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Drug-induced liver injury (DILI) is a class of adverse drug reactions (ADR) that causes
problems in both clinical and research settings. It is the most frequent cause of acute liver
failure in the majority of Western countries and is a major cause of attrition of novel drug
candidates. Manual trawling of the literature is themain route of deriving information on DILI
from research studies. This makes it an inefficient process prone to human error.
Therefore, an automatized AI model capable of retrieving DILI-related articles from the
huge ocean of literature could be invaluable for the drug discovery community. In this
study, we built an artificial intelligence (AI) model combining the power of natural language
processing (NLP) and machine learning (ML) to address this problem. This model uses
NLP to filter out meaningless text (e.g., stop words) and uses customized functions to
extract relevant keywords such as singleton, pair, and triplet. These keywords are
processed by an apriori pattern mining algorithm to extract relevant patterns which are
used to estimate initial weightings for a ML classifier. Along with pattern importance and
frequency, an FDA-approved drug list mentioning DILI adds extra confidence in
classification. The combined power of these methods builds a DILI classifier (DILIC),
with 94.91% cross-validation and 94.14% external validation accuracy. To make DILIC as
accessible as possible, including to researchers without coding experience, an R Shiny
app capable of classifying single or multiple entries for DILI is developed to enhance ease of
user experience and made available at https://researchmind.co.uk/diliclassifier/.
Additionally, a GitHub link (https://github.com/sanjaysinghrathi/DILI-Classifier) for app
source code and ISMB extended video talk (https://www.youtube.com/watch?v=
j305yIVi_f8) are available as supplementary materials.

Keywords: drug-induced liver injury (DILI), natural language processing (NLP), machine learning (ML), artificial
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1 INTRODUCTION

Drug-induced liver injury (DILI) is a class of adverse drug reactions (ADR) which is an issue in
both clinical and research settings. Although DILI can be mild, resolving once administration of
the problem drug is discontinued, it lies on a spectrum and can also be severe. DILI is the most
frequent cause of acute liver failure in the majority of Western countries (Hoofnagle and
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Björnsson, 2019) and is a major cause of attrition of novel drug
candidates (Church and Watkins, 2018) and accounts for
almost one-quarter of clinical drug failures (Watkins, 2011).
As new findings on DILI are often published in the scientific
literature, collating these data from the literature is useful for
risk assessment during drug development and in the clinic.
However, currently, manual trawling of text from the literature
is the main route of obtaining relevant information about DILI
from research studies. This is an inefficient process prone to
human error, and modern computational techniques for
mining textual data can improve it. A model capable of
retrieving DILI-related articles from the huge ocean of
literature could be invaluable for the drug discovery
community. Natural language processing (NLP) involves
using computational techniques to extract information and
insights from text data. Previous studies have applied NLP
techniques to identify the relevant literature for challenges in
drug discovery, including the goal of drug repurposing (Zhu
et al., 2020) and collating information on COVID-19 for
researchers (Wang and Lo, 2021). There have been a small
number of studies addressing this DILI in the literature
problem to date. A collaboration between Pfizer and the
Comparative Toxicogenomics Database (CTD) used text
mining to aid manual curation to collate information from
over 88,000 articles relating to 1,200 drugs and their links to
several toxicities, including hepatotoxicity; although it is a
valuable resource, it is limited to the articles and drugs it
focused on (Davis et al., 2013). LimTox, a Web tool built in
2017, uses text mining to identify DILI events in the PubMed
literature (available at the time of development) associated
with drugs (Cañada et al., 2017). This is useful for a specific

drug of interest but does not classify the literature itself as
related to or unrelated to DILI and appears to not update the
literature accessed, which would make it less useful for newer
drugs (Cañada et al., 2017). A more recent study has applied
AI-based NLP approaches to sentences contained within FDA
drug labeling documents to classify them as suggesting DILI
risk for the drug in question or not (Wu et al., 2021).
Additionally, previous attempts have been made to classify
adverse drug events using NLP on available data (Harpaz et al.,
2014). Databases of drug side effects also contain DILI-related
information (FDA (2021); Kuhn et al. (2016). In this study,
NLP is used to extract relevant patterns from the literature,
and this knowledge is combined with information related to
DILI from publicly available databases. This combined
information is used to train a classifier to classify the
literature as DILI-related or not.

