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Background and Purpose: Cerebral autosomal dominant arteriopathy with subcortical

infarcts and leukoencephalopathy caused by mutations in the NOTCH3 gene is a

hereditary cerebral small vessel disease, manifesting with stroke, cognitive impairment,

and mood disturbances. Functional or structural changes in the default mode network

(DMN), which plays important role in cognitive and mental maintenance, have been found

in several neurological and mental diseases. However, it remains unclear whether DMN is

altered in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts

and leukoencephalopathy (CADASIL).

Methods: Multimodal imaging methods, including MRI and positron emission

tomography (PET), were applied to evaluate the functional, structural, and metabolic

characteristics of DMN in 25 patients with CADASIL and 42 healthy controls.

Results: Compared with controls, patients with CADASIL had decreased nodal

efficiency and degree centrality of the dorsal medial pre-frontal cortex and hippocampal

formation within DMN. Structural MRI and diffusion tensor imaging (DTI) showed

decreased gray matter volume and fiber tracks presented in the bilateral hippocampal

formation. Meanwhile, PET imaging showed decreased metabolism within the whole

DMN in CADASIL. Furthermore, correlation analyses showed that these nodal

characteristics, gray matter volume, and metabolic signals of DMN were related to

cognitive scores in CADASIL.

Conclusions: Our results suggested that altered network characteristics of DMN might

play important roles in cognitive deficits of CADASIL.
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INTRODUCTION

Cerebral autosomal dominant arteriopathy with subcortical
infarcts and leukoencephalopathy is the most common

hereditary cerebrovascular disease (1). It is caused by the
pathogenic mutations in the NOTCH3 gene on chromosome 19
and, therefore, shows familial inheritance. The typical clinical
manifestations of cerebral autosomal dominant arteriopathy with

subcortical infarcts and leukoencephalopathy (CADASIL) are
migraine with aura, stroke, mood disturbances, and progressive
cognitive impairments, including deficits in executive function,

processing speed, attention, and memory (2).
Default mode network is a notable network that shows

greater activity during the resting state than when performing

tasks. It was first addressed by Raichle in a positron emission

tomography (PET) study in 2001 (3). The component brain
areas of default mode network (DMN) mainly include posterior

cingulate cortex and precuneus (PCC/PCU), medial pre-frontal
cortex (MPFC), medial and inferior temporal lobes, and inferior
parietal lobe (IPL), and play important roles in a great variety
of cognitive domains, such as working memory, visuomotor,
visual language, and mental imagery (4). DMN has become a
central research theme in neuropsychiatric disorders, including
stroke, dementia, migraine, traumatic brain injury, depression,
anxiety, and schizophrenia (5–10). A series of important research
results about changed DMN characteristics in these disorders
have been reported by using magnetic resonance imaging (MRI)
and PET methods (5–10). However, as a focus of research into
cognition, whether DMN is altered in patients with CADASIL
remains unclear.

Several studies have demonstrated brain alterations in
functional and structural imaging parameters in patients with
CADASIL. Our previous resting-state functional MRI (fMRI)
studies showed that altered functional activity and connectivity in
PCC/PCU and para-hippocampal cortex (PHC) were associated
with cognitive impairment in CADASIL (11, 12). Diffusion
tensor imaging (DTI) studies have demonstrated widespread
white matter lesions associated with cognitive deficits in
CADASIL (13–15). Moreover, a case study using diffusion tensor
tractography indicated that neural tract injuries were mainly
located in the frontal lobe in a patient with CADASIL (16).
Furthermore, a recent 18F-2-fluoro-2-deoxy-D-glucose PET (18F-
FDG PET) study showed that decreased metabolism in the
limbic lobe, including the hippocampus and PHC, was positively
associated with a cognitive score in patients with CADASIL (17).
Several regions involved in CADASIL belong to the hub nodes
of DMN, and the DMN has a high degree of connectivity across
the above-involved regions, including the PCC/PCU, MPFC,
hippocampus, and PHC (5, 18). Though promising initial results
from different neuroimaging studies have shown considerable
overlap with areas typically considered part of the DMN, few
studies explored the DMN in patients with CADASIL. Thus,
based on the brain regions highlighted in these CADASIL studies,
we assumed DMNmodifications in patients with CADASIL.

