the evidence on which to base the prior odds
is controversial or even non-existent.

However, as Good emphasised it is entirely justifiable
to “flip” Bayes' theorem around, allowing us to ask the
question: Which prior, when combined with the data,
leads to our specified posterior?

Pr H1ð Þ
Pr H0ð Þ¼

Pr H1jdatað Þ
Pr H0 jdatað Þ=

Pr datajH1ð Þ
Pr datajH0ð Þ : ð2Þ

For illustration we re-visit an example put forward by
Good,10(p35) perhaps the first published Reverse-Bayes
calculation. It centres on a question for which the setting
of an initial prior is especially problematic: does an exper-
iment provide convincing evidence for the existence of
extra-sensory perception (ESP)? The substantive hypothe-
sis H1 is that ESP exists, so that H0 asserts it does not
exist. Imagine an experiment in which a person has to
make n consecutive guesses of random digits (between
0 and 9) and all are correct, as the ESP hypothesis H1

would predict. The likelihood ratio is therefore,

Pr datajH1ð Þ
Pr datajH0ð Þ¼

1
1=10ð Þn ¼ 10n: ð3Þ

It is unlikely that sceptics and advocates of the exis-
tence of ESP would ever agree on what constitutes rea-
sonable priors from which to start a standard Bayesian
analysis of the evidence. However, Good argued that
Reverse-Bayes offers a way forward by using it to set bou-
nds on the prior probabilities for H1 and H0: This is
achieved via the outcome of a thought (Gedanken) exper-
iment capable of demonstrating H1 is more likely than
H0, that is, of leading to posterior probabilities such that
Pr H1 jdatað Þ>Pr H0 jdatað Þ: Using this approach, which
Good termed the device of imaginary results, we see that if the
ESP experiment produced n¼ 20 correct consecutive
guesses, (2) combined with (3) implies that ESP may be
deemed more likely than not to exist by anyone whose
priors satisfy Pr H1ð Þ=Pr H0ð Þ>10�20: In contrast, if only
n¼ 3 correct guesses emerged, then the existence of ESP
could be rejected by anyone whose priors satisfy
Pr H1ð Þ=Pr H0ð Þ<10�3: Using Bayes' theorem in reverse
has thus led to a quantitative statement of the prior beliefs
that either advocates or sceptics of ESP must be able to
justify in the face of results from a real experiment. The
practical value of Good's approach was noted by Jaynes in
his treatise: “[I]n the present state of development of
probability theory, the device of imaginary results is
usable and useful in a very wide variety of situations,
where we might not at first think it applicable.”17(p125�126)
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It is straightforward to extend (1) and (2) to hypothe-
ses that involve unknown parameters θ: The likelihood
ratio Pr datajH1ð Þ=Pr datajH0ð Þ is then called a Bayes fac-
tor32,33 where,

Pr datajHið Þ¼
Z

Pr datajθ,Hið Þf θjHið Þdθ

is the marginal likelihood under hypothesis Hi, i¼ 0,1,
obtained be integration of the ordinary likelihood with
respect to the prior distribution f θjHið Þ: We will apply
the Reverse-Bayes approach to Bayes factors in Sec-
tions 3 and 4.

1.2 | Reverse-Bayes for parameter
estimation

We can also apply the Reverse-Bayes idea to continuous
prior and posterior distributions of a parameter of inter-
est θ: Reversing Bayes' theorem,

f θ jdatað Þ¼ f datajθð Þf θð Þ
f datað Þ

then leads to

f θð Þ¼ f datað Þ f θ jdatað Þ
f datajθð Þ : ð4Þ

So the prior is proportional to the posterior divided by
the likelihood with proportionality constant f datað Þ:

Consider Bayesian inference for the mean θ of a uni-
variate normal distribution, assuming the variance σ2 is
known. Let x denote the observed value from that
N θ,σ2ð Þ distribution and suppose the prior for θ (and
hence also the posterior) is conjugate normal. Each of them
is determined by two parameters, usually the mean and the
variance, but two distinct quantiles would also work. If we
fix both parameters of the posterior, then the prior in (4)
is—under a certain regularity condition—uniquely deter-
mined. For ease of presentation we work with the observa-
tional precision κ¼ 1=σ2 and denote the prior and
posterior precision by δ and δ0, respectively. Finally let μ
and μ0 denote the prior and posterior mean, respectively.

Forward-Bayesian updating tells us how to compute
the posterior precision and mean:

δ0 ¼ δþ κ, ð5Þ

μ0 ¼ μδþxκ
δ0

: ð6Þ

For example, fixed-effect (FE) meta-analysis is based
on iteratively applying (5) and (6) to the summary effect
estimate xi with standard error σi from the i-th study, i¼
1,…,n, starting with an initial precision of zero. Reverse-
Bayes simply inverts these equations, which leads to the
following:

FE Model

−2 −1 0 1 2 3 4

Log Odds Ratio

Steroids−SARI

REMAP−CAP

COVID STEROID

CAPE COVID

RECOVERY

CoDEX

DEXA−COVID 19

13/24

26/105

6/15

11/75

95/324

69/128

2/7

13/23

29/92

2/14

20/73

283/683

76/128

2/12

0.87

0.29

0.14

0.06

0.0002

0.38

0.54

0.58

0.79

0.05

0.36

0.22

0.40

0.33

−0.10 [−1.25,  1.06]

−0.34 [−0.96,  0.29]

 1.39 [−0.43,  3.21]

−0.79 [−1.61,  0.03]

−0.53 [−0.82, −0.25]

−0.22 [−0.72,  0.27]

 0.69 [−1.54,  2.93]

−0.42 [−0.63, −0.20]

Trial logOR [95%CI]Steroids No Steroids p pBox

Deaths/Patients

FIGURE 1 Forest plot of fixed-effect meta-analysis of n¼ 7 randomised controlled trials investigating association between

corticosteroids and mortality in hospitalised patients with COVID-19.34 Shown are number of deaths among total number of patients for

treatment/control group, log-odds ratio effect estimates with 95% confidence interval, two-sided p-values p, and prior-predictive tail

probabilities pBox with a meta-analytic estimate based on the remaining studies serving as the prior
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δ¼ δ0 � κ, ð7Þ

μ¼ μ0δ0 � xκ
δ

, ð8Þ

provided δ0 > κ, that is, the posterior precision must be
larger than the observational precision.

We will illustrate the application of (7) and (8) as well
as the methodology in the rest of this paper using a
recent meta-analysis combining information from n¼ 7
randomised controlled trials (RCTs) investigating the
association between corticosteroids and mortality in hos-
pitalised patients with COVID-1934; its results are
reproduced in Figure 1 (here and henceforth, odds ratios
[ORs] are expressed as log odds ratios to transform the
range from 0,∞ð Þ to �∞,þ∞ð Þ, consistent with the
assumption of normality). Let xi ¼bθi denote the maxi-
mum likelihood estimate (MLE) of the log odds ratio θ in
the i-th study with standard error σi: The meta-analytic
odds ratio estimate under the fixed-effect model (the pre-
specified primary analysis) is cOR¼ 0:66 [95% CI: 0.53 to
0.82], respectively bθ¼�0:42 [95% CI: �0.63 to �0.20] for
the log-odds ratio θ, indicating evidence for lower mor-
tality of patients treated with corticosteroids compared to
patients receiving usual care or placebo. The pooled effect
estimate bθ represents a posterior mean μ0 with posterior
precision δ0 ¼ 83:8:

With a meta-analysis such as this, it is of interest to
quantify potential conflict among the effect estimates
from the different studies. To do this, we follow
Presanis35 and compute a prior-predictive tail probabil-
ity11,12 for each study-specific estimate bθi, with a meta-
analytic estimate based on the remaining studies serving
as the prior. As discussed above, fixed-effect meta-analy-
sis is standard forward-Bayesian updating for normally
distributed effect estimates with an initial flat prior. Hence,
instead of fitting a reduced meta-analysis for each study, we
can simply use the Reverse-Bayes Equations (7) and (8)
together with the overall estimate to compute the parameters
of the prior in the absence of the i-th study (denoted by the
index �iÞ :