2 WORKFLOW

The DILIC pipeline can be subdivided into four phases, as shown
in Figure 1. In phase I, a curated DILI dataset is uploaded, as
well as information from external cohorts relevant to this
classification task. The DILI dataset is a well-curated dataset
that contains the literature labeled as positive (related to DILI)
and negative (totally unrelated to DILI); this was obtained from
the CAMDA team. This dataset, which contains a balanced
cohort of DILI-positive and DILI-negative literature, was
divided into a discovery and a validation set maintaining the
positive and negative class split. Along with this curated DILI
dataset, our pipeline is enriched with information from FDA

FIGURE 1 | Steps of DILIC from a dataset of DILI-positive and DILI-negative articles to validations showing integration of FDA and SIDER datasets.
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and SIDER adverse event datasets, where DILI is mentioned as a
side effect.

In phase II, the DILIC pipeline processes both these internal
(curated DILI literature) and external (side effect datasets)
cohorts to extract relevant information. This extraction
process is quite simple and straightforward for the external
cohort. This process examines database annotation related to
adverse events for each drug and where DILI is mentioned as a
side effect, the drug’s generic information (generic name, brand
name, and compound) is retained. On the other hand, the
extraction process for the internal cohort is more complicated
and computationally intensive. This process combines several
standard natural language processing tasks such as sentence
segmentation, word tokenization, text lemmatization, and
filtering (i.e., stop words and unwanted key), with customized
token generation of word sets of varying lengths (single word,
pair, triplets, etc.). A list of named entities with multiple lengths is
stored for pattern mining and scoring in the next phase.

Phase III concentrates on pattern mining and scoring these
mined patterns. This step uses the distributed apriori algorithm
Rathee et al. (2015) to extract superset patterns, which occur
frequently, and scores them based on their length, frequency, and
whether they appear in the positive and negative classes. The
overall score of a pattern is calculated by its score in the positive
or negative class divided by the total score in both classes. The
scoring gives higher weight to the names of drugs coming from
FDA and SIDER external cohorts than to patterns extracted via
text mining because these drugs have been associated with DILI
in highly trusted databases. Finally, all the patterns with their
score for each abstract are stored in a matrix format, which can be
fed to any ML classifier.

In phase IV, a scoring matrix is utilized by multiple machine
learning classifiers to learn and predict labels for validation data.
Instead of using a favorite ML classifier, our pipeline feeds the
score matrix to multiple models (i.e., logistic regression, elastic
net (lasso and ridge), random forest, neural nets, support vector
machines, and gradient boosting machine) to find out which
models suit our dataset based on cross-validation accuracy. The
best classifier with the highest cross-validation accuracy is used to
make predictions on unseen validation cohorts. The validation
process is extended with another unbalanced validation cohort in
the second phase.

The DILIC pipeline is capable of classifying the literature as
relevant or irrelevant for DILI studies with high-accuracy
measures. It can be easily adapted for any other adverse event.
A detailed description to build this pipeline is available in the
Methods section.

3 MATERIALS AND METHODS

We built an artificial intelligence (AI) model combining the
power of natural language processing (NLP) and machine
learning (ML) to extract the relevant literature for DILI from
the ocean of published articles. This model combines the
information available in the title and abstracts of scientific
articles with information from external databases to improve

efficacy and accuracy. A detailed procedure is available in
Algorithm 1, which contains all the steps to build this model.

Algorithm 1. Classify the Literature as DILI-Positive or DILI-
Negative.

3.1 Data Preparation
A well-curated dataset of 2̃8,000 DILI-annotated articles was
obtained from the CAMDA team CAMDA (2021). This
dataset was generated after filtering out the most obvious
DILI literature, which makes the task of classification
challenging, but more representative of the challenge of
sorting through the real-world literature beyond the
obviously DILI-related or entirely unrelated articles. All the
articles in this dataset are labeled as DILI-related (DILI
positives) or not related to DILI (DILI negatives) by an
experienced panel of experts. We used approximately half
of these data with a balanced split of DILI-positive and
-negative to extract insights and train a model (discovery
set). The remaining half was kept as a validation set.

