ACS APPLIED ENGINEERING MATERIALS

Shaping of Porous CeO₂ Powders into Highly Active Catalyst Carriers

Elena Martín Morales,* Andreína Alarcón, Martí Biset-Peiró, Elena Xuriguera, and Jordi Guilera

ABSTRACT: CeO₂ is attracting more and more attention because of its outstanding performance in heterogeneous catalysis, as an active support and a reaction promoter in reactions of industrial interest. We herein describe a novel and scalable manufacturing process of mm-sized CeO₂ spheres by a combination of extrusion and spheronization of CeO₂ porous powders. In this study, wet paste formulation and fabrication procedures were optimized, and as a result methylcellulose was identified as the best plasticizer for paste extrusion to provide well-defined spherical shapes and smooth surfaces, as well as reproducible batches. After nickel impregnation (10 wt %), the catalytic performance of CeO₂ supports was evaluated in the CO₂ methanation reaction (T = 250-350 °C, P = 5 bar·g) and compared with that of commercial Al₂O₃ spheres doped or not with CeO₂. These novel CeO₂-based catalysts are easily reduced at a moderate temperature and more active than the Al₂O₃ analogues, particularly at low reaction temperatures and small reactor volumes, properties that make their implementation in emerging reactor configurations very promising.

KEYWORDS: cerium oxide, catalyst carrier, extrusion, spheronization, carbon dioxide methanation

1. INTRODUCTION

CeO₂-based materials have gathered momentum in catalysis owing to the high activities obtained when used as supports and reaction promoters in several industrial applications.^{1,2} The interest in CeO₂ over other metal oxides lies on its nonstoichiometric properties and the readiness to change between Ce(III) and Ce(IV) oxidation states while preserving its original structure, which allow the oxygen species to easily move across the CeO_2 lattice.³ This ability to store and release oxygen can be considered responsible for the activation of catalytic substrates such as CO⁴ or CO₂⁵ and to facilitate the redox processes associated with the supported metal active species.⁶ These unique properties explain the notable activities of CeO2-based catalysts in reactions of high socioeconomic interest, such as the water gas shift reaction,⁷ combustion of methane,⁸ ammonia decomposition,⁹ fuel oxidation in solidoxide fuel cells,¹⁰ or three-way catalysis,¹¹ among others. A reaction of special concern is the methanation of CO_2 , a process in which ceria-based systems, in combination with catalytically active metals like nickel, have exhibited remarkable activities.^{12–14}

CeO₂ in powder form, among other metal oxide supports, has been extensively studied at a molecular level in order to establish the structure—property relationships that govern the activity of heterogeneous catalysts. Powder catalysts, however, present critical limitations when implemented in real devices, such as the pressure drop or release of fine particles into the environment.¹⁵ To overcome these undesired events in industrial applications, catalyst carriers are often presented in the form of pellets (mm-scale)¹⁶ or monoliths (cm-scale),^{17,18} which are easier to transport, manipulate, and recover after the operation. While monolithic bodies entail lower pressure drops, smaller structures like pellets accept higher metal loadings in an equivalent reactor volume.¹⁹

A common strategy for the shaping of powders into bigger bodies involves the use of agglomeration techniques such as

Received:November 20, 2022Accepted:March 15, 2023Published:March 29, 2023

© 2023 The Authors. Published by American Chemical Society pelleting, granulation, or extrusion,^{17,18} and more recently 3Dprinting.^{20,21} To achieve mild processing of the material, powders are typically mixed with water and other additives.^{17,22} Gum guar,^{23,24} cellulose derivatives,^{25–27} or synthetic polymers²⁸ are recurring additives added to the formulations to tune their rheological behavior, thus enabling mild processing, and are commonly referred to as plasticizers. Acids and bases are used as peptizing agents to favor mixture homogeneity by changing the aggregation state of the powder particles.^{22,29} Other additives can be introduced to obtain the desired physicochemical properties of the final materials. For instance, inorganic binders like clays,^{30–32} silica,^{32,33} and alumina,^{25,32–34} are often employed to enhance the mechanical resistance of the shaped bodies.

The shaping of CeO₂ powders into bigger structures has been reported for solid-oxide fuel cell applications. For example, the fabrication of monolithic bodies by injection molding of a mixture of CeO₂ powder, ethylene-vinylacetate, paraffin wax, and stearic acid was studied.³⁵ Guesnet et al.³⁶ followed two different approaches to shape gadolinium-doped CeO_2 powders into 25 mm diameter disks: (a) a tape-casting process using additives like phosphate ester, dibutyl phthalate and synthetic polymers, and carbon particles as porogens and (b) die pressing associated with screen-printing. Similar to the latter, Llorca and co-workers³⁷ reported the compression of CeO₂ powders combined with polyvinyl alcohol into disks of 10 mm diameter using a uniaxial hydraulic press. Methods of shaping of CeO2-based structures as catalyst supports for fixedbed reactors have also been reported, such as the pelletization of porous CeO₂ powders previously impregnated with nickel salts into 0.25-0.5 mm pellets for CO methanation.³⁸ Extrusion methods have been employed as well to obtain cerium-zirconium mixed oxide cylindrical bodies of different compositions.^{24,39} The shaped Ce_{0.6}Zr_{0.4}O₂ support in combination with the active metallic species exhibited high conversions in the trireforming of surrogate biogas.²³ Recently, monolithic CeO₂ structures with a woodpile arrangement have been attained out of a mixture of porous CeO₂ powders and concentrated HNO₃ by 3D-printing methods for the catalytic decomposition of ammonia.⁴⁰

Among the different shaping techniques, the extrusionspheronization technique allows the eventual variation of the pellet diameter to fit reactor specifications, for instance in microchanneled reactors, and the scale-up of the production to industrial amounts. For correct extrusion, pastes must have adequate rheological properties, determined by particle size and shape, liquid—solid ratio, and ionic occupation of particle surfaces.⁴¹ Additives like polysaccharides and cellulose derivatives, polyethers, or polymeric alcohols can interact through hydrogen bonding with the hydroxyl surface groups of the CeO₂ particles, thus masking the morphology effects and allowing them to slide past each other when an extrusion force is applied.⁴²

To the best of our knowledge, this study represents the first report of the fabrication of mm-sized CeO_2 -based catalyst carriers using extrusion-spheronization with different extrusion-aid agents, and up to date, there are no commercially available mm-sized CeO_2 -based catalysts. Three different extrusion-aid agents are evaluated, namely methylcellulose (MC), hydroxyethylcellulose (HEC), which have already been used in the fabrication of technical catalysts,^{25,27} and polyvinylpyrrolidone (PVP), a polymer widely used as a particle dispersant.

As a proof of concept, the so-obtained CeO₂-based catalyst carriers were impregnated with nickel species and evaluated in the catalytic conversion of carbon dioxide into methane. The catalytic performance of the novel supports is hereby compared with that of commercial Al_2O_3 spheres, commonly used as catalyst supports.⁴³⁻⁴⁵ Al_2O_3 spheres have been impregnated with Ni and Ni/CeO₂, respectively, to evaluate the best role of CeO₂, either as a promoter, as it has been typically used, or as a shaped support.

2. MATERIALS AND METHODS

2.1. Material Preparation

Cerium(III) nitrate hexahydrate, [Ce(NO₃)₃·6H₂O] (99.5%, Alfa Aesar) was used for the synthesis of supports. Methylcellulose ($M_w \sim 14.000$, Sigma), hydroxyethylcellulose ($M_w \sim 26.000$, Sigma), and polyvinylpyrrolidone ($M_w \sim 40.000$, Merck) were used as plasticizers. Nickel (II) nitrate hexahydrate [Ni(NO₃)₂·6H₂O] (98%, Alfa Aesar) was used as a metal precursor. For comparison purposes, Al₂O₃ spheres were purchased from Norpro Saint-Gobain ($d_p = 1$ mm).