δ�i ¼ δ0 �1=σ2i ,

μ�i ¼
μ0δ0 �bθi=σ2i

δ�i
:

For example, through omitting the RECOVERY36

trial result bθi ¼�0:53 with standard error σi ¼ 0:145 we
obtain δ�i ¼ 36:1 and μ�i ¼�0:26. A prior-predictive tail
probability using the approach from Box11 is then
obtained by computing pBox ¼ Pr χ21 ≥ t2Box

� �
with,

tBox ¼
bθi�μ�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2i þ1=δ�i

p ¼�1:24:

This leads to pBox ¼ 0:22 for the RECOVERY trial, indi-
cating very little prior-data conflict. The tail probabilities for
the other studies are even larger, with the exception of the
COVID STEROID trial pBox ¼ 0:05ð Þ, see Figure 1. The
lack of strong conflict can be seen as an informal justifi-
cation of the assumptions of the underlying fixed-effect
meta-analysis.35,37 A related method in network meta-
analysis is to assess consistency via “node-splitting.”38

Reverse-Bayes methods may also be useful for conflict
assessment in more general evidence synthesis methods
where multiple distinct sources of data are combined,39,40

but this may require more advanced numerical techniques.
Instead of determining the prior completely based on

the posterior, one may also want to fix one parameter of
the posterior and one parameter of the prior. This is of
particular interest in order to challenge “significant” or
“non-significant” findings through the Analysis of Credi-
bility, as we will see in the following section.

2 | REVERSE-BAYES METHODS
FOR THE ASSESSMENT OF EFFECT
ESTIMATES

A more general question amenable to Reverse-Bayes
methods is the assessment of effect estimates and their
statistical significance or non-significance. This issue has
recently attracted intense interest following the public
statement of the American Statistical Association about
the misuse and misinterpretation of the NHST concepts
of statistical significance and non-significance.3 First
investigated 20 years ago by Matthews,19,20 Reverse-Bayes
methods for assessing both statistically significant and
non-significant findings have been termed the Analysis
of Credibility41 (or AnCred), whose principles and prac-
tice we now briefly review.

2.1 | The analysis of credibility

Suppose the study gives rise to a conventional confidence
interval for the unknown effect size θ at level 1�α with
lower limit L and upper limit U: Assume that L and U
are symmetric around the point estimate bθ (assumed to
be normally distributed with standard error σÞ: AnCred
then takes this likelihood and uses a Reverse-Bayes
approach to deduce the prior required in order to gener-
ate credible evidence for the existence of an effect, in the
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form of a posterior that excludes no effect. As such,
AnCred allows evidence deemed statistically significant/
non-significant in the NHST framework to be assessed for
its credibility in the Bayesian framework. As the latter con-
ditions on the data rather than the null hypothesis, it is
inferentially directly relevant to researchers. After a suit-
able transformation AnCred can be applied to a large
number of commonly used effect measures such as differ-
ences in means, odds ratios, relative risks and correlations.
We refer to the literature of meta-analysis for details about
conversion among effect size scales, for example, Cooper
et al.42(ch11.6) The inversion of Bayes' theorem needed to
assess credibility requires the form and location of the
prior distribution to be specified. This in turn depends on
whether the claim being assessed is statistically significant
or non-significant; we consider each below.

2.1.1 | Challenging statistically significant
findings

A statistically significant finding at level α is
characterised by both L and U being either positive or
negative. Equivalently z2 > z2α=2 is required where z¼bθ=σ
denotes the corresponding test statistic and zα=2 the
1�α=2ð Þ-quantile of the standard normal distribution.

For significant findings, the idea is to ask how sceptical
we would have to be not to find the apparent effect estimate
convincing. To this end, a sceptical prior is derived such that
the corresponding posterior credible interval just includes
zero, the value of no effect. This critical prior interval can
then be compared with internal or external evidence to
assess if the finding is credible or not, despite being “statisti-
cally significant.”

More specifically, a Reverse-Bayes approach is
applied to significant confidence intervals (at level α)
based on a normally distributed effect estimate. The scep-
tical prior is a mean-zero normal distribution with vari-
ance τ2 ¼ g �σ2, so the only free parameter is the relative
prior variance g¼ τ2=σ2: The posterior is hence also nor-
mal and either its lower α=2-quantile (for positive bθÞ or
upper 1�α=2-quantile (for negative bθÞ is fixed to zero, so
just represents “non-credible.” The sufficiently sceptical
prior then has relative variance,

g¼
1

z2=z2α=2�1
if z2 > z2α=2

undefined else

8<: ð9Þ

see the Appendix in Held27 for a derivation. The
corresponding scepticism limit,41 the upper bound of
the equal-tailed sceptical prior credible interval at level
1�α, is,

SL¼ U�Lð Þ2
4

ffiffiffiffiffiffiffi
UL

p , ð10Þ

which holds for any value of α provided the effect is sig-
nificant at that level.

The left plot in Figure 2 illustrates the AnCred proce-
dure for the finding from the RECOVERY trial,36 the only
statistically significant result (at the conventional α¼ 0:05
level) shown in Figure 1. The trial found a decrease in
COVID-19 mortality for patients treated with corticoste-
roids compared to usual care or placebo (bθ¼�0:53 [95%
CI: �0.82 to �025]). The sufficiently sceptical prior has
relative variance g¼ 0:39, so the sufficiently sceptical
prior variance needs to be roughly 2.5 times smaller than

Significant effect estimate

O
R

Sceptical
 Prior

Data Posterior

1/2

1/1.4

1

1.4 Reverse−Bayes

−SL

SL

Non−significant effect estimate

O
R

Advocacy
 Prior

Data Posterior

1/8

1/4

1/2

1

2 Reverse−Bayes

AL

FIGURE 2 Two examples of the Analysis of Credibility. Shown are point estimates within 95% confidence/credible intervals. The left

plot illustrates how a sceptical prior is used to challenge the significant finding from the RECOVERY trial.36 The right plot illustrates how an

advocacy prior is used to challenge a non-significant finding from the REMAP-CAP trial.43 In both scenarios the posterior is fixed to be just

non-credible/credible [Colour figure can be viewed at wileyonlinelibrary.com]
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the variance of the estimate to make the result non-credi-
ble. The scepticism limit on the log-odds ratio scale turns
out to be SL¼ 0:18, which corresponds to a critical prior
interval with limits 0.84 and 1.19 on the odds ratio scale.
Thus sceptics may still reject the RECOVERY trial find-
ing as lacking credibility despite its statistical significance
if external evidence suggests mortality reductions
(in terms of odds) are unlikely to exceed 1�0:84≈ 16%:

It is also possible to apply the approach to the meta-
analytic log-odds ratio estimate bθ¼�0:42 (95% CI: �0.63
to �0.20) from all seven studies combined. Then SL¼
0:13, so the meta-analytic estimate can be considered as
non-credible if external evidence suggests that mortality
reductions are unlikely to exceed 1�exp �SLð Þ¼
1�0:88≈ 12%: This illustrates that the meta-analytic
estimate has gained credibility compared to the result
from the RECOVERY study alone, despite the reduction
in the effect estimate ðcOR¼ expðbθÞ¼ 0:66 vs. 0.59 in the
RECOVERY study).

2.1.2 | Challenging statistically non-
significant findings

It is also possible to challenge “non-significant” findings
(i.e., those for which the CI now includes zero, so z2 < z2α=2)
using a prior that pushes the posterior toward being cred-
ible in the Bayesian sense, with posterior credible interval
no longer including zero, corresponding to no effect.