Therefore, in the present study, we focused on multimodal
imaging outcomes of DMN in CADASIL. To characterize the
DMN comprehensively, resting-state fMRI, T1-weighted MRI,

DTI, and 18F-FDG PET were employed to assess functional
network properties, gray matter volume (GMV), structural
connectivity, and metabolism in DMN, and the associations with
cognitive deficits.

MATERIALS AND METHODS

Participants
The study protocol was approved by the ethics committee in
the Shanghai Ninth People’s Hospital. All participants were fully
informed of the study procedures and signed the informed
consent. A total of 25 patients with CADASIL from 14 families
evaluated at Shanghai Ninth People’s Hospital between May 2016
and January 2019 were recruited for this study. For all patients,
the diagnosis was confirmed by the identification of pathogenic
mutations in the NOTCH3 gene (19). All subjects underwent
detailed standard neurological examinations. Subjects were
excluded from the study if they had severe depression or anxiety
according to evaluation by two trained neuropsychologists using
the Hamilton Depression Scale (HAMD) and the Hamilton
Anxiety Scale (HAMA) (20, 21). Subjects were diagnosed with
severe depression and anxiety based on HAMD and HAMA
scores >17 and >14, respectively. Neurological deficits in
all subjects were assessed using the National Institutes of
Health Stroke Scale (NIHSS) and the modified Rankin scale
(mRs). Cognitive scores in all subjects were recorded by the
Montreal Cognitive Assessment (MoCA) and Mini-Mental State
Examination (MMSE). Most of the patients underwent bothMRI
and PET/computed tomography (PET/CT), but four underwent
only MRI and another four underwent only PET/CT.

Forty-two healthy subjects were recruited as a control group
based on the following criteria: no history of stroke, headache,
cognitive impairment, or vascular disease risk factors; no family
history of cerebrovascular diseases or vascular disease risk
factors; not taking medications and no substance addiction,
such as drugs, cigarettes, or alcohol. All of the healthy subjects
had normal results on neurological and general examinations.
Among the 42 controls, 21 underwent only MRI and the
remaining 21 controls underwent only PET/CT. The sample
size and demographic information of each group were listed in
Table 1.

MRI Acquisition
Subjects in the first control group and 21 patients with CADASIL
underwent MRI, including resting-state fMRI, structural MRI
(T1-weighted, T2-weighted, and fluid-attenuated inversion
recovery [FLAIR] imaging), and DTI on a 3 Tesla system
(Trio Tim; Siemens Healthcare, Malvern, PA, USA) with a
12-channel head coil at East China Normal University. Soft
earplugs and custom-fit foam were applied to reduce noise
and movement artifacts. Resting-state fMRI was performed
using a T2∗-weighted gradient-echo echo-planar imaging pulse
sequence with the following parameters: repetition time/echo
time (TR/TE) = 2,000/30ms; flip angle = 90◦; field of view
(FOV)= 220mm× 220mm; number of slices= 33; resolution=
3.44mm × 3.44mm × 4.38mm; total volume = 210. The fMRI
acquisition time was 7min and 6 s for each subject. During the
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TABLE 1 | Demographic information of CADASIL and control.