CeO₂ powder was synthesized by the calcination of Ce(NO₃)₃. 6H₂O for 5 h at 500 °C (1 °C·min⁻¹). The solid thus obtained was then ball milled using a Retsch MM400 Oscillating mill. A wet mass was formed by mixing the CeO₂ powder with the plasticizer (1:0.055 dry mass ratio) and a predetermined volume of an aqueous 0.1 mM HNO₃ solution. The paste was homogenized for 20 min in a THINKY ARE-250 Conditioning Planetary Mixer. The pastes were extruded using a Caleva Multi-Lab Extruder (1 mm diameter, 55 rpm), and the extruded pellets were processed in a Caleva Multi-Lab Spheronizer (10–30 min, 2000 rpm). The resulting pellets were dried at 105 °C for 12 h and calcined at 500 °C for 4 h (5 °C·min⁻¹).

The CeO₂ carriers were impregnated with Ni by an incipient wet impregnation method to yield the Ni–CeO₂ catalyst with a Ni nominal content of 10 wt %. In a typical synthesis, 0.825 g of Ni(NO₃)₂·6H₂O were dissolved in 285 μ L of deionized water. The precursor solution was then drop-casted over 1.5 g of CeO₂ catalyst carriers. The catalyst was dried at 105 °C for 12 h and calcined at 500 °C for 1 h (2 °C·min⁻¹). The reduced form of the catalyst was achieved by reduction under a hydrogen atmosphere (5% H₂ and 95% Ar, 100 mL·min⁻¹) at 350 °C 3 h (1 °C·min⁻¹).

In a similar procedure, commercial Al_2O_3 spheres were impregnated with a solution of 0.825 g of Ni(NO₃)₂·6H₂O in 1.05 mL of water to yield the Ni–Al₂O₃ catalyst. The Ni–CeO₂–Al₂O₃ catalyst was synthesized by co-impregnation of the Al₂O₃ spheres with 0.94 g of Ni(NO₃)₂·6H₂O and 0.47 g of Ce(NO₃)₃·6H₂O dissolved in 1.05 mL of water, aiming at Ni and CeO₂ nominal contents of 10 wt %. The CeO₂ promoter loading was selected following previous optimization studies.⁴⁶ The catalysts were then dried at 105 °C for 12 h and calcined at 500 °C for 1 h (2 °C·min⁻¹). Reduction of the Al₂O₃-based catalysts was performed under hydrogen atmosphere (5% H₂ and 95% Ar, 100 mL·min⁻¹) at 500 °C during 3 h (1 °C·min⁻¹).

2.2. Material Characterization

Scanning electron microscopy (SEM) micrographs and elemental composition of the samples were obtained using a field emission scanning electron microscope (Zeiss Auriga 60) equipped with an energy-dispersive X-ray spectrometer (Oxford X-Max). For energy-dispersive X-ray (EDX) analysis, technical catalysts in their reduced form were crushed and fixed over a holder using carbon tape. The chemical composition is expressed as the average of five measurements on individual particles for each powder sample. For EDX mapping, the technical catalysts were cold-drawn in epoxy resin and left to cure for 24 h. The specimens were then polished to obtain the cross-section of the spheres and coated by gold sputtering.

X-ray diffraction (XRD) patterns were collected within the 2θ range $20-80^{\circ}$ in a Bruker type XRD D8 Advance A25 diffractometer using a Cu K α radiation ($\lambda = 1.5406$ Å), a voltage of 40 kV, a current of 40 mA, and a step size of 0.02° (with 2 s duration at each step).

Figure 1. SEM images of (a) CeO₂-MC, (b) CeO₂-HEC, and (c) CeO₂-PVP after calcination at 500 °C. Scalebar is 1 mm.

The average crystal sizes of Ni⁰ and CeO₂ were estimated using the Scherrer's equation at $2\theta = 44.50^{\circ}$ for Ni(111) and $2\theta = 47.36^{\circ}$ for CeO₂ (220): D = (K λ/β cos θ), where λ is the X-ray wavelength, β is the full width of the diffraction line at half-maximum (FWHM), and θ is the Bragg angle.

The viscosity of the plasticizers was measured in a Brookfield viscometer DV2T at 24 °C. The concentration of the plasticizer solutions was 2% in water (w/v).

N₂-physisorption measurements were conducted in the TriStar II 3020-Micrometrics analyzer at liquid nitrogen temperature. Prior to the measurements, the samples were degassed at 90 °C for 1 h and then at 250 °C overnight in a FlowPrep 060-Micromeritics. The Brunauer–Emmett–Teller (BET) method was applied to calculate the BET surface area for a relative pressure (P/P_0) range of 0.05–0.3. The average pore size was determined by applying the Barrett–Joyner–Halenda (BJH) method to the desorption branch of the isotherms. The total pore volume was determined from the maximum adsorption value at $P/P_0 = 0.997$.

Temperature-programed reduction (H₂-TPR) measurements were conducted in an AutoChem (Micromeritics) instrument using 12 vol % H₂/Ar at a flow of 50 N mL·min⁻¹ in the temperature range of 35–800 °C at a heating ramp of 10 °C·min⁻¹. The amount of H₂ uptake was measured with a thermal conductivity detector. 100 mg of sample were used for each measurement. The metallic surface area was determined by pulsed CO chemisorption in an AutoChem (Micromeritics) instrument. Prior to adsorption measurements, samples were reduced in H₂ flow at 350 (Ni–CeO₂) and 500 °C (Ni–Al₂O₃ and Ni–CeO₂–Al₂O₃) for 3 h.

The skeletal density has been measured with a Quantachrome Ultrapyc 1200e Automatic Density Analyzer. The bulk density (ρ_{bulk}) has been estimated considering the mass of pellets that fill a cylinder of a capacity 0.5 mL.

The ultimate compression strength of the materials was determined in a Zwick-Roell universal testing machine with a load cell of 200 N. The results are given as the average of ten measures.

2.3. Catalytic Activity

Catalytic tests were performed in a fixed-bed catalytic reactor with 13 mm of internal diameter and 305 mm of length (Microactivity Reference, PID Eng&Tech). 0.3 g of dry catalyst pellets were used for each experiment. The catalyst was diluted with 3 g of Al₂O₃ spheres (Norpro Saint Gobain) of $d_p = 1$ mm to ensure isothermal behavior through the catalyst bed. A K-type thermocouple was placed in the middle of the diluted catalyst bed to monitor the temperature of the reaction. Before the experiments, catalysts were reduced in situ under a H₂ flow (100 N mL·min⁻¹) at 350 °C (CeO₂-supported) and 500 °C (Al₂O₃-supported) for 3 h (ramp 5 °C·min⁻¹), then cooled to 50 °C with the same ramp. Experiments were conducted using a H₂/CO₂ stoichiometric molar ratio of 4.0 (Linde), a pressure of 5.0 bar·g and a gas flow F = 100-200 mL·min⁻¹. Catalyst screening was performed isothermally at intervals of 50 °C in the temperature range of 250–350 °C, starting from the lowest temperature and waiting until steady

state was attained. After reaction, the products passed through a cold liquid–gas separator (5 °C), where water was trapped, and the dry flow was measured by means of a mass flow meter (MF, Bronkhorst). The composition of the dry gas was determined with an on-line gas micro-chromatograph (490 microGC, Agilent Technologies) calibrated for CH₄, H₂, CO, CO₂, C₂H₄, and C₂H₆ and automatically analyzed every 2.5 min along the screening experiments and hourly during the stability test. Three measures were taken at each temperature, and the results have a relative error of the 2%. Stability experiments were conducted at a fixed temperature of 300 °C, a pressure of 5 bar·g and F = 200 N mL·min⁻¹. The CO₂ conversion (χ CO₂) was calculated following eq 1, where Fco_2 represents the molar flow rate of CO₂ in the inlet and outlet gas. The selectivity toward CH₄ was calculated following eq 2.

$$\chi_{\rm CO_2} = \left(1 - \frac{F_{\rm CO_{2,out}}}{F_{\rm CO_{2,in}}}\right) \tag{1}$$

$$S_{\rm CH_4} = \frac{F_{\rm CH_4,out}}{F_{\rm CH_4,out} + F_{\rm CO,out} + F_{\rm C_2C_6,out} + F_{\rm C_2C_4,out}}$$
(2)

The activity of the catalysts was calculated through eq 3

activity =
$$\frac{\chi_{\text{CO}_2 t}}{\chi_{\text{CO}_2 0}}$$
 (3)

where $\chi_{CO_2 t}$ is the CO₂ conversion at time *t* and $\chi_{CO_2 0}$ is the CO₂ conversion at 0 h.