Matthews41 proposed the “advocacy prior” for this
purpose, a normal prior with positive mean μ and vari-
ance τ2 chosen such that the α=2-quantile is fixed to zero
(for positive effect estimates bθ>0). He showed that the
“advocacy limit” AL, the 1�α=2ð Þ-quantile of the advo-
cacy prior is,

AL¼�UþL
2UL

U�Lð Þ2 ð11Þ

to reach credibility of the corresponding posterior at level
α. We show in Appendix A.1 that the corresponding rela-
tive prior mean f ¼ μ=bθ is,

f ¼
2

1� z2=z2α=2
if z2 < z2α=2

undefined else:

8<: ð12Þ

There are two important properties of the advocacy
prior. First, the coefficient of variation CV is,

CV ¼ τ=μ¼ z�1
α=2:

The advocacy prior θ�N μ,τ2 ¼ μ2 CV2
� �

is hence
characterised by a fixed coefficient of variation, so this

prior has equal evidential weight (quantified in terms of
μ=τ¼ zα=2Þ as data which are “just significant” at level α:
Second, the AL defines the family of normal priors capa-
ble of rendering a “non-significant” finding credible at
the same level. Such priors are summarised by the credi-
ble interval Lo,Uoð Þ where Lo ≥ 0, Uo ≤AL: Thus when
confronted with a “non-significant” result—often, and
wrongly, interpreted as indicating no effect—advocates of
the existence of an effect may still claim the existence of
the effect is credible to the same level if there exists prior
evidence or insight compatible with the credible interval
Lo,Uoð Þ: If the evidence for an effect is strong (weak), the
resulting advocacy prior will be broad (narrow), giving
advocates of an effect more (less) latitude to make their
case under terms of AnCred. Note that (11) and (12) also
hold for negative effect estimates, where we fix the
1�α=2ð Þ-quantile of the advocacy prior to zero and
define the AL as the α=2-quantile of the advocacy prior.

For illustration we consider the data from the REMAP-
CAP trial43 that supported the RECOVERY trial finding of
decreased COVID-19 mortality from corticosteroid use. How-
ever, this trial involved far fewer patients, and despite the
point estimate showing efficacy, the relatively large uncer-
tainty rendered the overall finding non-significant at the 5%
level (bθ¼�0:34 [95% CI: �0.96 to 0.29]). Such an out-
come is frequently (and wrongly) taken to imply no
effect. The use of AnCred leads to a more nuanced con-
clusion. The AL on the log-odds ratio scale for REMAP-
CAP is �1:89, that is, 0:15 on the odds ratio scale, see
also the right plot in Figure 2. Thus advocates of the
effectiveness of corticosteroids can regard the trial as pro-
viding credible evidence of effectiveness despite its non-
significance if external evidence supports mortality
reductions (in terms of odds) in the range 0% to 85%. So
broad an advocacy range reflects the fact that this rela-
tively small trial provides only modest evidential weight,
and thus little constraint on prior beliefs about the effec-
tiveness of corticosteroids.

Another way to push non-significant findings toward
credibility is to use a prior based on data from another
study or a different subgroup. For example, Best et al.30

consider results from the MENSA trial44 on the efficacy
of Mepolizumab against placebo in 551 adult and 25 ado-
lescent patients with severe asthma. The treatment effect
was estimated to be positive in both subgroups but lacked
significance among adolescents. Best et al. combine the
data in the adolescent subgroup with a mixture prior
based on a weak and an informative component. The
weak component is a minimally informative normal prior
with mean zero and large variance. The variance is cho-
sen such that the information content of the prior is
equivalent to that provided by a single subject or event
(unit-information prior).45 The other component is an
informative prior based on the (significant) results from
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the adolescent subgroup. A Reverse-Bayes approach is
used to determine how much prior weight one needs to
assign to the informative component to obtain a credible
posterior result with a 95% highest posterior credible
interval no longer including zero. In the MENSA trial the
required prior weight on the informative component was
0.7 (and thus 0.3 on the weak prior component) to
achieve a credible result.30 This illustrates that a consid-
erable amount of “Bayesian borrowing” is required to
extrapolate the results from adults to adolescents.

In the meta-analytic setting we may ask a similar
question: Suppose we want to combine the REMAP-CAP
study results with a fraction of the RECOVERY trial data,
how much weight do we need to assign to the RECOV-
ERY trial to make the REMAP-CAP study credible? The
unit-information prior for a logOR has variance τ2 ¼ 4
(see Section 2.4.1 in Spiegelhalter et al.21), so the mixture
prior is,

θ�w �N 0,τ2 ¼ 4
� �þ 1�wð Þ �N bθREC,σ2REC� �

with w the mixing weight and point estimate bθREC and
squared standard error σ2REC of the RECOVERY trial,
respectively. The resulting posterior is again a mixture of
two normals with the posterior mean and variance of
each component being the usual ones obtained from con-
jugate Bayesian updating, while the weights are propor-
tional to the marginal likelihood of the data under each
component (see Section 3.5 in Best et al.30 for details).

Figure 3 shows posterior medians with 95% equal-
tailed credible intervals for a range of mixing weights.
We see that a weight of at least w¼ 0:5 is required to

render the resulting posterior credible. Advocates of corti-
costeroids thus need to be able to justify such levels of
prior beliefs, in order to conclude efficacy of corticoste-
roids also in the REMAP-CAP trial.

2.1.3 | Assessing credibility via equivalent
prior study sizes

Reverse-Bayes credibility assessments can also be formu-
lated in terms of the size and content of a prior study
capable of challenging a claim of statistical significance/
non-significance. This approach puts the weight of prior
evidence in the context of the observed data, expressed as
participant numbers. Greenland22 demonstrated the
value of this approach in assessing the credibility of sta-
tistically significant findings from large observational
studies in epidemiology. The same concept can, however,
be extended to the assessment of both significant and
non-significant outcomes more widely, such as small
RCTs. For any study generating binary data in the form
of event/non-event counts under two different condi-
tions, the comparative effect measure can be expressed as
a log-odds ratio with variance (squared standard error),

1=m1þ1=n1þ1=m2þ1=n2: ð13Þ

where mi and ni are the numbers of events and non-events,
respectively, in study arm i¼ 1,2. This provides the link
between the Reverse-Bayes prior distribution and the
corresponding numbers of prior study participants. Using
the simplifying assumptions of equal numbers of events
m¼m1 ¼m2 and large numbers of non-events n1 and n2

Prior weight
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FIGURE 3 Illustration of the Reverse-Bayes borrowing method. The data from the (non-significant) REMAP-CAP trial are combined

with a mixture prior consisting of the (significant) RECOVERY trial data and a unit-information prior (both estimates shown with 95%

confidence interval). The resulting posterior medians with equal-tailed 95% credible intervals are shown for a range of mixing weights. The

Reverse-Bayes mixing weight w¼ 0:5 leads to the highlighted posterior with upper credible interval limit fixed at one [Colour figure can be

viewed at wileyonlinelibrary.com]
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in each arm ni >100mi,ð say), the variance (13) reduces
to 2=m: The Reverse-Bayes sceptical prior defined in Sec-
tion 2.1.1 has variance τ2 ¼ SL2=z2α=2, where SL is the
sceptical limit. Equating the two implies that such a prior
is equivalent to a (large) hypothetical study with,

m¼ 2=τ2 ¼ 2z2α=2=SL
2

events in both arms. The more compelling the data—that
is, the smaller the value of SL—the larger the number of
events m required in both arms of the hypothetical large
prior study to render the result non-credible at level α:

While the assumption of large studies can be appropriate
with epidemiological studies involving rare events, it can be
harder to justify for RCTs. Fortunately, the theory can
be extended to encompass these and also the case of non-
significant findings with little additional complexity. In the
case of the sceptical prior, we simply require that the num-
bers of events m and non-events n are the same in both
arms to constrain the mean to zero; the variance (13)
then simplifies to 2=mþ2=n: Adding the constraint that
the event rate of the sceptical prior R¼m= mþnð Þ
matches that of the study under assessment, we then find,

m¼ 2
τ2 1�Rð Þ and n¼m 1�Rð Þ

R
:

For example, from Figure 1 the RECOVERY trial has
an overall mortality rate R¼ 95þ283ð Þ= 324þ683ð Þ¼
37:54% and SL¼ 0:178 at the α¼ 5% level zα=2 ¼ 1:96

� �
corresponds to τ2 ¼ 0:0912, so m¼ 389 and n¼ 648 (these
are integer approximations of exact computations), and
thus a prior study capable of challenging the credibility
of the RECOVERY trial requires 1037 patients and 389
deaths in each arm. At more than twice the size of the
RECOVERY trial (2074 vs. 1007) patients and consider-
ably more deaths in both arms, this level of sceptical
prior evidence highlights the robustness of the trial
finding.

