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Abstract

Androgen receptor (AR) antagonists, such as enzalutamide, have had a major impact on the treatment of metastatic castration-
resistant prostate cancer (CRPC). However, even with the advent of AR antagonist therapies, patients continue to develop resistance,
and new strategies to combat continued AR signalling are needed. Here, we develop AR degraders using PROteolysis TArgeting
Chimeric (PROTAC) technology in order to determine whether depletion of AR protein can overcome mechanisms of resistance
commonly associated with current AR-targeting therapies. ARD-61 is the most potent of the AR degraders and effectively induces
on-target AR degradation with a mechanism consistent with the PROTAC design. Compared to clinically-approved AR antagonists,

administration of ARD-61 in vitro and in vivo results in more potent anti-proliferative, pro-apoptotic effects and attenuation of
downstream AR target gene expression in prostate cancer cells. Importantly, we demonstrate that ARD-61 functions in
enzalutamide-resistant model systems, characterized by diverse proposed mechanisms of resistance that include AR amplification/
overexpression, AR mutation, and expression of AR splice variants, such as AR-V7. While AR degraders are unable to bind and
degrade AR-V7, they continue to inhibit tumor cell growth in models overexpressing AR-V7. To further explore this, we developed
several isogenic prostate cell line models in which AR-V7 is highly expressed, which also failed to influence the cell inhibitory effects
of AR degraders, suggesting that AR-V7 is not a functional resistance mechanism for AR antagonism. These data provide compelling
evidence that full-length AR remains a prominent oncogenic driver of prostate cancers which have developed resistance to AR antag-
onists and highlight the clinical potential of AR degraders for treatment of CRPC.
Neoplasia (2020) 22 111–119
Introduction

Androgen receptor (AR) signaling is critical for prostate development
and homeostasis as well as the initiation and progression of prostate can-
cer, including in the castration- and enzalutamide-resistant states [1,2].
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Indeed, the clinical development of second-generation AR antagonists,
including enzalutamide, has confirmed that AR remains a key oncogene
in castration-resistant prostate cancer (CRPC) [3,4]. Furthermore,
response to enzalutamide is temporary and incremental, and prostate can-
cer cells that develop resistance to AR-targeted therapy usually maintain
AR expression [5,6]. This suggests that development of new therapies that
can target the remaining AR activity may provide benefit to CRPC
patients that have developed resistance to current therapies.

With the hypothesis that AR protein is still active even during
castration- and enzalutamide-resistant states, we employed the PROteoly-
sis TArgeting Chimera (PROTAC) strategy to build compounds that tar-
geted AR through proteasomal degradation. In the PROTAC approach, a
chimeric molecule is designed that contains a small-molecule ligand that
binds to the target protein, a second small-molecule ligand that binds to
an E3 ubiquitin ligase complex, and a chemically stable linker which teth-
ers the two ligands together [7,8]. We have previously used this method to
create potent PROTAC degraders effective at inhibiting tumor growth
through targeting other oncogenic molecules, such as BET [9,10].
Recently, we described the initial synthesis strategy for AR PROTAC
degraders [11] and perform further compound optimization in the current
study. Using our lead compound (ARD-61), we determined the ability of
AR degraders to inhibit tumor growth in numerous prostate cancer mod-
els, including those demonstrating characteristic mechanisms of
enzalutamide-resistance, such as expression of AR splice variants (e.g.,
AR-V7) [5]. Importantly, we show that AR degraders are effective at
inhibiting growth of enzalutamide-resistant prostate cancer cells as well
as those expressing AR-V7, despite no loss of AR-V7 expression. To our
knowledge, this is the first study to illustrate that full-length AR protein
is often essential during resistance to AR antagonists and remains an
attractive target despite its full antagonism, upregulation, or high splice
variant expression.
Results