CADASIL (n = 25) Controls (n = 42) p-values

MRI (n = 21), PET (n = 21) MRI (n = 21), PET (n = 21) p1 p2

Male/female 13/8 14/7 13/8 14/7 1 1

Age (years), mean ± SD 48.4 ± 14.2 46.3 ± 14.0 48.7 ± 14.3 45.8 ± 12.1 0.9 0.9

Education (years), mean ± SD 8.7 ± 3.5 8.9 ± 3.3 9.1 ± 3.2 9.3 ± 3.0 0.8 0.8

Family history, n (%) 20 (95.2) 21 (100) – – – –

Migraine, n (%) 3 (14.3) 3 (14.3) – – – –

Migraine with aura, n (%) 2 (9.5) 2 (9.5) – – – –

Migraine without aura, n (%) 1 (4.8) 1 (4.8) – – – –

WMH volume (cm3), mean ± SD (n = 19) 78.3 ± 55.7 – – – – –

Lacunar volume (cm3), mean ± SD (n = 17) 1.9 ± 1.8 – – – – –

Microbleeds (number), mean ± SD (n = 6) 6.0 ± 1.8 – – – – –

O’Sullivan sign, n (%) 9 (42.9)

HAMD, median ± IQR 4 ± 6 4 ± 5 3 ± 4 3 ± 3 0.3 0.3

HAMA, median ± IQR 3 ± 1 3 ± 1 3 ± 1 3 ± 2 0.7 0.7

NIHSS, median ± IQR 0 ± 1 0 ± 1 0 ± 0 0 ± 0 0.01 0.006

mRs, median ± IQR 1 ± 2 1 ± 2 0 ± 0 0 ± 0 0.001 0.001

MoCA, median ± IQR 21 ± 15 20 ± 11 26 ± 3 27 ± 1 0.000 0.000

MMSE, median ± IQR 24 ± 12 24 ± 11 28 ± 1 28 ± 2 0.001 0.002

SD and IQR represent standard deviation and interquartile range, respectively. P1 represents p-values of the comparisons between patients and controls in the MRI group, and

p2 represents p-values of the comparisons between patients and controls in the PET group. CADASIL, cerebral autosomal dominant arteriopathy with subcortical infarcts and

leukoencephalopathy; MRI, magnetic resonance imaging; PET, positron emission tomography; WMH, white matter hyperintensities; TIA, transient ischemic attack; HAMD, Hamilton

Depression Scale; HAMA, Hamilton Anxiety Scale; NIHSS, National Institute of Health Stroke Scale; mRS, modified Rankin scale; MoCA, Montreal Cognitive Assessment; MMSE,

Mini-Mental State Examination.

fMRI scan, the subjects kept their eyes closed but did not fall
asleep. The whole-brain anatomical volume was obtained using a
high-resolution T1-weighted 3D magnetization-prepared rapid-
acquisition gradient-echo pulse sequence with the following
parameters: TR= 2,530ms; TE= 2.34ms; flip angle= 7◦; FOV=

256mm × 256mm; number of slices = 192; resolution = 1mm
× 1mm × 1mm. The T1-weighted image acquisition time was
6min and 3 s for each subject. T2-weighted imaging was obtained
using turbo spin-echo dark fluid sequence with the following
parameters: TR/TE = 5,500/83ms; FOV = 220mm × 220mm;
number of slices = 35; resolution = 0.38mm × 0.38mm ×

5.2mm. The T2-weighted image scanning time was 1min and
26 s for each subject. The parameters of FLAIR imaging were:
TR/TE = 9,000/93ms; FOV = 220mm × 220mm; number of
slices = 30; resolution = 0.43mm × 0.43mm × 4.55mm. The
FLAIR image scanning time was 4min and 50 s for each subject.
DTI was performed using a single-shot, spin-echo planar imaging
sequence acquired in contiguous axial planes with the following
parameters: 64 non-collinear directions, diffusion weighting of b
= 1,000 s/m2, an acquisition without diffusion weighting of b =

0; TR/TE= 8,900/86ms; FOV= 256mm× 256mm, covered the
whole brain; 70 contiguous slices; resolution = 2mm × 2mm
× 2mm. The DTI scanning time was 10min and 7 s for each
subject. The total MRI acquisition time was 29min and 38 s for
each subject.