A similar approach determines the characteristics of
the hypothetical prior study needed to turn a “negative”
non-significant finding into one that is credible to a spe-
cific α level. The Reverse-Bayes advocacy prior from Mat-
thews41 described in Section 2.1.2 has a mean μ¼AL=2
and variance τ2 ¼AL2= 2zα=2

� �2
: Under the large study

assumption and equating the latter with (13) as
before, the corresponding number of events needed to be
observed in both arms of the hypothetical study is
m¼ 2=τ2 ¼ 8z2α=2=AL

2: To incorporate the non-zero mean
by which this prior represents advocacy, these m events
are taken to have been observed among participants allo-
cated to the two study arms in the ratio 1 :K where K ¼

exp μð Þ¼ exp AL=2ð Þ, the allocation being such that it
increases the relative evidential weight for the hypothesis
“negated” by the non-significance.

As before, while the large study approximation may
be justified in epidemiological examples, this is less likely
to be true for RCTs. In such cases, we can adapt
the approach used for sceptical priors, the size and
composition of the advocacy prior being found by setting
the numbers of events m in each arm the same, but this
time allowing for different numbers of non-events in
each arm via the allocation ratio K. The resulting
variance is then.

τ2 ¼ 2
m
þKþ1

n

where n is the number of non-events in the arm used to
support the null hypothesis (e.g., the control arm in an
RCT). With the control arm event rate R¼m= mþnð Þ
constrained to match that of the actual study, we find,

m¼ 2�R 1�Kð Þ
τ2 1�Rð Þ and n¼m 1�Rð Þ

R
:

As an example, we return to the REMAP-CAP trial,
whose findings were consistent with a reduction of mor-
tality but failed to reach statistical significance. As noted
above, its advocacy limit (AL = �1.89) implies this trial
has relatively little evidential weight, and gives consider-
able scope for prior studies to make its outcome credible
at the 95% level. With K ¼ exp μð Þ¼ exp AL=2ð Þ¼ 0:39,
R¼ 29=92 and zα=2 ¼ 1:96 we find m¼ 11 and n¼ 25:
Thus the hypothetical prior study comprises 11 deaths
from 11+ 25 = 36 patients in the control arm and the
same number of deaths from 11þ 25=0:4ð Þ¼ 75 patients
in the treatment arm. At barely half the total size of
REMAP-CAP but a considerably more impressive mortal-
ity reduction from R¼ 29=92¼ 32% in the control arm to
11=75¼ 15% in the treatment arm (rather than 26=105¼ 25%
in REMAP-CAP), the nature of this hypothetical prior
study confirms the paucity of evidence in the original
trial.

2.1.4 | The fail-safe N method

Another data representation of a sceptical prior forms the
basis of the well-known “fail-safe N” method, sometimes
also called “file-drawer analysis.” This method, first
introduced by Rosenthal46 and later refined by
Rosenberg,47 is commonly applied to the results from a
meta-analysis and answers the question: “How many
unpublished negative studies do we need to make the
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meta-analytic effect estimate non-significant?” A rela-
tively large N of such unpublished studies suggests that
the estimate is robust to potential null-findings, for exam-
ple due to publication bias. Calculations are made under
the assumption that the unpublished studies have an
average effect of zero and a precision equal to the average
precision of the published ones.

While the method does not identify nor adjust for
publication bias, it provides a quick way to assess how
robust the meta-analytic effect estimate is. The method is
available in common software packages such as metafor48

and its simplicity and intuitive appeal have made it very
popular among researchers.

AnCred and the fail-safe N are both based on the idea
to challenge effect estimates such that they become “non-
significant/not credible,” and it is easy to show that the
methods are under some circumstances also technically
equivalent. To illustrate this, we consider again the meta-
analysis on the association between corticosteroids and
COVID-19 mortality34 which gave the pooled log-odds
ratio estimate bθ¼�0:42 with standard error σ¼ 0:11,
posterior precision δ0 ¼ 83:8 and test statis-
tic z¼bθ=σ¼�3:81:

Using the Rosenberg47 approach (as implemented in
the fsn() function from the metafor package) we find
that at least N ¼ 20 additional but unpublished non-sig-
nificant findings are needed to make the published meta-
analysis effect non-significant. If instead, we challenge the
overall estimate with AnCred, we obtain the relative prior
variance g¼ 0:36 using Equation (9), so τ2 ¼ 0:0043: Tak-
ing into account the average precision δ0=n¼ 11:98 of the
different effect estimates estimates in the meta-analysis
leads to N ¼ n= δ0 � τ2ð Þ¼ 19:5 which is equivalent to the
fail-safe N result after rounding to the next larger integer.

2.2 | Intrinsic credibility

The Problem of Priors is at its most challenging in the
context of entirely novel “out of the blue” effects for
which no obviously relevant external evidence exist. By
their nature, such findings often attract considerable
interest both within and beyond the research community,
making their reliability of particular importance. Given
the absence of external sources of evidence, Matthews41

proposed the concept of intrinsic credibility. This requires
that the evidential weight of an unprecedented finding is
sufficient to put it in conflict with the sceptical prior ren-
dering it non-credible. In the AnCred framework, this
implies a finding possesses intrinsic credibility at level α
if the estimate bθ is outside the corresponding sceptical
prior interval �SL,SL½ � extracted using Reverse-Bayes
from the finding itself, i. e. bθ2 > SL2 with SL given in

(10). Matthews showed this implies an unprecedented
finding is intrinsically credible at level α¼ 0:05 if its p-
value does not exceed 0.013.

Held27 refined the concept by suggesting the use of a
prior-predictive check11,12 to assess potential prior-data
conflict. With this approach the uncertainty of the esti-
mate bθ is also taken into account since it is based on the
prior-predictive distribution, in this case bθ�
N 0,σ2þ τ2 ¼ σ2 1þ gð Þð Þ with g as given in (9). Intrinsic
credibility is declared if the (two-sided) tail probability,

pBox ¼ Pr χ21 ≥bθ2= σ2þ τ2
� �� �

¼ Pr χ21 ≥ z2= 1þgð Þ� �
of bθ under the prior-predictive distribution is smaller
than α. It turns out that the p-value associated with θ
needs to be at least as small as 0.0056 to obtain intrinsic
credibility at level α¼ 0:05, providing another principled
argument for the recent proposition to lower the p-value
threshold for the claims of new discoveries to 0.005.31

A simple check for intrinsic credibility is based on
the credibility ratio, the ratio of the upper to the lower
limit (or vice versa) of a confidence interval for a
significant effect size estimate. If the credibility ratio
is smaller than 5.8 then the result is intrinsically
credible.27 This holds for confidence intervals at all possi-
ble values of α, not just for the 0.05 standard. For exam-
ple, in the RECOVERY study the 95% confidence interval
for the log-odds ratio ranges from �0:82 to �0:25, so the
credibility ratio is �0:82=�0:25¼ 3:27< 5:8 and the
result is intrinsically credible at the standard 5% level.