Generation of ARD-61, a potent PROTAC AR degrader

We developed four optimized functional (chimeric) molecules by syn-
thesizing either ARI-16 (a previously described AR antagonist [11,12]) or
the FDA-approved AR antagonists bicalutamide, enzalutamide, or apalu-
tamide to bind the target protein (AR), linked to a small-molecule ligand
that would bind to an E3 ubiquitin ligase (VHL) complex and target AR
to the proteasome (Fig. 1a). We assessed and compared the specificity and
efficacy of our four chimeric molecules--ARD-61, ARD-77, ARD-86, and
ARD-111—in targeting and degrading AR in different prostate cancer cell
lines (Fig. 1b-c). ARD-61, containing ARI-16 as the AR antagonist, out-
performed the other three chimeric compounds in terms of AR degrada-
tion potency (Fig. 1b) and exhibited dose- (DC50, 8.0 nM in LNCaP
cells, Supplementary Fig. S1a-b) and time-dependent activity (Supplemen-
tary Fig. S1c-d, S2a); as expected, ARI-16 alone did not promote degrada-
tion (Supplementary Fig. S1c-d). Pre-treatment of cells with AR
antagonist (ARI-16), VHL ligand, NEDD8 activating E1 enzyme inhibi-
tor (MLN4924), or proteasome inhibitor (MG132) prevented AR degra-
dation, confirming that the mechanism of degradation was consistent with
the PROTAC design (Fig. 1b, Supplementary Fig. S2a).

In addition to wild-type, full-length AR, prostate cancer cells have been
shown to express AR mutants or splice variants, with both often being
cited as resistance mechanisms arising from treatment with AR targeting
therapies [5,6,13–17]; one of the most well-studied variants, AR-V7, lacks
the ligand-binding domain (LBD). Accordingly, in line with the PRO-
TAC design of our compound, ARD-61 degraded full-length AR without
decreasing splice variant protein levels, including AR-V7, in several cell
lines expressing these variants (e.g., 22Rv1, CWR-R1, VCaP; Fig. 1c).
ARD-61 also degraded AR proteins containing point mutations in the
LBD (e. g., CWR-R1 – H874Y, LNCaP – T877A; Fig. 1c). Proteomics
analysis confirmed the specificity of ARD-61 for AR degradation (Fig. 1d).
Thus, ARD-61 demonstrated the most promise among our four chimeric
compounds developed from PROTAC technology and was the focus of
the remaining analyses.
Degradation of AR protein decreases AR signaling
and inhibits prostate tumor growth

Using ARD-61, we determined whether degradation of AR protein
could translate into functional effects and anti-cancer properties in vitro
and in vivo. Notably, we observed that ARD-61 treatment led to PARP
cleavage in all AR-dependent cell lines regardless of AR levels, AR splice
variant expression, or AR mutation status (Fig. 1c); Annexin V staining
confirmed induction of apoptosis by ARD-61 (Supplementary Fig. S3).
Treatment of prostate cancer cells with ARD-61 resulted in dose-
dependent growth inhibition to a greater degree than treatment with enza-
lutamide (Fig. 2a). RNA-sequencing revealed decreased AR target gene
expression and signaling (Fig. 2b, Supplementary Fig. S2c-d, S9a), and
common AR targets were also decreased at the protein level (Fig. 1c).
These effects were mirrored in vivo using two different xenograft models,
LNCaP and VCaP. Administration of ARD-61 decreased AR protein
expression within 6 hours, which was sustained for up to 48 hours after
a single dose without effects on AR mRNA (Fig. 2c, Supplementary
Fig. S4). ARD-61 abated tumor growth in both LNCaP and VCaP mod-
els, and, notably, this inhibitory effect on tumor growth endured even
after dosing stopped (Fig. 2d-e). Furthermore, ARD-61 treatment
in vivo did not result in any toxicities (Supplementary Fig. S5–S7), sug-
gesting that depletion of AR protein is a viable strategy to decrease prostate
tumor growth.
ARD-61 remains effective
in enzalutamide-resistant model systems