PET Acquisition
18F-2-fluoro-2-deoxy-D-glucose PET data were acquired using a
Siemens Biograph Truepoint HD 64 PET/CT is made by Simens

in Germany at the PET Center of Huashan Hospital, Fudan
University. 18F-FDG was synthesized and radiolabeled at the
PET Center according to the protocol of the manufacturer under
the inspection by the Chinese Food and Drug Administration.
Before 18F-FDG injection, subjects were asked to avoid strenuous
physical activity and fast for about 6 h to maintain blood glucose
level <8 mmol/L. After receiving an injection of 18F-FDG at a
dose of 5.55 MBq/kg (0.15 mCi/kg), subjects rested in a dimly
lit room for 50min. Before PET acquisition, a low-dose CT
scan was performed for attenuation correction, and then 10-min
PET images were reconstructed using a filtered back-projection
algorithm. The matrix size of the reconstructed images was 168
× 168× 148 with a resolution of 2.04mm× 2.04mm× 1.5mm.

Data Processing
Prior to preprocessing, all the raw DICOM data were converted
to the Neuroimaging Informatics Technology Initiative format
(NII) using MRICRON software (https://people.cas.sc.edu/
rorden/mricron/install.html) and the quality of the images was
checked visually.

fMRI Data Processing

The resting-state fMRI data were preprocessed using Data
Processing Assistant for Resting-State fMRI (DPARSF; http://
www.restfmri.net) (22, 23). Data were preprocessed starting with
the removal of the first 10 volumes to ameliorate possible effects
of scanner instability and the adaptation of subjects to the
environment. Then, slice time correction was applied to reduce
the effects of within-scan acquisition time differences between
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FIGURE 1 | Topological properties of DMN in CADASIL and control groups in the left (A) and right (B) hemisphere. The color bar corresponded to nodal color,

representing the mean nodal efficiency in the corresponding group. Nodal size represented the mean degree of centrality in the corresponding group. The thickness of

edges reflected the strength of FC between regions. FC showing significant differences between the two groups was indicated in cyan (p < 0.05). DMN, default mode

network; CADASIL, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy; FC, functional connectivity; HC, healthy control;

(Continued)
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FIGURE 1 | a MPFC, anterior medial pre-frontal cortex; dMPFC, dorsal medial pre-frontal cortex; vMPFC, ventral medial pre-frontal cortex; HF, hippocampal

formation; PCC, posterior cingulate cortex; PHC, parahippocampal cortex; TPJ, temporal-parietal junction.

slices. To correct the effects of head motion, the fMRI images
of each subject were realigned and registered. All subjects had
head motions <1.5◦ of rotation or 0.5mm of mean frame-
wise displacement (24). The fMRI images were then normalized
into the Montreal Neurological Institute (MNI) space using the
EPI template and smoothed by a full-width at half-maximum
(FWHM) 8mm Gaussian kernel. Following spatial smoothing,
linear detrend was performed to remove noise due to long-
term physiological shifts, movement-related noise remaining
after realignment, and instrumental instability. To reduce further
the effects of noise, the fMRI images were filtered with a
temporal band-pass filter (0.01–0.08Hz). Finally, the six head
motion parameters, global mean signal, white matter signal,
and cerebrospinal fluid signal were regressed out as nuisance
covariates to remove these unwanted signals.

With reference to previous studies (18, 25, 26), 11 separate
regions comprising the left DMN and 11 mirrored regions
comprising the right DMN were defined as regions of interest
(ROIs). The 11 ROIs were spheres of radius 8mm in the
dorsal MPFC (dMPFC), anterior MPFC (aMPFC), ventral MPFC
(vMPFC), posterior IPL (pIPL), temporal-parietal junction (TPJ),
lateral temporal cortex (LTC), temporal pole (TempP), PCC,
retrosplenial cortex (RSC), PHC, and hippocampal formation
(HF) (see Supplementary Table 1 and Supplementary Figure 1

for coordinates and spatial positions). Average fMRI time-series
were calculated across every voxel in each ROI. The absolute
value of Fisher’s z-transformed Pearson’s correlation coefficient
between each pair of time-series was defined as the functional
connectivity (FC) strength.