2.2.1 | Replication of effect direction

Whether intrinsic credibility is assessed based on the
prior or the prior-predictive distribution, it depends on
the level α in both cases. To remove this dependence,
Held27 proposed to consider the smallest level at which
intrinsic credibility can be established, defining the p-
value for intrinsic credibility,

pIC ¼ 2 1�Φ
zj jffiffiffi
2

p
� �	 


, ð14Þ

see Section 4 in Held27 for the derivation. Now z¼bθ=σ,
so compared to the standard p-value p¼ 2 1�Φ zj jð Þf g,
the p-value for intrinsic credibility is based on twice the
variance σ2 of the estimate bθ. Although motivated from a
different perspective, inference based on intrinsic credi-
bility thus mimics the doubling the variance rule advo-
cated by Copas and Eguchi49 as a simple means of
adjusting for model uncertainty.
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Moreover, Held27 showed that pIC is connected to prep
of Killeen,50 the probability that a replication will result
in an effect estimate bθr in the same direction as the
observed effect estimate bθ, by prep ¼ 1�pIC=2: Hence, an
intrinsically credible estimate at a small level α will have
high chance of replicating since prep ≥ 1�α=2: Note that
prep lies between 0.5 and 1 with the extreme case prep ¼
0:5 if bθ¼ 0:

As an example, the p-value for intrinsic credibility for
the RECOVERY trial finding (with p-value p¼ 0:0002Þ
cited earlier is pIC ¼ 0:01 and thus the probability of the
replication effect going in the same direction
(i.e., reduced mortality in this case) is 0:995. In contrast,
the finding from the smaller REMAP-CAP trial (with p¼
0:29Þ leads to pIC ¼ 0:46, and the probability of effect
direction replication is hence only 0:77:

3 | REVERSE-BAYES METHODS
WITH BAYES FACTORS

The AnCred procedure as described above uses posterior
credible intervals as a means of quantifying evidence.
However, quantification of evidence with Bayes factors is
a more principled solution for hypothesis testing in the
Bayesian framework.32,33 Bayes factors enable direct
probability statements about null and alternative hypoth-
esis and they can also quantify evidence for the null
hypothesis, both are impossible with indirect measures of
evidence such as p-values.51 Reverse-Bayes approaches
combined with Bayes factor methodology was pioneered
by Carlin and Louis18 but then remained unexplored
until Pawel and Held29 proposed an extension of AnCred
where Bayes factors are used as a means of quantifying
evidence. Rather than determining a prior such that a
finding becomes “non-credible” in terms of a posterior
credible interval, this approach determines a prior such
that the finding becomes “non-compelling” in terms of a
Bayes factor. In the second step of the procedure, the
plausibility of this prior is quantified using external data
from a replication study. Here, we will illustrate the
methodology using only an original study; we mention
extensions for replications in Section 5.1.

3.1 | Sceptical priors

As before, bθ denotes the estimate of the unknown mean θ
of a N θ,σ2ð Þ distribution with known variance σ2: A stan-
dard hypothesis test compares the null hypothesis H0 :

θ¼ 0 to the alternative H1 : θ≠ 0: Bayesian hypothesis
testing requires specification of a prior distribution of θ
under H1: A typical choice is a local alternative, a

unimodal symmetric prior distribution centred around
the null value.52 We consider again the conjugate scepti-
cal prior θ jH1 �N 0,τ2 ¼ g �σ2ð Þ with relative prior vari-
ance g for this purpose. This leads to the Bayes factor
comparing H0 to H1 being,

BF01 ¼
ffiffiffiffiffiffiffiffiffiffi
1þ g

p �exp � g
1þ g

� z
2

2

	 

, ð15Þ

where z¼bθ=σ: Yet again, the amount of evidence which the
data provide against the null hypothesis depends on the prior
parameter g; As g becomes smaller g # 0ð Þ, the null hypoth-
esis and the alternative will become indistinguishable, so
the data are equally likely under both BF01 ! 1ð Þ: On
the other hand, for increasingly diffuse priors g!∞ð Þ,
the null hypothesis will always prevail BF01 !∞ð Þ due to
the Jeffreys-Lindley paradox.53 In between, the BF01

reaches a minimum at g¼max z2�1,0f g leading to,

minBF01 ¼
zj j � exp �z2=2f g � ffiffi

e
p

if zj j>1

1 else

	
ð16Þ

which is an instance of a minimum Bayes factor, the smallest
possible Bayes factor within a class of alternative hypotheses,
in this case zero mean normal alternatives.54,55,56,51

Reporting of minimum Bayes factors is one attempt
of solving the Problem of Priors in Bayesian inference.
However, this bound may be rather small and the
corresponding prior unrealistic. In contrast, the Reverse-
Bayes approach makes the choice of the prior explicit by
determining the relative prior variance parameter g such
that the finding is no longer compelling, followed by
assessing the plausibility of this prior. To do so, one first
fixes BF01 ¼ γ, where γ is a cut-off above which the result
is no longer convincing, for example γ¼ 1=10, the level
for strong evidence according to the classification from
Jeffreys.32 The sufficiently sceptical relative prior vari-
ance is then given by,

g¼ �z2

q
�1 if� z2

q
≥ 1

undefined else

8><>:
where q¼W �z2

γ2
�exp �z2

� �� � ð17Þ

where W �ð Þ is the branch of the Lambert W function
that satisfies W yð Þ≤ �1 for y∈ �e�1,0½ Þ, 57 see the Appen-
dix in Pawel and Held29 for a proof.

The sufficiently sceptical relative prior variance g
exists only for a cut-off γ if minBF01 ≤ γ, similar to
standard AnCred where it exists only at level α if the
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original finding was significant at the same level.
In contrast to standard AnCred, however, if the suffi-
ciently sceptical relative prior variance g exists, there
are always two solutions, a consequence of the Jeffreys-
Lindley paradox: If BF01 decreases in g below the
chosen cut-off γ, after attaining its minimum it will
monotonically increase and intersect a second time with
γ, admitting a second solution for the sufficiently scepti-
cal prior.

We now re-visit the meta-analysis example consid-
ered earlier: The left plot in Figure 4 shows the Bayes fac-
tor BF01 from (15) as a function of the relative prior
variance g for each finding included in the meta-analysis.
Most of them did not include a great number of partici-
pants and thus provide little evidence against the null
hypothesis for any value of the relative prior variance g.
In contrast, the finding from the RECOVERY trial36 pro-
vides more compelling evidence and can be challenged
up to minBF01 ¼ 1=148:9: For example, we see in Figure 4
that the relative sceptical prior variance needs to be
g≤ 0:59 such that the finding is no longer compelling at
level γ¼ 1=10: This translates to a 95% prior credible
interval from 0.8 to 1.24 for the OR (or any narrower
interval around 1). Hence, a sceptic might still consider
the RECOVERY finding to be unconvincing, despite its

minimum BF being very compelling, if external evidence
supports ORs in that range. By applying the prior-to-data
conversion method described in Section 2.1.3 we can fur-
ther see that the evidential value of this prior is equiva-
lent to a trial with 258 events and 429 non-events in both
arms (so that the overall mortality rate is equivalent with
the RECOVERY trial). For comparison, the sceptical
prior from standard AnCred at α¼ 0:05 was equivalent to
a trial with 389 events and 648 non-events, respectively.