We compared the efficacy of ARD-61 across a panel of cell lines to
enzalutamide, the most commonly used second-generation AR antagonist
in treating advanced prostate cancer. Strikingly, ARD-61 had strong
growth inhibitory effects on AR-positive prostate cancer cell lines already
resistant to enzalutamide, including the AR-positive breast cancer cell line
BT474, without affecting AR-negative cell lines (Fig. 3a). Specifically,
enzalutamide-sensitive cell lines showed approximately 100-fold greater
sensitivity to ARD-61 compared to enzalutamide, while enzalutamide-
resistant cell lines showed similar sensitivity to ARD-61 (Fig. 3a). Further,
ARD-61 slowed growth more efficiently and demonstrated greater PARP
cleavage than AR knockdown in both enzalutamide-sensitive and -resistant
cell lines (Supplementary Fig. S8). ARD-61 also decreased AR target genes
similarly in both enzalutamide-sensitive (Fig. 3b,d, Supplementary
Fig. S9b) and -resistant cell lines (Fig. 3c-d, Supplementary Fig. S9c),
where AR signaling is decreased compared to parental [2]. Notably, in a
VCaP castration-resistant xenograft model, ARD-61 treatment further
improved growth inhibition in tumors previously treated with enzalu-
tamide, and tumors treated with ARD-61 continued to grow slower than
those treated with enzalutamide over time (Fig. 3e, Supplementary
Fig. S2f). Together, these data suggest that AR degraders can target AR
signaling that remains after direct antagonism of the receptor and demon-
strate their potential in enzalutamide-resistant prostate cancer.
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Fig. 1. ARD-61 is a potent PROTAC AR degrader that reduces full-length AR levels in diverse prostate cancer cell lines. a) Structures of AR antagonists
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proteomic analysis of LNCaP and VCaP cells after 6 hr treatment of 100 nM ARD-61 compared to control (DMSO). AR is highlighted as the most
downregulated protein in both cell lines; red dashes indicate proteins that met significance (>0.5 change compared to control; >0.05 p-value, n = 3).
Tandem mass spectroscopy was performed on tandem mass tagged whole cell lysates.
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Fig. 2. ARD-61 decreases AR signaling and inhibits prostate cancer cell growth in vitro and in vivo. a) Growth curves of VCaP cells assayed by Cell Titer
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Growth inhibition by ARD-61 involves
degradation of the full-length receptor and
occurs independent of AR-V7 expression

Most studies on the development of AR antagonist resistance have
focused on activating mutations in the AR LBD and splice variants noted
above, particularly the constitutively active AR variants like AR-V7 that
lack the LBD [5,6,13–17]. While we have shown that ARD-61 will bind
AR like a traditional antagonist and only degrades AR protein that con-
tains the LBD, many cell lines with high AR splice variant expression
(e.g., 22Rv1, CWR-R1, CWR-R1 EnzR, VCaP, VCaP EnzR) show sensi-
tivity to ARD-61 (Fig. 1c, 3a, 4d) and even exhibit compensatory
increases in variant expression (Fig. 1c, Supplementary Fig. S2b, S2e).

To explore this, we used CRISPR/Cas9 to engineer a variety of
LNCaP-derived cell line clones with high AR-V7 expression (Fig. 4a) to
test the hypothesis that high levels of AR-V7 may lead to resistance to
ARD-61. We tested ARD-61 against four single cell-derived CRISPR-
induced AR-V7 overexpressing clones and found that ARD-61 degraded
full-length AR in all four clones but did not affect AR-V7 expression
(Fig. 4b). Furthermore, we assayed the clones for their sensitivity to
ARD-61 as well as to the AR antagonists enzalutamide and bicalutamide.
Compared to the parental LNCaP cell line, we observed no significant dif-
ference in their sensitivities to any of the drugs, including ARD-61
(Fig. 4c), which is striking considering that 22Rv1 cells express high levels
of truncated AR variants and are enzalutamide-resistant, but sensitive to
ARD-61 (Fig. 4d). RNA-sequencing of the clones showed predicted
decreases in canonical AR signaling when treated with ARD-61 (Fig. 4e,
Supplementary Fig. S9d); however, when compared to parental LNCaP
cells, AR-V7 overexpressed clones showed slight increases in AR signaling
despite being similarly sensitive to ARD-61 (Fig. 4f, Supplementary
Fig. S9e).