Graph analysis of the pairwise (11 × 11) correlation
matrixes was performed using GRETNA (v2.0.0; https://www.
nitrc.org/projects/gretna/) (27). Global and nodal network
properties, including nodal degree centrality, nodal shortest
path length, nodal clustering coefficient, nodal efficiency,
nodal local efficiency, betweenness centrality, global efficiency,
assortativity coefficient, and small-worldness, were calculated
to delineate the integrative and local topological architecture
of the DMN, respectively. Their definitions and calculations of
the nodal and global network properties were summarized in
Supplementary Table 2.

T1-Weighted Data Processing

The T1-weighted MRI data were preprocessed using the
Computational Anatomy Toolbox (CAT12; http://dbm.neuro.
uni-jena.de/cat12) implemented in statistical parametric
mapping software (SPM12; htttp://www.fil.ion.ucl.ac.uk/spm/).
First, all T1-weighted MRI data were normalized into the MNI
space using the Diffeomorphic Anatomic Registration Through
Exponentiated Lie algebra algorithm (DARTEL). The bias
field inhomogeneities were corrected to remove non-uniform
intensities. Normalized images were then segmented into gray
matter, white matter, and cerebrospinal fluid components. The

total intracranial volume (TIV) of each participant was evaluated
to correct for the effects of differences in brain size. The internal
gray matter threshold was set to 0.2 to exclude artifacts on the
gray-white matter border. Thereafter, all preprocessed scans
were smoothed with the FWHM 6mm Gaussian kernel. Finally,
the average GMV was calculated across every voxel in each ROI.

DTI Data Processing

The raw DTI data were preprocessed using FMRIB Software
Library (FSL; http://www.fmrib.ox.ac.uk/fsl/index.html.) First,
eddy current correction was performed to correct for head
motion artifacts and eddy current distortions. Then, the brain of
each subject was extracted using the FSL Brain Extraction Tool
(BET). Tensor reconstruction and fiber tracking were applied
by Diffusion Toolkit TrackVis (https://www.nitrc.org/projects/
trackvis.) The Fiber Association Continuous Tracking (FACT)
algorithm in Diffusion Toolkit was applied to obtain the whole-
brain fiber tracts. Themain parameters in fiber tractography were
as follows: maximum turning angle threshold at 35◦; minimum
fractional anisotropy (FA) threshold of 0.2. Then, SPM12 was
applied to bring all the individual tracts into the MNI space by
non-linear transformation methods. In the normalization step,
tracts were spatially normalized by: co-registering T1-weighted
MRI to the corresponding FA image; calculating the deformation
field of the individual coregistered T1-weighted image space to
the MNI space; applying the deformation field to tracts and
bringing them into theMNI space. Thereafter, TrackVis was used
to record the number of tracts (NT) passing through each ROI.

PET Data Processing

First, PET images of each subject were processed using SPM12
software with spatial normalization and smoothing. The PET
template in SPM12 was used in the spatial normalization step.
The FWHM 8mmGaussian kernel was applied in the smoothing
step. The average glucose metabolism was then calculated across
every voxel in each ROI.