The plausibility of the sufficiently sceptical prior can
be evaluated in light of external evidence, but what
should we do in the absence of such? We could again use
the Box11 prior-predictive check as in Section 2.2, how-
ever, the resulting tail probability is difficult to compare
to the Bayes-factor cut-off γ: When a specific alternative
model to the null is in mind, Box11(p391) also suggested to
use a Bayes factor for model criticism of the null model.
Following this approach, Pawel and Held29 proposed to
define a second Bayes factor contrasting the sufficiently
sceptical prior to an optimistic prior, which they defined
as θ jH2 �N bθ,σ2� �

the posterior of θ based on the data
and the reference prior f θð Þ/ 1. The optimistic prior
therefore represents the position of a proponent who
takes the original claim at face value. This leads to the
second Bayes factor being,
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FIGURE 4 Illustration of the AnCred with Bayes factors procedure using the findings from the meta-analysis on the association of

COVID-19 mortality and corticosteroids. The left plot shows the Bayes factor BF01 as a function of the relative variance g¼ τ2=σ2 of the

sceptical prior. The result from the RECOVERY trial is challenged with a sceptical prior such that BF01 ¼ 1=10, for the other trials such a

prior does not exist. The right plot shows the Bayes factor 01 as a function of the relative mean f ¼ μ=bθ of the advocacy prior where the

coefficient of variation from the prior is fixed to CV¼ τ=μ¼ 1=z γ¼ 1=3ð Þ¼ 0:67, where z γð Þ is given in (20). The RECOVERY and the CAPE

COVID findings are challenged such that BF01 ¼ 1=3, for the other trials such a prior does not exist [Colour figure can be viewed at
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BF12 ¼
ffiffiffiffiffiffiffiffiffiffi
2

1þg

s
�exp �1

2
� z2

1þ g

	 

: ð18Þ

Analogously to the tail probability approach from Sec-
tion 2.2, intrinsic credibility is established if the data sup-
port the optimistic over the sceptical prior at a higher
level than they support the sceptical prior over the null
hypothesis, that is, if,

BF12 ≤BF01

with sufficiently sceptical relative prior variance g from
(17) used in both Bayes factors. For example, if we chal-
lenge the RECOVERY trial finding such that the
resulting Bayes factor is only BF01 ¼ 1=10, we obtain with
(9) the sufficiently sceptical relative prior variance g¼ 0:59
and in turn with (18) the Bayes factor BF12 ¼ 1=64, so the
finding is intrinsically credible at γ¼ 1=10:

To remove the dependence on the choice of the level
γ, one can determine the smallest level γ where intrinsic
credibility can be established. This defines a Bayes factor
for intrinsic credibility BFIC similar to the definition of
the p-value for intrinsic credibility pIC from (14). Intrinsic
credibility at level γ is then equivalent with BFIC ≤ γ:
Details on the computation of BFIC are given in
Appendix A.2. For the RECOVERY finding, the Bayes
factor for intrinsic credibility is BFIC ¼ 1=25: This means
the data favour the optimistic prior over any sceptical
prior that is capable of rendering the original result no
longer convincing at γ¼ 1=25: For comparison the p-
value for intrinsic credibility (14) is pIC ¼ 0:009:

Figure 5 shows the Bayes factor for intrinsic credibil-
ity BFIC as a function of the z-value along with a compar-
ison to the p-value for intrinsic credibility pIC and the
minimum Bayes factor minBF01 from (16). We see that

the BFIC is undefined when zj j< ffiffiffiffiffiffiffiffiffi
log2

p
≈ 0:83: In this

case the data are so unconvincing that any sceptical prior
is better supported by the data than the optimistic prior.
For z-values between

ffiffiffiffiffiffiffiffiffi
log2

p
≤ zj j<2:04, the BFIC equals

the minimum Bayes factor minBF01, whereas for larger z
values zj j≥ 2:04, the BFIC is always larger (more conser-
vative) than the minBF01. In the absence of any prior
information, it may therefore be a useful evidential sum-
mary which formally takes into account both scepticism
and optimism about the observed data.

A p-value less than 0:05 is usually regarded as suffi-
cient evidence against the null hypothesis, but how much
evidence does p¼ 0:05 mean in terms of the Bayes factor
for intrinsic credibility? From Figure 5, we see that the
BFIC ¼ 1=2:1 for zj j ¼ 1:96, so at most “worth a bare men-
tion” according to Jeffreys classification.32 Thus, also
from this perspective, the conventional p-value threshold
of 0.05 for the claim of new discoveries seems too lax in
terms of the evidential value that a finding at this threshold
provides. We saw in Section 2.2 that an ordinary p-value
needs to be at least as small as p≤ 0:0056 for a finding to
be intrinsically credible in terms of the p-value for intrin-
sic credibility pIC ≤ 0:05: A p-value of 0.0056 corresponds
to zj j ¼ 2:77 where the Bayes factor for intrinsic credibil-
ity is BFIC ¼ 1=5:7, indicating at least “substantial” evi-
dence against the null hypothesis according to Jeffreys.
To achieve intrinsic credibility at the level for strong evi-
dence γ¼ 1=10ð Þ the requirements are even more strin-
gent as the z-value needs to be at least zj j≥ 3:15
(equivalent to minBF≤ 1=27, p≤ 0:002, or pIC ≤ 0:026Þ:

3.2 | Advocacy priors

A natural question is whether we can also define an
advocacy prior, a prior which renders an uncompelling

0 1 2 3 4 5

absolute z−value |z|

B
F

1/300

1/100

1/30

1/10

1/3

1

1.00 0.50 0.15 0.05 0.005 0.0005

pIC

BFIC

minBF01

FIGURE 5 Comparison of the Bayes factor for intrinsic credibility BFIC, the minimum Bayes factor minBF01, and the p.value for

intrinsic credibility pIC as a function of the absolute z-value zj j: The value pIC ¼ 0:15 is at the breakpoint at zj j ¼ 2:04 [Colour figure can be
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finding compelling, in the AnCred framework with Bayes
factors. In traditional AnCred, advocacy priors always
exist since one can always find a prior that, when com-
bined with the data, can overrule them. This is funda-
mentally different to inference based on Bayes factors,
where the prior is not synthesised with the data, but
rather used to predict them. A classical result due to Edwards
et al.54 states that if we consider the class of all possible priors
under H1, the minimum Bayes factor is given by,

minBF01 ¼ exp �z2=2
� � ð19Þ

which is obtained for H1 : θ¼bθ: This implies that a non-
compelling finding cannot be “rescued” further than to
this bound. For example, for the finding from the
REMAP-CAP trial43 the bound is unsatisfactorily
minBF01 ¼ 1=1:7, so at most “worth a bare mention”
according to the classification from Jeffreys.32

Putting these considerations aside, we may still con-
sider the class of N μ,τ2ð Þ priors under the alternative H1:

The Bayes factor contrasting H0 to H1 is then given by,

BF01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2=σ2

p
�exp �1

2

bθ2
σ2

�
bθ�μ

� �2

σ2þ τ2

264
375

8><>:
9>=>;:

The Reverse-Bayes approach now determines the
prior mean μ and variance τ2 which lead to the Bayes fac-
tor BF01 being just at some cut-off γ: However, if both
parameters are free, there are infinitely many solutions to
BF01 ¼ γ, if any exist at all. The traditional AnCred
framework resolves this by restricting the class of possi-
ble priors to advocacy priors with fixed coefficient of vari-
ation of CV¼ τ=μ¼ 1=zα=2: We can translate this idea to
the Bayes factor AnCred framework and fix the prior's
coefficient of variation to CV¼ 1=z γð Þ, where,

z γð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 log γ

p
, ð20Þ

obtained by solving (19) for z with minBF01 ¼ γ: The
advocacy prior thus carries the same evidential weight as
data with minBF01 ¼ γ. Moreover, the determination of
the prior parameters becomes more feasible since there is
only one free parameter left (either μ or τ2Þ:

The right plot in Figure 4 illustrates application of the
procedure on data from the meta-analysis on association
between COVID-19 mortality and corticosteroids. The
coefficient of variation of the advocacy prior is fixed to
CV¼ 1=z γ¼ 1=3ð Þ¼ 0:67 (for comparison, the CV of the

advocacy prior in traditional AnCred at α¼ 0:05 is
CV¼ 1=zα=2 ¼ 0:51Þ and thus the Bayes factor BF01 only
depends on the relative mean f ¼ μ=bθ: Under the scepti-
cal prior only the RECOVERY finding could be chal-
lenged at γ¼ 1=3 (where z γð Þ¼ 1:5 corresponds to
α¼ 13%Þ: With the advocacy prior this is now also possi-
ble for the CAPE COVID finding,58 where a prior with
mean μ¼ f �bθ¼ 0:37 � �0:79ð Þ¼�0:29 and standard devi-
ation τ¼CV �μ¼ 0:2 is able to make the finding compel-
ling at γ¼ 1=3: The corresponding prior credible interval
for the OR at level 1�α ranges from 0.55 to 1, so advo-
cates may still consider the “non-compelling” finding as
providing moderate evidence in favour of a benefit, if
external evidence supports mortality reductions in that
range. Using the prior-to-data conversion described in
Section 2.1.3, the prior can be translated to a trial with
69 events in both arms, but 206 non-events in the treat-
ment and 182 non-events in the control arm (such that
the mortality rate in the control arm is the same as in the
CAPE COVID trial). Note that the advocacy prior may
not be unique, for example, for the CAPE COVID finding
the prior with relative mean f

0 ¼ 1:26 and standard devia-
tion τ

0 ¼ 0:67 also renders the data as just compelling at
γ¼ 1=3: We recommend to choose the prior with f closer
to zero, as it is the more conservative choice.