Gas hourly space velocity (GHSV) was calculated as the ratio of the inlet flow rate in standard conditions to the volume of the catalyst (eq 4). The volumetric flow rate (*F*) was adjusted from 200 to 90 N mL·min⁻¹, whereas the catalyst mass was kept constant ($m_{cat} = 0.3$ g). The bulk densities (ρ_{bulk}) of the catalysts are gathered in Table S1.

$$GHSV = \frac{F}{\frac{m_{cat}}{\rho_{bulk}}}$$
(4)

Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements were performed on a Bruker-Vertex70 spectrophotometer equipped with a MCT detector and a high-temperature reaction cell (Harrick Praying Mantis) with two ZnSe windows. Prior to the experiments, the samples were reduced at 350 °C in the reaction cell under an Ar/H₂ flux. A flux of 20 N mL·min⁻¹ was applied for the CO₂ methanation reaction with an Ar/H₂/CO₂ ratio of 15:4:1. The reaction was studied in the temperature range of 100–350 °C, at intervals of 50 °C. Background spectra were recorded under Ar at each temperature.

3. RESULTS AND DISCUSSION

3.1. Physicochemical Properties of the Shaped Catalyst Carriers

Attempts to fabricate CeO_2 pellets in the absence of an extrusion-aid agent were unsuccessful and led to migration of the liquid phase out of the die holes, leaving the solid residue inside the extruder unit, a behavior that is often attributed to a heterogeneous particle size distribution or instability of the dispersion. In an attempt to improve the flow properties of the CeO₂ powders, the use of MC, HEC, and PVP as extrusion-aid agents was evaluated at an equal CeO₂/extrusion-aid agent ratio (10:0.55) and applying the same manufacturing conditions. After optimization of the water content in each paste, the three plasticizers allowed to obtain CeO₂-based extrudates, despite displaying very different viscosity properties (see Figure S1). The extrusion was followed by spheronization and thermal treatment to achieve the technical support.

SEM was used to evaluate the morphologies of the CeO₂ pellets fabricated using MC, HEC, and PVP, denoted as CeO₂-MC, CeO₂-HEC, and CeO₂-PVP, respectively. Figure 1 shows that the CeO₂-MC pellets presented a spherical form with mean diameters centered at 1.3 ± 0.3 mm and exhibited smooth surfaces. In the same conditions, when HEC was used as plasticizer, mostly dumb-bell shaped pellets and rods of variable sizes were obtained. While in the case of CeO₂-MC, rounding was achieved, when using HEC, no spherical shapes were attained even after increasing the spheronization time.⁴⁷ The high degree of entanglement of HEC and the ability to form hydrogen bonds with the Ce–OH and Ce–OH₂⁺ surface groups through diverse moieties (hydroxyl, ether, and hydroxyethyl groups) presumably result in a high cohesive strength that prevented the pellets from further breaking.

The CeO₂-PVP structures were very irregular and heterogeneous, and a high fraction of powder was observed in the spheronizer plate, detached from the main bodies. Despite facilitating the extrusion of the CeO₂-based paste, PVP exhibited too weak interaction with the CeO₂ particles, resulting in a very high attrition of the materials during the spheronization process. From these results, it is inferred that the use of plasticizers is mandatory for the extrusion of the CeO₂ powders. Besides, as observed in this experimental study, the nature of the plasticizer plays a determinant role in the morphology of the CeO₂ catalyst carrier manufactured by extrusion-spheronization.

The main structural and surface characteristics of the shaped CeO_2 carriers are summarized in Table 1. As a reference, the data of the CeO_2 powder obtained by calcination of cerium nitrate is also included. BET surface areas (SA_{BET}) of CeO₂-MC, CeO₂-HEC, and CeO₂-PVP pellets were 60.3, 59.3, and

Table 1. Physical	Properties	of CeO ₂	Powder,	CeO ₂ -Based	
Pellets, and Al ₂ O	3 Pellets				

sample	$\underset{(m^2 \cdot g^{-1})}{\overset{SA_{BET}}{=}}$	pore volume $(cm^3 \cdot g^{-1})$	pore diameter (nm)	skeletal density (g∙cm ⁻³)
CeO ₂ powder	61.9	0.20	12.6	
CeO ₂ -MC	60.3	0.19	11.9	6.1
CeO ₂ -HEC	59.3	0.18	11.0	6.0
CeO ₂ -PVP	58.4	0.17	10.7	6.1
Al_2O_3	203.1	0.67	10.2	3.1

58.4 $\text{m}^2 \cdot \text{g}^{-1}$, respectively, close to the original value of 61.9 $\text{m}^2 \cdot$ g^{-1} of the CeO₂ powder. All isotherms correspond to a type IV (Figure S2), characteristic of mesoporous materials.⁴⁸ To study how the pellet calcination step affected the porosity of the CeO₂ used, a sample of CeO₂ powder was subjected to the same thermal treatment as the green pellets (500 °C, 4 h, 5 $^{\circ}C/min$) and used as a blank, henceforth referred to as CeO₂pt. A decrease in SA_{BET} was observed in the thermally treated CeO_2 powder sample, 57.3 m²·g⁻¹ (Table S2) while in the mesopore range (Figure S3), no significant variations were detected. This loss of surface area is therefore attributed to the collapse of smaller pores caused by the increase in contact areas between the CeO₂ grains induced by temperature. Figure 2 shows the mesopore size distribution of the calcined CeO_2 pellets. The generation of additional mesoporosity resulting from the burnout of the organic plasticizers is evidenced by the shift toward smaller pore sizes observed for the three CeO₂ pellets that is neither present in the CeO₂p-t sample nor in the original CeO₂ powder. The generation of these new mesopores during the calcination step is reflected by the milder decrease in SA_{BET} values of CeO₂-MC, CeO₂-HEC, and CeO₂-PVP in comparison to that of the thermally treated CeO₂ powder used as a blank.

Commercial Al_2O_3 spheres have a mean diameter of 1.1 ± 0.1 mm and a spherical shape. N₂-physisorption measurements revealed a surface area of 203.1 m²·g⁻¹ and a pore volume of 0.67 cm³·g⁻¹, considerably higher values than their CeO₂ counterparts (Figure S4).

The mechanical properties of the materials were evaluated before and after thermal processing by means of a mechanical rupture test (see Table S3). Green bodies exhibited higher mechanical resistances, conferred by the plasticizer, with a remarkable value of 26 N for the CeO₂-HEC. This higher resistance of CeO₂-HEC pellets could however be explained by the higher section of the material, given its dumb-bell geometry. After calcination of the pellets and removal of the organic additives, their mechanical strength dropped to 2-5 N, a considerably weaker resistance to compression with respect to commercial Al₂O₃.

A very relevant difference between CeO_2 - and Al_2O_3 -based carriers is their skeletal density. The tabulated density of bulk ceria is almost two times that of alumina,⁴⁹ which is maintained in the shaped carriers. As it will be discussed below, carrier density has important implications on the amount of catalyst that can be loaded into a given device, and therefore, in the cost-effectiveness of the operation.