Statistical Analysis
Statistical analysis was performed using IBM SPSS Statistics
for Windows (SPSS, Chicago, IL, USA). The Chi-square
tests and permutation tests (permutation times = 10,000)
were used to compare demographic, clinical, and imaging
characteristics between the CADASIL and control groups, as
appropriate. Furthermore, the two-sample t-test was applied
for voxel-wise metabolism comparisons between the CADASIL
and corresponding control groups using SPM12 software.
Subsequently, partial correlations were established to estimate
the relations between the cognitive deficits and the imaging
characteristics showing significant between-group differences.
Age, sex, and education levels were entered as covariates in
partial correlation analysis. Benjamini-Hochberg false discovery
rate (FDR) correction was further used to avoid type-I errors in
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FIGURE 2 | Differences between CADASIL and control groups in topological properties and correlations between the properties and cognitive scores in the DMN. (A)

Nodal efficiency and degree centrality were significantly different between the CADASIL and healthy control groups in the left DMN. The CADASIL had decreased

nodal efficiency and degree centrality in the left dMPFC and HF. (B) Linear correlations between network properties in the DMN and cognitive scores in CADASIL.

(Continued)
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FIGURE 2 | CADASIL, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy; DMN, default mode network; dMPFC, dorsal

medial pre-frontal cortex; HF, hippocampal formation; HC, healthy control; DG, degree centrality; NE, nodal efficiency; MoCA, Montreal Cognitive Assessment; MMSE,

Mini-Mental State Examination.

the multiple comparisons and correlations. The results of two-
sample comparisons and partial correlations were regarded as
significant at p < 0.05 (two-tailed) with FDR correction.

RESULTS

Demographic and Clinical Data
Table 1 showed comparisons of the demographic and clinical
data of the CADASIL and healthy control groups. There were
significant differences between the two groups in terms of
neurological deficits and cognitive scores, but no differences
in sex, age, education levels, or depression and anxiety
symptom scores.

Network Analysis of DMN
Compared with the healthy control group, the CADASIL
group had decreased FC between the HF and the MPFC
(aMPFC, dMPFC, and vMPFC), as well as increased FC
between the TPJ and PHC within the left DMN (Figure 1A and
Supplementary Figure 2). Further network analysis showed that
the nodal characteristics of the left dMPFC and HF, including
nodal efficiency and degree centrality, were significantly different
between the CADASIL and healthy control groups (Figure 2A).
The integrative topological architecture of the left DMN was not
significantly different between the two groups.

In the right DMN, the CADASIL group showed decreased
FC between the HF and the aMPFC as well as the dMPFC, and
increased FC between the TPJ and RSC in comparison to the
healthy control group (Figure 1B and Supplementary Figure 2).
There were no significant differences in the global or local
topological architecture of the right DMN between the
two groups.

GMV Analysis of DMN
There was no significant difference in TIV between the CADASIL
group and the healthy control group. Compared with the healthy
control group, the patients with CADASIL had decreased GMV
in the left PHC (0.58± 0.1 vs. 0.66± 0.12, respectively, p= 0.02)
and bilateral HF (left: 0.38 ± 0.04 vs. 0.41 ± 0.05, respectively, p
= 0.035; right: 0.40± 0.05 vs. 0.44± 0.06, respectively, p= 0.04)
(Figure 3A).

Fiber Tracks Analysis of DMN
Compared with the healthy control group, the patients with
CADASIL had reduced NT in the bilateral HF (left: 198.86 ±

85.86 vs. 263.33 ± 64.18, respectively, p = 0.008; right: 208.05
± 72.68 vs. 290.24 ± 84.01, respectively, p = 0.001) (Figure 4).
There was no significant increase in tracks between the CADASIL
and healthy control groups.

Metabolism Analysis of DMN
Compared with the healthy control group, the patients with
CADASIL had decreased glucose metabolism across the ROIs
(p < 0.00001) (Figure 5A). There was a significant decrease
in global metabolism across the whole brain (p < 0.00001)
(Figure 5A). There was no significant increase in regional
metabolism between the two groups.