4 | REVERSE-BAYES ANALYSIS OF
THE FALSE POSITIVE RISK

Application of the Analysis of Credibility with Bayes fac-
tors as described in Section 3 assumes some familiarity
with Bayes factors as measures of evidence. Colquhoun26

argued that very few nonprofessional users of statistics
are familiar with the notion of Bayes factors or likelihood
ratios. He proposes to quantify evidence with the false positive
risk, “if only because that is what most users still think, mis-
takenly, that is what the p-value tells them.”More specifically,
Colquhoun26 defines the false positive risk FPR as the poste-
rior probability that the point null hypothesis H0 of no effect
is true given the observed p-value p, that is, FPR¼
Pr H0jpð Þ: As before, H0 corresponds to the point null
hypothesis H0 : θ¼ 0: Note also that we take the exact
(two-sided) p-value p as the observed “data,” regardless
of whether or not it is significant at some pre-specified
level, the so-called “p-equals” interpretation of NHST.25

FPR can be calculated based on the Bayes factor asso-
ciated with p. For ease of presentation we invert Bayes'
theorem (1) and obtain,

FPR
1�FPR

¼ Pr H0jpð Þ
Pr H1jpð Þ¼BF01

Pr H0ð Þ
Pr H1ð Þ , ð21Þ
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where BF01 ¼ 1=BF10 is the Bayes factor for H0 against
H1, computed directly from the observed p-value p.

The common “forward-Bayes” approach is to compute
the FPR from the prior probability Pr H0ð Þ and the Bayes
factor with (21). However, the prior probability Pr H0ð Þ is
usually unknown in practice and often hard to assess.
This can be resolved via the Reverse-Bayes approach25,26:
Given a p-value and a false positive risk value, calculate
the corresponding prior probability Pr H0ð Þ that is needed
to achieve that false positive risk. Of specific interest is
the value FPR = 5%, because many scientists believe that
a Type-I error of 5% is equivalent to a FPR of 5%.59 This
is of course not true and we follow Example 1 from Ber-
ger and Sellke55 and use the Reverse-Bayes approach to
derive the necessary prior assumptions on Pr H0ð Þ to
achieve FPR = 5% with Equation (21):

Pr H0ð Þ¼ 1þ1�FPR
FPR

�BF01


 ��1

: ð22Þ

Colquhoun25 uses a Bayes factor based on the t-test,
but for compatibility with the previous sections we
assume normality of the underlying test statistic. We con-
sider Bayes factors under all simple alternatives, but also
Bayes factors under local normal priors, see Held and
Ott51 for a detailed comparison.

Instead of working with a Bayes factor for a specific prior
distribution, we prefer to work with the minimum Bayes fac-
tor minBF01 as introduced in Section 3.1. In what follows
we will use the minimum Bayes factor based on the
z-test, see Section 2.1 and 2.2 in Held and Ott.51

Let minBF01 denote the minimum Bayes factor over a
specific class of alternatives. From Equation (22) we
obtain the inequality

Pr H0ð Þ≤ 1þ1�FPR
FPR

�minBF01


 ��1

: ð23Þ

The right-hand side is thus an upper bound on the
prior probability Pr H0ð Þ for a given p-value to achieve a
pre-specified FPR value.

There are also minBFs not based on the z-test statistic
as (16), but directly on the (two-sided) p-value p, the so-
called “� e p log p”56 calibration,

minBF¼ �e p log p for p<1=e

1 otherwise,

	
ð24Þ

and the “� e q log q” calibration, where q¼ 1�p, see
Section 2.3 in Held and Ott51:

minBF¼ �e 1�pð Þlog 1�pð Þ for p<1�1=e

1 otherwise:

	
ð25Þ

For small p, Equation (25) can be simplified to
minBF≈ ep, which mimics the Good60 transformation of
p-values to Bayes factors.61

The two p-based calibrations carry less assumptions than
the minimum Bayes factors based on the z-test under normal-
ity and can be used as alternative expressions in (23). The “�
e p log p” provides a general bound under all unimodal
and symmetrical local priors for p-values from z-tests, see
Section 3.2 in Sellke et al.56 The “� e q log q” calibration
is more conservative and gives a smaller bound on the
Bayes factor than the “� e p log p” calibration. It can be
viewed as a general lower bound under simple alterna-
tives where the direction of the effect is taken into
account, see Sections 2.1 and 2.3 in Held and Ott.51

The left plot in Figure 6 shows the resulting upper bound
on the prior probability Pr H0ð Þ as a function of the two-
sided p-value if the FPR is fixed at 5%. For p¼ 0:05, the
“� e p log p” bound is around 11% and 28% for the “�
e q log q” calibration. The corresponding values based on
the z-test are slightly smaller (10% and 15%, respectively).
All the probabilities are below the 50% value of equipoise,
illustrating that borderline significant result with p≈ 0:05
do not provide sufficient evidence to justify an FPR value
of 5%. For p¼ 0:005, the upper bounds are closer to 50%
(37% for local and 57% for simple alternatives).

Turning again to the example from the RECOVERY
trial,36 the p-value associated with the estimated treatment
effect is p¼ 0:0002: The left plot in Figure 6 shows that
the false positive risk can safely be assumed to be around
5% (or lower), since the upper bound on Pr H0ð Þ are all
very large for such a small p-value. Fixing FPR at the 5%
level may be considered as arbitrary. Another widespread
misconception is the belief that the FPR is equal to the p-
value. Held24 used a Reverse-Bayes approach to investi-
gate which prior assumptions are required such that
FPR¼ p holds. Combining (22) with the “� e p log p”
calibration (24) gives the explicit condition,

Pr H0ð Þ≤ 1= 1� e 1�pð Þlog pð Þf g

whereas the “� e q log q” calibration (25) leads to,

Pr H0ð Þ≤ 1= 1� e
1�pð Þ2
p

log 1�pð Þ
( )

≈ 1= 1þ e 1�pð Þf g,

which is approximately 1= 1þ eð Þ¼ 26:9% for small p:
The right plot in Figure 6 compares the bounds based

on these two calibrations with the ones obtained from
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simple respectively local alternatives. We can see that
strong assumptions on Pr H0ð Þ are needed to justify the
claim FPR¼ p :Pr H0ð Þ cannot be larger than 15.2% if the
p-value is conventionally significant (p<0.05). For
p<0:005, the bound drops further to 11.4%. Even under
the conservative “� e q log q” calibration, the upper
bound on Pr H0ð Þ is 26:9% for small p and increases only
slightly for larger values of p: This illustrates that the mis-
interpretation FPR¼ p only holds if the prior probability
of H0 is substantially smaller than 50%, an assumption
which is questionable in the absence of strong external
knowledge.

5 | DISCUSSION

5.1 | Extensions, work in progress and
outlook

The Reverse-Bayes methods described above have focused
on the comparison of the prior needed for credibility with
findings from other studies and/or more general insights.
However, replication studies make an obvious additional
source of external evidence, as these are typically conducted
to confirm original findings by repeating their experiments
as closely as possible. The question is then whether the orig-
inal findings have been successfully “replicated,” currently
of considerable concern to the research community. To
date, there remains no consensus on the precise meaning of
replication in a statistical sense. The proposal of Held28 (see

also Held et al.62) was to challenge the original finding
using AnCred, as described in Section 2.1, and then evalu-
ate the plausibility of the resulting prior using a prior-
predictive check on the data from a replication study. A
similar procedure but using AnCred based on Bayes factors
as in Section 3 was proposed in Pawel and Held.29 Reverse-
Bayes inference seems to fit naturally into this setting as it
provides a formal framework to challenge and substantiate
scientific findings.