We divided the discovery set of 14,203 articles into training
(80%) and testing (20%) sets, consistent with their labels. Overall,
we used 5,741 DILI-positive and 5,620 DILI-negative as a training
set and 1,436 DILI-positive and 1,406 DILI-negative as a test set.

3.2 Natural Language Processing Model
An NLP model with some customization was used to extract
the relevant information from the available training cohort
(Algorithm 2). It starts with the most basic NLP step sentence
tokenization on titles and abstracts, followed by word
tokenization. A customized word tokenization method was
developed to generate keyword sets of singleton, pairs, triplets,
and so on. This step generates combinations containing only
nouns and adjectives and filters out irrelevant text like stop
words using the R UDPipe package (Straka and Straková,
2017). These keyword sets were processed for text
lemmatization and stemming to generalize the list. The
output of this NLP model was a vector containing all
keyword sets as features, and for each of these, their
frequency and length (singleton and pair) were stored as
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weights for pattern mining. This NLP model was applied to
both titles and abstracts.

Algorithm 2. Customized NLP Model to Extract Tokens From
Abstract.

3.3 Pattern Mining
Along with the total frequency of a keyword set, the frequency of
the keyword and its subsets in terms of the number of articles
(DILI positive or DILI negative) in which it appears was
calculated. The pattern mining ML algorithm apriori was used
for this. In this way, we included the frequency of a keyword set
and its subset as a factor for weighting that keyword set. A
distributed processing-based implementation of apriori was used
to minimize the overall processing time.

Algorithm 3. Add score for presence/absence in external cohort
FDA and SIDER.

3.4 External Cohort Integration
Since external datasets contain information that could be
advantageous in classifying the DILI literature, two were
integrated into the model. These two publically available
datasets were the FDA-approved drug list (FDA, 2021) and
SIDER adverse events dataset (Kuhn et al., 2016). From these
two datasets (Algorithm 3), a list of drugs with DILI as adverse
events or warning was extracted, and these drugs were given a
higher weight than others without such warnings. The side effects

field of the SIDER database for drugs was helpful to add extra
information to this highly weighted list.

3.5 Classifier
The final vector of keywords, along with their updated weights,
was given as input to various well-known ML and AI models
(logistic regression, elastic net, random forest, neural net, support
vector machine, gradient boosting machine, convolution neural
networks, and LSTM) to train a classifier. The weight of a
keyword was calculated by its total frequency, length, FDA,
and SIDER list presence or absence.

WT � ∑
j

i�1
WfipKeyi +∑

j

i�1
WlipKeyi +∑

j

i�1
WfdaipKeyi

+∑
j

i�1
WsideripKeyi, (1)

where WT represents the total weight for a study, the key
represents the weight for presence (1) or absence (0) of a keyword
set, (Wf) represents the weight for frequency of a keyword set,Wl

represents the weight for length of a keyword set (for instance
singleton 1, pair 2, and triplet 3), Wfda represents the weight for
the presence and absence in the FDA list with the DILI adverse
event, and Wsider represents the weight for the presence and
absence in the SIDER list with DILI adverse events.

All ML classifiers are trained on an 80% split (11,361 abstracts)
of the discovery set. The classifier with the highest cross-
validation accuracy (gradient boosting machines) was tested
on a standout test set (20% split with 2,841 abstracts) and
external validation cohort (14,000 abstracts). Table 1 shows
the confusion matrix for the standout (20%) testing set.

The results on the external validation set were also quite
promising, with an accuracy of 94.89%. The model was
iterated 10 times with different test sets to get the average
accuracy of 94.9%. Figure 2 shows the probability of every
sample being positive. Any sample with a probability higher
than 50% is labeled as DILI positive. The cutoff of 50% can be
adjusted to closely reflect a real-world dataset that will have far
more negative pieces of literature.

4 RESULTS

The most effective model was gradient boosting machines
(Figure 3), with 94.76% accuracy, when applied to the internal
hold out test set of 2,842 articles, half of which were DILI-positive
and half DILI-negative. The inclusion of the FDA and SIDER
datasets improved the accuracy of the GBM model in the
validation set and on an additional external set (Table 2). The
final model is used to predict the labels for the external validation
cohort shared by CAMDA. We got encouraging results with an
accuracy of 94.14% and F1-score 94.08%. The highlight of the
model was its recall value of 96.02%.