Among the plasticizers evaluated in this study, MC provided adequate rheological properties of the CeO_2 -based paste and cohesion of the powders in the green bodies, resulting in well-defined spherical shapes, smooth surfaces, and reproducible results in terms of shape and morphology of the obtained structures. CeO_2 -MC spheres were thus selected to continue with this study.

3.2. Catalyst Characterization

 CeO_2 -MC and Al_2O_3 carriers were further impregnated with Ni, hereinafter referred to as Ni–CeO₂ and Ni–Al₂O₃, whereas Ni–CeO₂–Al₂O₃ was prepared by co-impregnation of Ni and Ce species on Al_2O_3 spheres. This approach allows comparing the use of ceria as a promoter into commercial supports or its use directly as a bulk support.

The composition of the samples and their textural properties are shown in Table 2. Elemental compositions obtained from

Figure 2. BJH Desorption dA/dlog(D) Pore area as a function of pore diameter for the CeO₂ powder, CeO₂p-t, and CeO₂ pellets.

catalyst	Ni (wt %)	CeO ₂ (wt %)	$\stackrel{SA_{BET}}{(m^2 \cdot g^{-1})}$	pore volume (cm ³ ·g ⁻¹)	pore diameter (nm)	Ni size (nm)	CeO ₂ size (nm)	metallic surface area $(m^2 \cdot g^{-1})$
Ni–CeO ₂	10.1 ± 0.2		46.3	0.16	12.3	22.0	11.5	0.40
Ni–CeO ₂ – Al ₂ O ₃	9.7 ± 0.4	10.5 ± 0.3	152.2	0.49	10.1		5.8	0.78
Ni-Al ₂ O ₃	9.6 ± 0.4		172.7	0.58	10.7			1.17

EDX analysis were very close to the nominal ones. The crosssection of the catalysts was analyzed by SEM–EDX, which evidenced an even distribution of the Ni and Ce species within the support structure (see Figures S5–S7). On the other hand, the surface area of the CeO₂-based carriers was reduced by a 23% by the incorporation of Ni and in Al₂O₃-based carriers by a 15% and a 26%, in agreement with the incorporation of Ni, and Ni and Ce species, respectively (Figure S8). All catalysts display similar pore diameter, in the mesorange.

The reducibility of the catalysts was studied by H_2 -TPR measurements, see Figure 3. The H_2 uptake curve of the non-reduced Ni–CeO₂ catalyst displayed two peaks below 250 °C, assigned to the reduction of surface oxygen species, ⁵⁰ and a big

Figure 3. H_2 -TPR profiles of Ni–CeO₂, Ni–CeO₂–Al₂O₃, and Ni–Al₂O₃ catalysts. Dashed lines: H_2 -TPR profiles of non-impregnated CeO₂, CeO₂–Al₂O₃, and Al₂O₃ supports.

peak centered at 290 °C attributed to the reduction of relatively free NiO, weakly interacting with the CeO₂ surface. Reduction of bulk CeO₂ was only observed below 700 °C.⁵¹ The interaction of NiO with Al₂O₃ supports is stronger; in this aspect, reduction of the Ni–Al₂O₃ begins at higher temperatures. NiO species were identified as mildly (400–580 °C) and strongly interacting (600–750 °C) with the Al₂O₃ support.⁵² A small fraction reducing above 700 °C is attributed to the reduction of NiO in a nickel aluminate phase. The influence of CeO₂ when reducing the Ni–CeO₂–Al₂O₃ catalyst is evidenced by the H₂ uptake peak observed between 330 and 420 °C, yet it only represents 18% of the NiO in the sample, and the main reduction of NiO starts above 400 °C.

Barrault et al.⁵³ already reported the influence of CeO₂ and Al₂O₃ supports on the reducibility of NiO species. Here, while in Ni–CeO₂, total reduction was achieved before 400 °C, in Ni–Al₂O₃, the bulk of the process took place between 400 and 700 °C. The possibility to reduce the catalyst at mild temperatures arises as a technological advantage of the CeO₂-based carriers with respect to the Al₂O₃ ones, as most commercial reactors are incapable of heating the hydrogen gas above 325-450 °C.⁵⁴ In this regard, energy efforts during the reduction protocol are substantially lower when using CeO₂-based cartiers.

Figure 4 shows the XRD diffractograms of the reduced catalysts. In the XRD profile of the Ni–CeO₂ catalyst, only the typical diffractions of metallic Ni were observed, and those corresponding to the NiO phase were not detected, which points to a complete reduction of the catalyst at the chosen temperature of 350 °C. The crystallite size of Ni particles was estimated by the Scherrer's equation using the peak at $2\theta = 44.5^{\circ}$, and it was found to be 22.0 nm. The same way, a size of 11.5 nm was estimated for the CeO₂ phase using the peak at $2\theta = 28.6^{\circ}$. In Ni–CeO₂–Al₂O₃ and Ni–Al₂O₃ diffractograms,

Figure 4. XRD spectra of (a) Ni–CeO₂, (b) Ni–CeO₂–Al₂O₃, and (c) Ni–Al₂O₃ catalysts.

reduced at 500 °C, broad peaks matching those of Ni⁰ were also visible. The Scherrer's equation for Ni crystals was not applied in these cases as broad peaks of γ -Al₂O₃ are overlapped. A qualitative comparison of the Ni⁰ peaks suggests that Ni crystals are smaller in Ni–CeO₂–Al₂O₃ and Ni–Al₂O₃ than in their CeO₂-based counterparts, which can be directly related to the lower porosity of CeO₂-based carriers. The crystallite size of the CeO₂ phase in Ni–CeO₂–Al₂O₃ was estimated at 5.8 nm. The co-impregnation of CeO₂ on the Al₂O₃ support resulted in a smaller particle size compared to that of the CeO₂ powder used as support in Ni–CeO₂.

CO-chemisorption analysis of the reduced Ni–CeO₂ catalyst revealed a metallic surface area of 0.40 m²·g⁻¹, whereas those obtained for Ni–CeO₂–Al₂O₃ and Ni–Al₂O₃ were 0.78 and 1.17 m²·g⁻¹, respectively. The higher specific surface area and total pore volume of Al₂O₃ spheres compared to those of CeO₂ allowed for a better accommodation and dispersion of Ni species over the surface of the support. The identification of well-dispersed nickel species is well aligned with the presence of small NiO particles strongly interacting with the Al₂O₃ support, identified by the H₂-TPR measurements.^{55,56} As a whole, physico-chemical characterization of shaped catalysts showed that Al₂O₃ (doped or not by CeO₂) presented larger porosity, more Ni active sites and higher Ni dispersion than its CeO₂ counterparts.

3.3. Catalytic Activity in CO₂ Methanation

The relevance of these novel carriers was evaluated, as a proofof-concept, in the CO₂ methanation reaction. The catalytic performance of Ni–CeO₂, reduced at 350 °C, and Ni–CeO₂– Al₂O₃ and Ni–Al₂O₃ catalysts, reduced at 500 °C, was analyzed in the temperature range of 250–350 °C at 5 bar·g and a constant volume flow of 200 N mL·min⁻¹. For the Ni– CeO₂ catalyst, selectivity to CH₄ was in all cases ≥99%, whereas lower values were obtained for the Ni–CeO₂–Al₂O₃, ≥97%, and the Ni–Al₂O₃ catalysts, ≥85% (see Tables S4–S9).

 $Ni-CeO_2-Al_2O_3$ exhibited moderately higher conversions, as shown in Figure 5. In these circumstances, despite having three times the surface area and twice the metallic surface of its

Figure 5. CO₂ conversion (%) of Ni–CeO₂, Ni–CeO₂–Al₂O₃, and Ni–Al₂O₃ catalysts as a function of reaction temperature at constant flow $F = 200 \text{ NmL}\cdot\text{min}^{-1}$. $P = 5 \text{ bar}\cdot\text{g}$, $m_{\text{cat}} = 0.3 \text{ g}$, and H₂/CO₂ molar ratio = 4.