Correlation Analysis
In fMRI, the nodal efficiency and degree centrality in the bilateral
HF were positively correlated with MoCA and MMSE scores
in the patients with CADASIL (p < 0.05) (Figure 2B). Similar
correlations between the GMV of the bilateral HF and left PHC,
and cognitive scores were also detected in the CADASIL group
(Figure 3B). There was no significant correlation between the
number of tracks and cognitive scores. The levels of metabolism
in most ROIs with decreased glucose metabolism were positively
correlated with the cognitive scores in the CADASIL group (p <

0.01) (Figure 5B and Supplementary Table 3).

DISCUSSION

The present study was performed to investigate whether the
DMN was altered in patients with CADASIL. We integrated
the results of multimodal imaging methods, including fMRI,
T1-weighted MRI, DTI, and PET, to investigate the changes in
functional network properties, GMV, fiber tracks, and glucose
metabolism within the DMN in patients with CADASIL.
Consistent with our initial hypothesis, the characteristics of
DMN represented by these images in the CADASIL group were
significantly different compared with those in the healthy control
group. Correlation analysis showed that these modifications
were associated with cognitive deficits in the CADASIL group.
These findings had important implications for the further
understanding of CADASIL-related cognitive deficits and could
provide potential brain markers for CADASIL.

Previous neuroimaging studies have focused on the whole
brain functional or structural changes in CADASIL by a single
imaging modality (15, 17, 28). In our study, we focused on the
DMN by multi-modal imaging methods. The results in this study
corresponded with previous MRI studies on stroke, dementia,
migraine, and WMH that showed that functional or structural
modifications of DMN are associated with cognitive deficits. In
this study, more than 90% of CADASIL subjects had WMH.
Although the ratio of migraine, dementia, and migraine was not
as high as WMH, these symptoms are also typical of the later
clinical manifestations of CADASIL. Notably, in order to fully
and thoroughly explore theDMNalterations in CADASIL, except
for three MRI modalities, one PET modality which represents
the glucose metabolism in the brain was applied to evaluate the
network characteristics of DMN. In order to reduce the influence
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FIGURE 3 | Results of GMV analysis in CADASIL and control groups. (A) Alterations in GMV of the DMN in CADASIL. Patients with CADASIL had decreased GMV in

the left PHC and bilateral HF compared with healthy controls. (B) Correlations between GMV of ROIs within the DMN and cognitive scores in CADASIL. GMV, gray

matter volume; CADASIL, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy; DMN, default mode network; PHC,

parahippocampal cortex; HF, hippocampal formation; ROI, region of interest; HC, healthy control; MoCA, Montreal Cognitive Assessment; MMSE, Mini-Mental State

Examination.
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FIGURE 4 | Analysis of fiber tracks in the DMN in CADASIL and control groups. Patients with CADASIL had decreased fiber tracks in the bilateral HF. DMN, default

mode network; CADASIL, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy; HF, hippocampal formation; HC, healthy

control.

FIGURE 5 | Results of metabolism analysis in the DMN in CADASIL and control groups. (A) Metabolism alterations in the CADASIL group. (B) Correlations between

metabolism across ROIs within the DMN and cognitive scores in the CADASIL group. Patients with CADASIL had decreased metabolism across the whole brain,

including the ROIs within the DMN, compared with healthy controls. DMN, default mode network; CADASIL, cerebral autosomal dominant arteriopathy with subcortical

infarcts and leukoencephalopathy; ROI, region of interest; HC, healthy control; MoCA, Montreal Cognitive Assessment; MMSE, Mini-Mental State Examination.
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of different subjects on the results, most of the patients with
CADASIL (17 of 21) had both PET and MRI modalities.