DILIC was then applied to an unseen additional external set,
which was an unbalanced DILI cohort, making it more reflective
of real-world data. On the additional external set, accuracy was

TABLE 1 |Confusion matrix of GBM classifier applied to standout abstract cohort.

True class

Positive Negative

Predicted class Positive 1335 44
Negative 101 1362
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90.25% and an F1-score of 90.94%. The recall value was improved
with this set, with a value of 97.9%.

5 DISCUSSION

DILIC is a model with high accuracy which is useful to the
community to classify the literature as related to or unrelated
to DILI, which can help perform DILI risk assessment for

drugs during development, repurposing, or in the clinic.
Although it was developed to classify the DILI literature, it
has been designed to handle any adverse event classification
problem, so it has applications for drug risk assessment beyond
just liver injury to toxicities in other tissues. We note that
complex machine learning AI models are known to have the
power to magnify weak signals.

In order to minimize the pressure on ML models and reduce
the risk of such erroneous magnification, during the development

FIGURE 3 | Internal accuracies for all ML classifiers (EN, elastic net; LR, logistic regression; SVM, support vector machines; CN, convolution network; RF, random
forest; GBM, gradient boosting machine; FSB, feature selection-based model) showing that GBM has the highest accuracy.

TABLE 2 | Results for the GBM model applied to the validation set and additional external sets of DILI and the non-DILI literature. The inclusion of FDA and SIDER datasets
improved the GBM model.

Validation set (14211) Additional external set (2000)

Accuracy F1 score Recall Precision Accuracy F1 score Recall Precision

GBM (abstract only) 0.9386 0.9376 0.9631 0.9133 0.8845 0.8936 0.9700 0.8284
GBM (+FDA) 0.9406 0.9396 0.9659 0.9147 0.8915 0.8992 0.9680 0.8395
GBM (+SIDER) 0.9414 0.9408 0.9602 0.9221 0.9025 0.9094 0.9790 0.8491

FIGURE 2 | Prediction probability plot.
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of DILIC, a strong focus was placed on the data cleaning and
processing steps of the model. Another potential issue is the
chance that the inclusion of the SIDER dataset could introduce
bias against publications relating to drugs that are not yet
included therein. Reassuringly, even without the inclusion of
this database, DILIC performs well, with an accuracy of 94.06% on
the validation set and 89.15% on the additional external set. There
is still potential to improve DILIC in the future. Later steps like
customized word segmentation, pattern mining, and external
relevant cohorts add power to DILIC, and there is still plenty
of scope to adjust the weights for these steps. In addition, as other
databases related to drug toxicity and side effects are developed,
these could be integrated to improve themodel. Tomake DILIC as
accessible as possible, including researchers without coding
experience, the R Shiny app capable of classifying single or
multiple abstracts for DILI is developed to enhance ease of
user experience and made available at https://researchmind.co.
uk/diliclassifier/.

6 CONCLUSION AND FUTURE WORK

DILIC is a novel tool to classify the literature as related to DILI or
not. This is significant as it has the potential to aid researchers in
drug development and research and clinical settings during the
risk assessment. DILIC is implemented in such a way that it can be
modified to classify any other drug’s adverse reactions and is not
limited to DILI. Therefore, the DILIC code available at the GitHub
link could be useful for researchers interested in drug-induced
neural, cardiovascular, or renal toxicities for example. The Shiny
app for DILIC provides the tool in a user-friendly and accessible
way that can be easily used by nonprogrammers who have the
literature they want to classify. Additionally, an ISMB extended
video talk is available as a supplementary resource that explains
the pipeline step by step (https://www.youtube.com/watch?v=
j305yIVi_f8).

Work is ongoing to improve the classification accuracy
measures of DILIC by increasing weights for well-known

entities like genes, drugs, species, and pathways. These
entities will be extracted using transformers trained on
PubMed data (i.e., BioBERT (Lee et al., 2020)). We are also
working to add more features to our app so that it will be able
to take any adverse event and its literature as an input to
classify the related literature.
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