CeO₂ counterpart, the CeO₂-promoted catalyst was only slightly more active. The higher activity of Ni-CeO₂-Al₂O₃ over $Ni-CeO_2$ is thus due to the higher degree of dispersion of the active metal centers. The promoter effect of CeO₂ is confirmed by the higher conversions of Ni-CeO₂-Al₂O₃ with respect to the Ni-Al2O3 analogue, even with lower metal surface areas. Turnover frequencies (TOF) were calculated based on the CO chemisorption results and considering a CO/ Ni adsorption stoichiometry of 1:1 (see Table S10). At a reaction temperature of 300 °C, the TOF values exhibited by Ni–CeO₂ were 27.4 mol CH₄·min⁻¹·mol⁻¹ Ni, higher than the 22.7 and 12.2 mol CH4·min⁻¹·mol⁻¹ Ni achieved by Ni-CeO₂-Al₂O₃ and Ni-Al₂O₃, respectively. These values evidence that the greater CO₂ conversions obtained by Ni- $CeO_2-Al_2O_3$ account for the higher surface area of the Al_2O_3 support, which enables better dispersion of the active phase.

Taking into consideration that gas hourly space velocity (GHSV) is a key parameter to validate the performance of the catalysts in microchannel fixed-bed reactors,⁵⁴ Figure 6 compares the activity of the three catalysts working at the same GHSV. In this case, the Ni-CeO₂ catalyst showed an outstanding performance compared to the commercial Al₂O₃ spheres, especially at lower temperatures. In the evaluated temperature range of 250-350 °C, the Ni-CeO₂ achieved CO₂ conversions between 69 and 95% when reduced at 350 °C. In most industrial processes, catalyst is loaded in a given reactor volume; and very especially, in advanced microreactors which aim at process intensification.⁵⁷⁻⁵⁹ Accordingly, the implementation of the shaped CeO2-based catalysts arises as a powerful alternative to the conventional Al₂O₃-based ones since, at a given reactor volume, (i) higher CH₄ yields are obtained, (ii) reaction takes place at lower temperatures, and (iii) catalyst can be in situ reduced at milder conditions. The good performance of the CeO₂-based supports in the methanation of CO₂ suggests that their application can be broadened to other reactions of industrial interest in which CeO₂ is commonly used as a reaction promoter, like the Fischer-Tropsch synthesis or the reforming of methane.

Eventually, the stability of the $Ni-CeO_2$ catalyst was evaluated for 40 h at 5 bar g and using a reaction temperature

Figure 6. CO₂ conversion (%) of Ni–CeO₂, Ni–CeO₂–Al₂O₃, and Ni–Al₂O₃ catalysts as a function of reaction temperature at constant GHSV = 27,200 h⁻¹. Reaction conditions: P = 5 bar·g, $m_{cat} = 0.3$ g, and H₂/CO₂ molar ratio = 4.

of 300 °C. Figure 7 shows the evolution of the catalytic activity over the course of this long-term experiment. At the selected

Figure 7. Relative CO_2 conversion of Ni–CeO₂ over a 40 h reaction at 300 °C.

reaction conditions, no activity loss was observed as catalytic activity was kept very close to 1.

In order to understand the higher catalytic activity of CeO_2 catalyst pellets, despite presenting inferior physico-chemical properties in terms of porosity, Ni dispersion, and metal size; the species formed on the surface of the Ni–CeO₂ and Ni–CeO₂–Al₂O₃ catalysts during the methanation reaction were studied by in situ DRIFTS experiments at different temperatures. For simplification purposes, the intense band corresponding to gaseous CO₂ appearing at 2350 cm⁻¹ has been hidden from the spectra. In accordance with the catalytic tests, in the Ni–CeO₂ spectra, Figure 8a, the characteristic vibrations of gas-phase CH₄ (3015 and 1304 cm⁻¹) can be detected at very low temperatures and grow above 200 °C. At high temperatures, bands at 1440 cm⁻¹ and 1340 cm⁻¹

matching those of hydrogen carbonate (HCO₃⁻) and monodentate carbonate $(m-CO_3^{2-})$ species can also be detected. The broad band around 3400 cm⁻¹ and the peak at 1625 cm⁻¹, whose presence becomes evident at higher temperatures, are attributed to the H2O product of the methanation reaction.⁶⁰ To shed some light on the interaction between CO₂ and the CeO₂ support, DRIFTS experiments were recorded on bare CeO2-MC spheres when exposed to the same conditions (see Figure S9). In contrast to the spectra recorded for the Ni-CeO₂ catalyst, where almost no surface species are observed, the adsorption of bicarbonates at low temperatures can be identified on the surface of the CeO2-MC support, followed by the progressive formation of HCO3⁻, m- CO_3^{2-} , and formates (HCOO⁻) at higher temperatures. Interestingly, no methanation is observed in the absence of nickel. Such lack of bands in the 1800-1000 cm⁻¹ range for the Ni-CeO₂ catalyst could indicate (a) that the CeO₂ surface sites are hindered by the impregnated Ni species or (b) a high rate of formation and depletion of the reaction intermediates in the presence of Ni.

A very different interaction with the substrates was observed for the Ni–CeO₂–Al₂O₃ catalyst, as shown in Figure 8b. In comparison to its Ni–CeO₂ counterpart, the formation of methane was detected at higher temperatures, namely 250 °C, thus confirming the lower activity of this catalyst at temperatures below 300 °C. Up to 150 °C, the bands at 3622, 1650, 1437, and 1228 cm⁻¹ suggest the adsorption of HCO₃^{-61,62} as the only surface species. The formation of HCOO⁻ when increasing temperature is evidenced by the bands at 2990, 1590, and 1374 cm⁻¹ gradually appearing from 200 °C up. The presence of formates as the major species at the surface simultaneous to the generation of methane suggests that formates are the reaction intermediate for the Ni–CeO₂– Al₂O₃ catalyst, as proposed by Cárdenas-Arenas et al. for a Ni– Al₂O₃ system.⁶³

In this respect, the contribution of CeO_2 as a promoter was not detected, although large amounts of CeO_2 were introduced in the Ni–CeO₂–Al₂O₃ catalyst. DRIFTS experiments confirmed that when the novel CeO₂-based catalyst was used, methanation took place at lower reaction temperatures than for the CeO₂-promoted Al₂O₃ counterpart, proving the suitability of the developed support for this reaction.

The significance of the Ni-CeO₂ catalyst becomes evident in novel reactor technologies such as small-size reactors that operate by free convection, where the temperature profile varies throughout the reactor.^{64,65} The implementation of the Ni-CeO₂ catalyst at the low temperature reactor zone seems a good strategy to overcome the kinetic limitations of commercial Al₂O₃-based catalysts, thus enhancing the reaction rate and the efficiency of the whole reactor. The novel catalyst showed significantly higher CO2 conversions, especially at lower temperatures, achieving conversions between 69 and 95% in the evaluated temperature range of 250-350 °C when reduced at 350 °C. On the other hand, the conventional Al₂O₃based catalyst showed lower CO₂ conversions, ranging from 11 to 91% in the same temperature range when reduced at 500 °C. The difference in thermal conductivity of the support materials (35 W·m⁻¹·K⁻¹ for bulk γ -Al₂O₃ versus 7–12 W·m⁻¹·K⁻¹ for CeO₂^{66,67}) must however be considered when implemented in industrial reactors and is a critical parameter in the reactor design step. In the case of the methanation reaction, the thermal properties of CeO₂ supports can become

Figure 8. In situ DRIFTS spectra of the methanation of CO₂ over (a) Ni–CeO₂ and (b) Ni–CeO₂–Al₂O₃ catalysts reduced at 350 °C.

an asset when applied in the low temperature zone of reactors that operate in polytropic conditions.