In the FC analysis, weakened interactions between the HF
and MPFC (aMPFC and dMPFC) were detected in both the left
and right DMN in patients with CADASIL. Further graph theory
analysis of the FC matrixes showed that the changed FC resulted
in decreased nodal efficiency and degree centrality of HF and
dMPFC in the CADASIL group. These observations indicated
that HF and dMPFC within the DMN in the patients with
CADASIL have a poor capacity for information propagation,
and reduced functional interactions with other regions within
the network. Indeed, the HF plays a central node in memory
function (29–31) and the dMPFC plays a key role in cognitive
performance, including decision making, reward processing,
mentalizing, memory, and conceptual processing (6, 31, 32). In
addition, functional interactions between the HF andMPFC have
been demonstrated to form an important neural circuit for spatial
working memory (33–35). Furthermore, functional alterations in
the HF orMPFC have been shown to be associated with cognitive
deficits in other diseases (36–40). Therefore, our fMRI results
demonstrated that the changed FC strength as a particular locus
of dysfunction affected the nodal properties of the DMN, which
may contribute to cognitive deficits in patients with CADASIL.

To examine structural changes within the DMN in CADASIL,
differences between the two groups in GMV and NT of the ROIs
were examined. Analyses of both the GMV and NT showed
that patients with CADASIL had decreased GMV and NT in
the ROI of HF. Further, decreased GMV was found in the left
PHC and the bilateral HF in the CADASIL group. Both the
PHC and HF are key regions for memory-related cognition
(31, 41, 42). In addition, decreased GMV as well as changed
FA in the two regions have been reported to be associated
with cognitive deficits (15, 43–45). The significant associations
between the GMV of HF and cognitive scores were consistent
with the results of a previous MRI study in a large cohort (46).
The HF belongs to the medial temporal subsystem of the DMN,
which, through its interactions with the MPFC, plays a role in
a wide range of associative or constructive aspects of mental
simulation (6). Indeed, decreased interactions between theMPFC
and medial temporal lobe including the hippocampus in resting-
state fMRI data, and decreased GMV in the two regions,
have been suggested to be associated with cognitive deficits,
including working memory, social and emotional processing,
and executive function deficits (39, 40, 43–45, 47, 48). The two
regions have been suggested to play hub roles in DMN, which
is a hub network for advanced cognition (18, 25). Cognitive
performance relies on the coordination and collaboration of the
activation and deactivation response; if one component fails,
the whole system is jeopardized (49, 50). Therefore, the overlap
between the results of fMRI and structural MRI indicates that
changes of HF within the DMN may play important roles in the
cognitive deficits seen in patients with CADASIL, and HF may
be a potential brain marker. These MRI results corresponded
with a previous DMN study in Fabry disease that showed
functional DMN modifications and white matter damage were
associated with cognitive deficits (51). However, contrary to the
pattern of reduced DMN FC and decreased GMV found in

our results, there were no significant differences in GMV, and
increased DMN FC was observed in patients with Fabry disease.
These differences between CADASIL and Fabry disease implied
different pathogenic mechanisms underlying the two conditions,
which can be further investigated. In marked contrast to the
local variation in MRI results, 18F-FDG PET showed that glucose
metabolism of each ROI within the whole DMN, and even the
whole brain, was decreased in the CADASIL group. Although
there have been few PET studies in CADASIL, two independent
PET studies reported hypometabolism across the whole brain
in the resting state in patients with CADASIL (52, 53), which
was consistent with our findings. Furthermore, similar to the
results of MRI, metabolism was positively correlated with the
cognitive scores in the CADASIL group. These correlations
between characteristics of DMN revealed by different imaging
modalities and cognitive scores suggested that interior relations
may underlie the functional and structural changes within the
DMN in patients with CADASIL. However, regional functional
or structural disconnection can affect metabolism in other
regions and vice versa. Further longitudinal multimodal imaging
studies are required to determine the underlying mechanisms.

This study has some limitations, as only resting-state fMRI
or PET data were collected, and it is, therefore, unclear
whether there were altered patterns of DMN activity or
connectivity during task performance in CADASIL, which had
been demonstrated in other disorders or with aging (54–57).

CONCLUSIONS

In conclusion, altered functional and structural properties
of the DMN were found in patients with CADASIL by
multimodal imaging. These cognition-associated changes of
HF within the DMN may play important roles in cognitive
deficits in CADASIL.
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