Apart from using data from a replication study, there
are also other possible extensions of AnCred: We proposed
to derive Reverse-Bayes priors using posterior tail probabili-
ties (or credible intervals) or Bayes factors as measures of
evidence, but also other measures such as relative belief
ratios63 could be used. When testing point null hypotheses,
relative belief ratios are equivalent to Bayes factors due to
the Savage-Dickey density ratio.63(p98) Therefore, determin-
ing the sceptical prior variance through fixing the resulting
Bayes factor is equivalent to fixing the resulting relative
belief ratio. However, there is no connection to relative
belief in prior-data conflict assessment based on the Bayes
factor contrasting the sceptical to the optimistic prior since
both are composite. Further research is needed on Reverse-
Bayes procedures in the relative belief framework, candi-
date methods for prior-data conflict assessment are prior to
posterior divergence13 and prior expansions14 as these
methods have an interpretation in terms of relative beliefs.
Moreover, we either used prior-predictive checks11,12 or
Bayes-factors32,33 for the formal evaluation of the plausibil-
ity of the priors derived through Reverse-Bayes. Other

FPR = 5%

p−value (two−sided z−test)

u
p

p
e

r 
b

o
u

n
d

 o
n

 P
r(
H

0
)

u
p

p
e

r 
b

o
u

n
d

 o
n

 P
r(
H

0
)

0.0001 0.0005 0.005 0.05

10%

20%

50%

100%

15.2%

57.5%

10%

36.9%

calibration type

z (simple)
z (local)
−e q log q
−e p log p

FPR = p−value

p−value (two−sided z−test)

0.0001 0.0005 0.005 0.05

3%

5%

10%

20%

30%

11.4%

15.2%

5.3%

10%

FIGURE 6 The left plot shows the upper bound on the prior probability Pr H0ð Þ to achieve a false positive risk of 5% as a function of the

p-value calibrated with either a z-test calibration (simple or local alternatives) or with the }� e p log p} or }� e q log q} calibrations,

respectively. The right plot shows the upper bound on Pr H0ð Þ as a function of the p-value using the same calibrations but assuming the p-

value equals the FPR [Colour figure can be viewed at wileyonlinelibrary.com]
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methods could be used for this purpose, for example,
Bayesian measures of surprise.64 Furthermore, AnCred in
its current state is derived assuming a normal likelihood for
the effect estimate bθ. This is the same framework as in
standard meta-analysis and provides a good approxima-
tion for studies with reasonable sample size.65 For the
comparison of binomial outcomes with small counts, the
normal approximation of the log-odds ratio could be
improved with a Yates continuity correction21(sec2.4.1) or
replaced with the exact profile likelihood of the log-odds
ratio,66(sec5.3) see also Section 4 in Pawel and Held29

which shows AnCred with Bayes factors using either a
non-central t or a binomial likelihood. Likewise, the con-
jugate normal prior could be replaced by a more robust
prior distribution such as a mixture of normals
(as considered in Section 2.1.2), a double-exponential, or
a Student t-distribution.67 For example, Fúquene68 inves-
tigate the use of robust priors in an application to bino-
mial data from a randomised controlled trial. In general,
any distribution from the location-scale family can be
used, whereby the scale parameter takes over the role of
the sceptical prior standard deviation, while the location
parameter is fixed to the null value.

5.2 | Conclusions

The inferential advantages of Bayesian methods are
increasingly recognised within the statistical community.
However, among the majority of working researchers they
have failed to make any serious headway, and retain a
reputation for complex and “controversial.” We have out-
lined how an idea that began with Jack Good's proposal
for resolving the “Problem of Priors” over 70 years ago10

has experienced a renaissance over recent years. The basic
idea is to invert Bayes' theorem: a specified posterior is
combined with the data to obtain the Reverse-Bayes prior,
which is then used for further inference. This approach is
useful in situations where it is difficult to decide what con-
stitutes a reasonable prior, but easy to specify the posterior
which would lead to a particular decision. A subsequent
prior-to-data conversion22 helps to assess the weight of the
Reverse-Bayes prior in relation to the actual data.

We have shown that the Reverse-Bayes methodology
is useful to extract more insights from the results typi-
cally reported in a meta-analysis. It facilitates the compu-
tation of prior-predictive checks for conflict diagnostics35

and has been shown capable of addressing many com-
mon inferential challenges, including assessing the credi-
bility of scientific findings,21,23 making sense of “out of
the blue” discoveries with no prior support,41,27 estimat-
ing the probability of successful replications,27,28 and
extracting more insight from standard p-values while
reducing the risk of misinterpretation.24,25,26 The appeal

of Reverse-Bayes techniques has recently been widened
by the development of inferential methods using both
posterior probabilities and Bayes factors.18,29

These developments come at a crucial time for
the role of statistical methods in research. Despite the
many serious—and now well-publicised—inadequacies
of NHST,3 the research community has shown itself to be
remarkably reluctant to abandon NHST. Techniques
based on the Reverse-Bayes methodology of the kind
described in this review could encourage the wider use of
Bayesian inference by researchers. As such, we believe
they can play a key role in the scientific enterprise of the
21th century.
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APPENDIX

A.1. | Mean of the advocacy prior
Suppose that the estimate bθ is not significant at level α,
so z2=z2α=2 < 1: With U,L¼bθ� zα=2σ we have UþL¼ 2bθ,
UL¼bθ2� z2α=2σ

2 and U�L¼ 2zα=2σ.
We therefore obtain with (11):

μ¼ AL
2

¼� 2bθ
2 bθ2� z2α=2σ

2
� � 2zα=2σ

� �2
2

¼
2bθz2α=2σ2
z2α=2σ

2�bθ2
¼ 2bθ
1� z2=z2α=2

:

Dividing by the effect estimate bθ leads to the relative
mean f ¼ μ=bθ as in (12). The advocacy standard deviation
is τ¼AL= 2zα=2

� �¼ μ=zα=2 and the coefficient of variation
is therefore CV ¼ τ=μ¼ z�1

α=2:

A.2. | Bayes factor for intrinsic credibility
Intrinsic credibility at level γ is established when,

BF12 ≤BF01 ¼ γ ðA1Þ

and we are interested in the Bayes factor for intrinsic
credibility BFIC which is the smallest level γ∈ 0,1ð � where
(A1) holds. The BFIC is therefore a special case of the
sceptical Bayes factor from Pawel and Held29 where the
same data is used in both Bayes factors (instead of the data
from a replication study for BF12Þ: It is hence given by,

BFIC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi�z2=k
p

exp z2þkð Þ=2f g if zj j≥ J

minBF01 if
ffiffiffiffiffiffiffiffiffi
log2

p
≤ zj j< J

undefined if zj j< ffiffiffiffiffiffiffiffiffi
log2

p

8>>>><>>>>: ðA2Þ
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with

k¼W �z2exp �z2=2f g= ffiffiffi
2

p� �
, J ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2W �e�1=

ffiffiffi
2

p� �q
,

and W �ð Þ the branch of the Lambert W function that sat-
isfies W yð Þ≤ �1 for y∈ �e�1,0½ Þ: If zj j≥ J ≈ 2:04, BFIC is
located at the intersection between BF12 and BF01 in the rela-
tive prior variance g, so Equation (7) from Pawel and Held29

can be used. For zj j≥ ffiffiffiffiffiffiffiffiffi
log2

p
≈ 0:83, BF12 remains below

BF01 for all g and hence BFIC is given by minBF01, the
minimum of BF01 from (16). Finally, when z<

ffiffiffiffiffiffiffiffiffi
log2

p
,

Equation (A1) cannot be satisfied for any valid suffi-
ciently sceptical relative prior variance g, hence the BFIC

is undefined.
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