The application of shaped CeO₂-based catalysts in industrial processes, especially in advanced microreactors which aim at process intensification, offers a novel alternative to traditional commercial Al_2O_3 -based supports. At a given reactor volume, the shaped CeO₂-based catalysts exhibit higher CH₄ yields, operate at lower temperatures, and can be in situ reduced at milder conditions. Therefore, the results obtained in this study have significant implications for the development of more efficient catalytic systems for CO₂ methanation. The hybrid nature of the manuscript, combining both general catalyst characterization, in situ DRIFTS, catalytic tests, and the development of a new catalyst, provides a comprehensive understanding of the catalyst's performance and can serve as a valuable reference for researchers and engineers working in the field of CO₂ methanation.

4. CONCLUSIONS

A novel manufacturing process to fabricate mm-sized mesoporous CeO2-based catalyst carriers was established. Mesoporous CeO₂ powders were prepared by calcination, ball milled, mixed with an appropriate plasticizer and water under mild acidic conditions, homogenized, extruded, shaped in spherical form, and finally calcined. From this work, it was determined that the use of a plasticizer was necessary for the shaping process and that, among the plasticizers studied, MC provided well-defined spherical shapes and reproducible batches. The so-obtained CeO2-based carriers were evaluated in the catalytic methanation of CO_2 by the incorporation of Ni as the active phase and compared to the use of CeO₂ as a promoter on commercial Al₂O₃ supports. CeO₂ catalyst carriers showed outstanding performance at equal reactor volume, and importantly, using a moderate reduction protocol. The activity of the CeO₂ pellets as catalytic supports is however constrained by the lower surface areas of CeO₂ regarding that of Al₂O₃-based materials. This point, as well as the mechanical resistance of the materials, has to be addressed in the eventual commercialization phase of the product. The high activities observed were attributed to the better reducibility of Ni over the CeO₂ spheres and the different reaction mechanism that allowed activating the production of CH₄ at lower temperatures. On account of the

results obtained, the CeO₂ spheres fabricated in this study appear as promising materials for application in emerging reactor technologies such as advanced compact reactors and free-convection devices, in which the activity of commercial Al_2O_3 -based catalysts is limited by catalyst volume and the high temperatures required for their activation. The activity of these new materials is not restricted to the methanation of CO₂ and their application can be extended to reactions like Fischer– Tropsch, the synthesis of methanol, or methane reforming by impregnation of the appropriate active phase.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsaenm.2c00214.

Bulk density of the catalysts, viscosity of plasticizers, N_2 physisorption isotherms, mechanical rupture tests, EDX elemental mapping of the catalysts cross-sections, TOF values of the catalysts in the CO₂ methanation reaction, and DRIFTS spectrum of the methanation of CO₂ over a bare CeO₂ support (PDF)

AUTHOR INFORMATION

Corresponding Author

Elena Martín Morales – Catalonia Institute for Energy Research (IREC), 08930 Sant Adrià de Besòs, Spain; orcid.org/0000-0002-1363-7946; Email: emartin@ irec.cat

Authors

- Andreína Alarcón Catalonia Institute for Energy Research (IREC), 08930 Sant Adrià de Besòs, Spain; Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Ciencias de la Tierra, 090101 Guayaquil, Ecuador
- Martí Biset-Peiró Catalonia Institute for Energy Research (IREC), 08930 Sant Adrià de Besòs, Spain; Occid.org/ 0000-0002-1255-7733
- Elena Xuriguera Facultat de Química, Universitat de Barcelona, 08028 Barcelona, Spain
- Jordi Guilera Catalonia Institute for Energy Research (IREC), 08930 Sant Adrià de Besòs, Spain; Facultat de

Química, Universitat de Barcelona, 08028 Barcelona, Spain; o orcid.org/0000-0002-7184-6404

Complete contact information is available at: https://pubs.acs.org/10.1021/acsaenm.2c00214

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financed by the project TED2021-132365B-I00, funded by MCIN/AEI/10.13039/501100011033 and by the European Union "NextGenerationEU"/PRTR. The authors also acknowledge the financial support of the project 2019PROD00091, co-financed by the European Union through the European Regional Development Fund (ERDF) and supported by the University and Research Secretary of the Business Department and Knowledge of the Generalitat de Catalunya. Authors kindly thank Dr. Albert Llorente for the assistance in the characterization of materials.

REFERENCES

(1) Trovarelli, A.; Deleitenburg, C.; Dolcetti, G.; Lorca, J. L. CO_2 Methanation Under Transient and Steady-State Conditions over Rh/ CeO_2 and CeO_2 -Promoted Rh/SiO₂: The Role of Surface and Bulk Ceria. *J. Catal.* **1995**, *151*, 111–124.

(2) Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and Catalytic Applications of CeO₂-Based Materials. *Chem. Rev.* **2016**, *116*, 5987–6041.

(3) Mullins, D. R. The Surface Chemistry of Cerium Oxide. Surf. Sci. Rep. 2015, 70, 42–85.

(4) Martínez-Arias, A.; Gamarra, D.; Fernández-García, M.; Hornés, A.; Bera, P.; Koppány, Z.; Schay, Z. Redox-Catalytic Correlations in Oxidised Copper-Ceria CO-PROX Catalysts. *Catal. Today* **2009**, *143*, 211–217.

(5) Furler, P.; Scheffe, J. R.; Steinfeld, A. Syngas Production by Simultaneous Splitting of H_2O and CO_2 via Ceria Redox Reactions in a High-Temperature Solar Reactor. *Energy Env. Sci* **2012**, *5*, 6098–6103.

(6) Trovarelli, A.; Llorca, J. Ceria Catalysts at Nanoscale: How Do Crystal Shapes Shape Catalysis? *ACS Catal.* **2017**, *7*, 4716–4735.

(7) Bunluesin, T.; Gorte, R. J.; Graham, G. W. Studies of the Water-Gas-Shift Reaction on Ceria-Supported Pt, Pd, and Rh: Implications for Oxygen-Storage Properties. *Appl. Catal. B Environ.* **1998**, *15*, 107–114.

(8) Colussi, S.; Gayen, A.; Farnesi Camellone, M.; Boaro, M.; Llorca, J.; Fabris, S.; Trovarelli, A. Nanofaceted Pd-O Sites in Pd-Ce Surface Superstructures: Enhanced Activity in Catalytic Combustion of Methane. *Angew. Chem., Int. Ed.* **2009**, *48*, 8481–8484.

(9) Lucentini, I.; Casanovas, A.; Llorca, J. Catalytic Ammonia Decomposition for Hydrogen Production on Ni, Ru and Ni Ru Supported on CeO₂. *Int. J. Hydrog. Energy* **2019**, *44*, 12693–12707.
(10) Adijanto, L.; Sampath, A.; Yu, A. S.; Cargnello, M.; Fornasiero,

P.; Gorte, R. J.; Vohs, J. M. Synthesis and Stability of $Pd@CeO_2$ Core–Shell Catalyst Films in Solid Oxide Fuel Cell Anodes. ACS Catal. **2013**, 3, 1801–1809.

(11) Monte, R. D.; Kašpar, J. On the Role of Oxygen Storage in Three-Way Catalysis. *Top. Catal.* **2004**, *28*, 47–57.

(12) Tada, S.; Shimizu, T.; Kameyama, H.; Haneda, T.; Kikuchi, R. Ni/CeO₂ Catalysts with High CO_2 Methanation Activity and High CH_4 Selectivity at Low Temperatures. *Int. J. Hydrog. Energy* **2012**, *37*, 5527–5531.

(13) Boaro, M.; Colussi, S.; Trovarelli, A. Ceria-Based Materials in Hydrogenation and Reforming Reactions for CO_2 Valorization. *Front. Chem.* **2019**, *7*, 28.

(14) Su, X.; Xu, J.; Liang, B.; Duan, H.; Hou, B.; Huang, Y. Catalytic Carbon Dioxide Hydrogenation to Methane: A Review of Recent Studies. *J. Energy Chem.* **2016**, *25*, 553–565.