Moreover, we found that ARD-61 is highly effective in vivo by using
the aggressive, metastatic, and castration- and enzalutamide-resistant
CWR-R1 EnzR xenograft model that expresses high levels of AR-V7 [2]
(Fig. 4g). Taken together, these data reveal that while AR-V7 may enhance
AR signaling, full-length AR is required for the growth and survival of
castration- and enzalutamide-resistant prostate cancer. Thus, full-length
AR remains an attractive clinical target for AR degraders in treating
advanced disease.
Discussion

Collectively, these data show the necessity for full-length AR in all
stages of prostate cancer. Enzalutamide-resistant cell lines require full-
length AR for sustained survival, despite continued AR antagonism, and
cells with AR variant overexpression, shown previously to promote resis-
tance to AR-targeted therapies [5,6,13–17], still require AR protein with
an intact LBD to maintain growth. While AR splice variants have been
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four representative cell lines derived from individual single cell clones with CRISPR-induced AR-V7 expression treated with increasing concentrations of
ARD-61 for 24 hours (short and long western blot exposures). c) Growth curves of LNCaP-V7 clones vs parental cells treated with ARD-61 (top panel),
enzalutamide (middle panel), or bicalutamide (bottom panel) (n = 6). d) Growth curves of AR-V7 expressing 22Rv1 cells treated with ARD-61 compared
to enzalutamide, assayed by Cell Titer Glo ATP� (n = 6). e) RNA-sequencing was performed on LNCaP AR-V7 overexpressing cells treated with
100 nM ARD-61 for 24 hours compared to control. AR target genes, in red with a few representative genes labeled, are significantly downregulated, and
illustrated by gene set enrichment analysis (GSEA) plot (inset). f) With similar analysis to (e), RNA-sequencing of LNCaP parental cells compared to
LNCaP AR-V7 overexpressing clones shows an increase in AR pathway gene expression (GSEA plot; inset). g) Growth curves of tumor volume
illustrating the effects of ARD-61 and enzalutamide on enzalutamide-resistant CWR-R1 EnzR in vivo. Castrated mice were injected subcutaneously with
CWR-R1 EnzR cells, and when the tumors reached 100 mm3 in size, the mice were treated with control (n = 10), enzalutamide (50 mg/kg, n = 10), or
ARD-61 (50 mg/kg, n = 10) qd, 5 times a week throughout the duration of the experiment.
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shown to correlate with resistance to AR-targeted therapies (castration, AR
antagonists, and androgen synthesis inhibitors [18]), their expression also
highly correlates with full-length AR expression and amplification [19],
which our data suggests is likely mediating the more aggressive phenotype
seen during resistance.

Moreover, while most studies have shown that AR variants likely func-
tion to promote signaling and cellular growth through full-length AR [20],
it has been argued by some groups that it may form functional homod-
imers with a unique cistrome [21,22]. One such recent study by Cato
et al. used an endogenous system and an AR-V7 specific antibody for
ChIP-seq to suggest that AR-V7 functions as a transcriptional repressor
for tumor suppressor genes [21]. Our data suggests that these genes are
more likely not relevant in late-stage disease and resistance to AR-
targeted therapies, given that in our endogenous CRISPR overexpression
system, we found no difference in sensitivity to AR-targeted therapies
and AR degradation (Fig. 4). Similarly, cell lines expressing endogenous
AR variants are still sensitive to ARD-61.