(15) He, L.; Fan, Y.; Bellettre, J.; Yue, J.; Luo, L. A Review on Catalytic Methane Combustion at Low Temperatures: Catalysts, Mechanisms, Reaction Conditions and Reactor Designs. *Renew. Sustain. Energy Rev.* **2020**, *119*, 109589.

(16) Guilera, J.; del Valle, J.; Alarcón, A.; Díaz, J. A.; Andreu, T. Metal-Oxide Promoted Ni/Al₂O₃ as CO₂ Methanation Micro-Size Catalysts. J. CO₂ Util. **2019**, 30, 11–17.

(17) Mitchell, S.; Michels, N.-L.; Pérez-Ramírez, J. From Powder to Technical Body: The Undervalued Science of Catalyst Scale Up. *Chem. Soc. Rev.* 2013, 42, 6094.

(18) Jong, K. P., Ed. In Synthesis of Solid Catalysts; Wiley-VCH: Weinheim, 2009.

(19) Laguna, O. H.; Domínguez, M. I.; Centeno, M. A.; Odriozola, J.
A. Chapter 4 - Catalysts on Metallic Surfaces: Monoliths and Microreactors. In *New Materials for Catalytic Applications*; Parvulescu,
V. I., Kemnitz, E., Eds.; Elsevier: Amsterdam, 2016, pp 81–120.
DOI: 10.1016/B978-0-444-63587-7.00004-4.

(20) Bogdan, E.; Michorczyk, P. 3D Printing in Heterogeneous Catalysis—The State of the Art. *Materials* **2020**, *13*, 4534.

(21) Michorczyk, P.; Hędrzak, E.; Węgrzyniak, A. Preparation of Monolithic Catalysts Using 3D Printed Templates for Oxidative Coupling of Methane. J. Mater. Chem. A **2016**, *4*, 18753–18756.

(22) Whiting, G. T.; Chung, S.-H.; Stosic, D.; Chowdhury, A. D.; van der Wal, L. I.; Fu, D.; Zecevic, J.; Travert, A.; Houben, K.; Baldus, M.; Weckhuysen, B. M. Multiscale Mechanistic Insights of Shaped Catalyst Body Formulations and Their Impact on Catalytic Properties. *ACS Catal.* **2019**, *9*, 4792–4803.

(23) Zhao, X.; Walker, D. M.; Maiti, D.; Petrov, A. D.; Kastelic, M.; Joseph, B.; Kuhn, J. N. NiMg/Ceria-Zirconia Cylindrical Pellet Catalysts for Tri-Reforming of Surrogate Biogas. *Ind. Eng. Chem. Res.* **2018**, *57*, 845–855.

(24) Zhao, X.; Kuhn, J. N.; Walker, D. M.; Joseph, B. Mixed Metal Oxide Extrudate Catalyst. U. S. Patent 10,618,042 B1 , 2020.

(25) Beheshti, M. S.; Behzad, M.; Ahmadpour, J.; Arabi, H. Modification of H-[B]-ZSM-5 Zeolite for Methanol to Propylene (MTP) Conversion: Investigation of Extrusion and Steaming Treatments on Physicochemical Characteristics and Catalytic Performance. *Microporous Mesoporous Mater.* **2020**, *291*, 109699.

(26) Mohr, G. D.; Verduijn, J. P. Hydrocarbon conversion using a zeolite bound zeolite catalyst, U. S. Patent 6,039,864 A , 2000.

(27) Hernando, H.; Ochoa-Hernández, C.; Shamzhy, M.; Moreno, I.; Fermoso, J.; Pizarro, P.; Coronado, J. M.; Čejka, J.; Serrano, D. P. The Crucial Role of Clay Binders in the Performance of ZSM-5 Based Materials for Biomass Catalytic Pyrolysis. *Catal. Sci. Technol.* **2019**, *9*, 789–802.

(28) Zhao, B.; Zhang, Y.; Dou, X.; Wu, X.; Yang, M. Granulation of Fe–Al–Ce Trimetal Hydroxide as a Fluoride Adsorbent Using the Extrusion Method. *Chem. Eng. J.* **2012**, *185–186*, 211–218.

(29) Devyatkov, S. Yu.; Zinnurova, A. Al.; Aho, A.; Kronlund, D.; Peltonen, J.; Kuzichkin, N. V.; Lisitsyn, N. V.; Murzin, D. Yu. Shaping of Sulfated Zirconia Catalysts by Extrusion: Understanding the Role of Binders. *Ind. Eng. Chem. Res.* **2016**, *55*, 6595–6606.

(30) Jasra, R. V.; Tyagi, B.; Badheka, Y. M.; Choudary, V. N.; Bhat, T. S. G. Effect of Clay Binder on Sorption and Catalytic Properties of Zeolite Pellets. *Ind. Eng. Chem. Res.* **2003**, *42*, 3263–3272.

(31) Velthoen, M. E. Z.; Lucini Paioni, A.; Teune, I. E.; Baldus, M.; Weckhuysen, B. M. Matrix Effects in a Fluid Catalytic Cracking Catalyst Particle: Influence on Structure, Acidity, and Accessibility. *Chem. – Eur. J.* **2020**, *26*, 11995–12009.

(32) Lari, G. M.; de Moura, A. B. L.; Weimann, L.; Mitchell, S.; Mondelli, C.; Pérez-Ramírez, J.; Pérez-Ramírez, J. Design of a Technical Mg–Al Mixed Oxide Catalyst for the Continuous Manufacture of Glycerol Carbonate. *J. Mater. Chem. A* 2017, *5*, 16200–16211.

(33) Whiting, G. T.; Meirer, F.; Mertens, M. M.; Bons, A.-J.; Weiss, B. M.; Stevens, P. A.; de Smit, E.; Weckhuysen, B. M. Binder Effects

in SiO₂- and Al₂O₃-Bound Zeolite ZSM-5-Based Extrudates as Studied by Microspectroscopy. *ChemCatChem* **2015**, *7*, 1312–1321. (34) Luna-Murillo, B.; Pala, M.; Paioni, A. L.; Baldus, M.; Ronsse, F.; Prins, W.; Bruijnincx, P. C. A.; Weckhuysen, B. M. Catalytic Fast Pyrolysis of Biomass: Catalyst Characterization Reveals the Feed-

Dependent Deactivation of a Technical ZSM-5-Based Catalyst. ACS Sustain. Chem. Eng. 2021, 9, 291–304.

(35) Maca, K.; Trunec, M.; Cihlar, J. Injection Moulding and Sintering of Ceria Ceramics. *Ceram. Int.* 2002, 28, 337–344.

(36) Guesnet, L.; Bassat, J. M.; Grenier, J. C.; Chartier, T.; Geffroy, P.-M. Shaping of Ceria-Based Single Solid Oxide Cells Combining Tape-Casting, Screen-Printing and Infiltration. *J. Eur. Ceram. Soc.* **2020**, *40*, 5662–5669.

(37) Vendrell, X.; Kubyshin, Y.; Mestres, L.; Llorca, J. CO Oxidation on Ceria Studied by Electrochemical Impedance Spectroscopy. *ChemCatChem* **2020**, *12*, 5926–5931.

(38) Zyryanova, M. M.; Snytnikov, P. V.; Amosov, Yu. I.; Kuzmin, V. A.; Kirillov, V. A.; Sobyanin, V. A. Design, Scale-out, and Operation of a Preferential CO Methanation Reactor with a Nickel–Ceria Catalyst. *Chem. Eng. J.* **2011**, *176*–*177*, 106–113.

(39) Blanchard, G.; Quemere, E. Composition Based on Cerium Oxide or on Cerium and Zirconium Oxides, in the Extruded Form, Process for the Preparation Thereof and Use Thereof as Catalyst. U. S. Patent 6,506,705 B2, 2003.

(40) Lucentini, I.; Serrano, I.; Soler, L.; Divins, N. J.; Llorca, J. Ammonia Decomposition over 3D-Printed CeO_2 Structures Loaded with Ni. *Appl. Catal. Gen.* **2020**, *591*, 117382.

(41) Benbow, J. J.; Oxley, E. W.; Bridgwater, J. The extrusion mechanics of pastes – the influence of paste formulation on extrusion parameters. *Chem. Eng. Sci.* **1987**, *42*, 2151–2162.

(42) Händle, F. Extrusion in Ceramics; Springer, 2007.

(43) Porta, A.; Falbo, L.; Visconti, C. G.; Lietti, L.; Bassano, C.; Deiana, P. Synthesis of Ru-Based Catalysts for CO_2 Methanation and Experimental Assessment of Intraporous Transport Limitations. *Catal. Today* **2020**, 343, 38–47.

(44) Middelkoop, V.; Vamvakeros, A.; de Wit, D.; Jacques, S. D. M.; Danaci, S.; Jacquot, C.; de Vos, Y.; Matras, D.; Price, S. W. T.; Beale, A. M. 3D Printed Ni/Al₂O₃ Based Catalysts for CO₂ Methanation - a Comparative and Operando XRD-CT Study. *J.* CO_2 *Util.* **2019**, 33, 478–487.

(45) Cimino, S.; Russo, R.; Lisi, L. Insights into the Cyclic CO_2 Capture and Catalytic Methanation over Highly Performing Li-Ru/ Al₂O₃ Dual Function Materials. *Chem. Eng. J.* **2022**, 428, 131275.

(46) Alarcón, A.; Guilera, J.; Díaz, J. A.; Andreu, T. Optimization of Nickel and Ceria Catalyst Content for Synthetic Natural Gas Production through CO_2 Methanation. *Fuel Process. Technol.* **2019**, 193, 114–122.

(47) Lau, C. L. S.; Yu, Q.; Lister, V. Y.; Rough, S. L.; Wilson, D. I.; Zhang, M. The Evolution of Pellet Size and Shape during Spheronisation of an Extruded Microcrystalline Cellulose Paste. *Chem. Eng. Res. Des.* **2014**, *92*, 2413–2424.

(48) Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Repoting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. *Pure Appl. Chem.* **1985**, 57, 603-619.

(49) Patnaik, P.. Handbook of Inorganic Chemicals, 1 edition.; McGraw-Hill Professional, 2002.

(50) Pino, L.; Vita, A.; Cipitì, F.; Laganà, M.; Recupero, V. Catalytic Performance of $Ce_{1-x}Ni_xO_2$ Catalysts for Propane Oxidative Steam Reforming. *Catal. Lett.* **2008**, *122*, 121–130.

(51) Trovarelli, A. Catalytic Properties of Ceria and CeO_2 -Containing Materials. *Catal. Rev.* **1996**, *38*, 439–520.

(52) Gao, J.; Jia, C.; Li, J.; Zhang, M.; Gu, F.; Xu, G.; Zhong, Z.; Su, F. Ni/Al₂O₃ Catalysts for CO Methanation: Effect of Al₂O₃ Supports Calcined at Different Temperatures. *J. Energy Chem.* **2013**, *22*, 919–927.

(53) Barrault, J.; Alouche, A.; Paul-Boncour, V.; Hilaire, L.; Percheron-Guegan, A. Influence of the Support on the Catalytic Properties of Nickel/Ceria in Carbon Monoxide and Benzene Hydrogenation. *Appl. Catal.* **1989**, *46*, 269–279.

(54) Guilera, J.; Boeltken, T.; Timm, F.; Mallol, I.; Alarcón, A.; Andreu, T. Pushing the Limits of SNG Process Intensification: High GHSV Operation at Pilot Scale. ACS Sustain. Chem. Eng. **2020**, *8*, 8409–8418.

(55) Velu, S.; Gangwal, S. Synthesis of Alumina Supported Nickel Nanoparticle Catalysts and Evaluation of Nickel Metal Dispersions by Temperature Programmed Desorption. *Solid State Ionics* **2006**, *177*, 803–811.

(56) Zhang, Z.; Wei, T.; Chen, G.; Li, C.; Dong, D.; Wu, W.; Liu, Q.; Hu, X. Understanding Correlation of the Interaction between Nickel and Alumina with the Catalytic Behaviors in Steam Reforming and Methanation. *Fuel* **2019**, *250*, 176–193.

(57) Bengaouer, A.; Ducamp, J.; Champon, I.; Try, R. Performance Evaluation of Fixed-Bed, Millistructured, and Metallic Foam Reactor Channels for CO ₂ Methanation. *Can. J. Chem. Eng.* **2018**, *96*, 1937–1945.

(58) Guilera, J.; Andreu, T.; Basset, N.; Boeltken, T.; Timm, F.; Mallol, I.; Morante, J. R. Synthetic Natural Gas Production from Biogas in a Waste Water Treatment Plant. *Renewable Energy* **2020**, *146*, 1301–1308.

(59) Farsi, S.; Liang, S.; Pfeifer, P.; Dittmeyer, R. Application of Evaporation Cooling in a Microstructured Packed Bed Reactor for Decentralized CO₂ Methanation. *Int. J. Hydrog. Energy* **2021**, *46*, 19971–19987.

(60) Kobl, K.; Angelo, L.; Zimmermann, Y.; Sall, S.; Parkhomenko, K.; Roger, A.-C. In Situ Infrared Study of Formate Reactivity on Water–Gas Shift and Methanol Synthesis Catalysts. *Comptes Rendus Chim* **2015**, *18*, 302–314.

(61) Pan, Q.; Peng, J.; Sun, T.; Wang, S.; Wang, S. Insight into the Reaction Route of CO_2 Methanation: Promotion Effect of Medium Basic Sites. *Catal. Commun.* **2014**, 45, 74–78.

(62) Vayssilov, G. N.; Mihaylov, M.; Petkov, P. St.; Hadjiivanov, K. I.; Neyman, K. M. Reassignment of the Vibrational Spectra of Carbonates, Formates, and Related Surface Species on Ceria: A Combined Density Functional and Infrared Spectroscopy Investigation. J. Phys. Chem. C 2011, 115, 23435–23454.

(63) Cárdenas-Arenas, A.; Quindimil, A.; Davó-Quiñonero, A.; Bailón-García, E.; Lozano-Castelló, D.; De-La-Torre, U.; Pereda-Ayo, B.; González-Marcos, J. A.; González-Velasco, J. R.; Bueno-López, A. Isotopic and in Situ DRIFTS Study of the CO₂ Methanation Mechanism Using Ni/CeO₂ and Ni/Al₂O₃ Catalysts. *Appl. Catal. B Environ.* **2020**, *265*, 118538.

(64) Alarcón, A.; Guilera, J.; Andreu, T. An Insight into the Heat-Management for the CO_2 Methanation Based on Free Convection. *Fuel Process. Technol.* **2021**, 213, 106666.

(65) Moioli, E.; Gallandat, N.; Züttel, A. Model Based Determination of the Optimal Reactor Concept for Sabatier Reaction in Small-Scale Applications over Ru/Al₂O₃. *Chem. Eng. J.* **2019**, *375*, 121954.

(66) Vasheghani, M.; Marzbanrad, E.; Zamani, C.; Aminy, M.; Raissi, B.; Ebadzadeh, T.; Barzegar-Bafrooei, H. Effect of Al_2O_3 Phases on the Enhancement of Thermal Conductivity and Viscosity of Nanofluids in Engine Oil. *Heat Mass Transfer* **2011**, *47*, 1401– 1405.

(67) Suzuki, K.; Kato, M.; Sunaoshi, T.; Uno, H.; Carvajal-Nunez, U.; Nelson, A. T.; McClellan, K. J. Thermal and Mechanical Properties of CeO₂. J. Am. Ceram. Soc. **2019**, 102, 1994–2008.