Importantly, our data are consistent with the previously published
work on resistance to AR-targeted therapies illustrating that AR is gener-
ally expressed and active after treatment [2,23]. AR is often amplified and
overexpressed in these contexts, which frequently correlates with AR vari-
ant expression that can be an excellent biomarker of aggressive disease, but
AR variant expression likely plays a secondary role in mediating the phe-
notype that is mostly driven by full-length AR [24]. Our data illustrate the
importance of continued targeting of AR in advanced prostate cancer and
the potential clinical promise of the PROTAC class of drugs. In addition
to ARD-61, other AR degraders have recently been under investigation,
including the enzalutamide-based ARCC-4 PROTAC which showed
enhanced activity compared to enzalutamide in in vitro studies [25,26].
Ultimately, through their clinical translation, we anticipate the develop-
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ment of ARD-61 and other PROTAC AR degraders to be therapeutic
advances for patients with metastatic CRPC via elimination of full-
length AR protein.
Methods

Cell lines, culture, and viability assay

R1881 was purchased from Sigma-Aldrich (St. Louis, MO), and enza-
lutamide (MDV3100), MLN4924, and MG132 were purchased from Sel-
leck Chemicals (Houston, TX), and stored at �20 �C in ethanol, and
�80 �C in DMSO, respectively. CWR-22Rv1 (22Rv1), BT474,
DU145, and PNT2 cell lines were purchased from American Type
Culture Collection (Manassas, VA) and were validated and cultured as
described [2,27]. CWR-R1, VCaP, LAPC4, LNCaP, and enzalutamide-
resistant counterparts, in addition to 957E/hTERT and PrEC cells, were
generously provided by Dr. Donald J. Vander Griend at the University of
Illinois at Chicago and have been previously characterized and cultured as
described [2,28,29]. For viability assays, cells were seeded in 96-well plates
at 2000–10,000 cells/well (optimum density for growth) in a total volume
of 100 ll media containing 10% FBS. Serially diluted compounds in
100 ll media were added to the cells 12 hours later, with six biological
replicates per condition. Following 5 days of incubation, cell viability
was assessed by Cell-Titer GLO (Promega, Madison, WI). The values
were normalized and IC:50 was calculated using GraphPad Prism 7 soft-
ware. Apoptosis and cell cycle assays were performed following the manu-
facturer's instructions (Thermo-Fisher Scientific, Waltham, MA). Non-
targeting and AR siRNA SMARTpools were purchased from Dharmacon
(Lafayette, CO, see Supplementary Methods for sequences), and trans-
fected using Lipofectamine RNAiMAX reagent according to manufac-
turer's protocol (Thermo-Fisher Scientific). CRISPR knock-in AR-V7
overexpressing lines were generated as previously described [30] using
unique guide RNA and homologous recombination template sequences
(see Supplementary Methods for sequences).
Antibodies, immunoblot, and proteomic analyses

Antibodies used in the immunoblotting (IB) assays are AR (Millipore,
Billerica, MA, Cat. # 06-680), cPARP (Cell Signaling Technology, Dan-
vers, MA Cat. # 9541), GAPDH (Cell Signaling, Cat. # 3683S), Histone
H3 (Cell Signaling, Cat. # 2650), NKX3.1 (Cell Signaling, D2Y1A XP,
Cat. # 83700), PSA (Dako Cat. #A0562), and b-actin (Sigma-Aldrich,
Cat. #A5316). All antibodies were employed at dilutions suggested by
the manufacturers. Whole-cell lysates collected from cells seeded at
1 � 106 cells per well of a 6 well plate (Becton, Dickinson and Company,
Franklin Lakes, New Jersey) were lysed in RIPA-PIC buffer [150 mM
sodium chloride, 1.0% Igepal CA-630 (Sigma-Aldrich), 0.5% sodium
deoxycholate, 0.1% SDS, 50 mM Tris, pH 8.0, 1 � protease inhibitor
cocktail (Roche Molecular Biochemicals; Penzberg, Germany)], scraped,
and sonicated (Fisher Scientific; Hampton, NH; model FB-120 Sonic
Dismembrator). Protein was quantified by BCA assay (Thermo-Fisher Sci-
entific); 30 lg of protein were loaded per lane, separated by SDS-PAGE
and transferred onto nitrocellulose membrane (GE Healthcare, Chicago,
IL). The membrane was incubated for 1 hour in blocking buffer [Tris-
buffered saline, 0.1% Tween (TBS-T), 5% nonfat dry milk] followed
by incubation overnight at 4 �C with the primary antibody. Following a
wash with TBS-T, the blot was incubated with horseradish peroxidase-
conjugated secondary antibody and signals were visualized by enhanced
chemiluminescence system as per manufacturer's protocol (GE Health-
care). For ProteinSimple� quantification, whole cell lysates were separated
by capillary electrophoresis on the ProteinSimple� WES platform using
the 12–230 kDa size separation kit and following the manufacturer's
instructions (ProteinSimple�, San Jose, CA, USA). Proteomic analyses
were all performed as previously described [9,10].

RNA isolation, quantitative real-time PCR, and RNA-seq

Total RNA was isolated from either cells grown as previously described
or whole homogenized tumor xenograft tissue using miRNAeasy kit,
including the optional DNAse digestion (Qiagen, Valencia, CA), and
cDNA was synthesized from 1000 ng total RNA using Maxima First
Strand cDNA Synthesis III Kit for RT-qPCR (Thermo Fisher Scientific).
Quantitative real-time PCR was performed in triplicate using standard
SYBR green reagents and protocols on a StepOnePlus Real-Time PCR sys-
tem (Applied Biosystems). The target mRNA expression was quantified
using the DDCt method and normalized to HMBS expression. All primers
were designed using Primer 3 (http://frodo.wi.mit.edu/primer3/) and syn-
thesized by Integrated DNA Technologies (Coralville, IA). See Supple-
mentary Methods for primer sequences. RNA-seq was performed with
triplicate biological replicates using the Illumina HiSeq 2000 in paired
end mode, as previously described [31]. For each gene, a rank list was gen-
erated by ordering each gene in the differential expression analysis by the
DESeq2 [32] log fold change value (log2foldchange). These rank lists were
used in a weighted, pre-ranked GSEA [33] analysis against MSigDBv5
[34]. Significant associations were determined for any gene set having
an FWER p-value below 0.01. Genomic analyses were all performed as
previously described [9,10].

Murine prostate tumor xenograft models

Four week-old male SCID CB17 mice were obtained from a breeding
colony at University of Michigan maintained by our group. Mice were
anesthetized using 2% Isoflurane (inhalation) and either 2 � 106 VCaP,
1x106 LNCaP, or CWR-R1 EnzR cells suspended in 100 ll of PBS with
50% Matrigel (BD Biosciences) were implanted subcutaneously into the
dorsal flank on both sides of the mice. Once the tumors reached a palpable
stage (100 mm3), the animals were randomized and treated with ARD-61
or vehicle control (10% PEG400: 3% Cremophor: 87% PBS) via
intraperitoneal injection respectively five times a week, or enzalutamide
or vehicle [1% Carboxymethylcellulose (Sigma Aldrich), 0.25%
TWEEN-80 (Sigma Aldrich), and 98.75% PBS] by oral gavage. Growth
in tumor volume was recorded using digital calipers and tumor volumes
were estimated using the formula (p/6) (L �W2), where L = length of
tumor andW = width. Loss of body weight during the course of the study
was also monitored. At the end of the studies, mice were sacrificed and
tumors were extracted for the downstream analyses. For the CRPC exper-
iment, VCaP tumor bearing mice were castrated when the tumors were
approximately 200 mm3 in size. Once the tumor grew back to the pre-
castration size, the animals were treated with control or enzalutamide
(10 mg/kg). After three weeks, half of the mice treated with enzalutamide
(10 mg/kg) were switched to ARD-61 (50 mg/kg). For CWR-R1 EnzR,
castrated mice were injected subcutaneously with cells, and when the
tumors reached 100 mm3 in size, the mice were treated with control, enza-
lutamide (50 mg/kg), or ARD-61 (50 mg/kg) qd, 5 times a week through-
out the duration of the experiment. All procedures involving mice were
approved by the University Committee on Use and Care of Animals
(UCUCA) at the University of Michigan and conform to all regulatory
standards.
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