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The tumor microenvironment (TME) is composed of a heterogenous population of cells
that exist alongside the extracellular matrix and soluble components. These components
can shape an environment that is conducive to tumor growth and metastatic spread. It is
well-established that stromal cancer-associated fibroblasts (CAFs) in the TME play a
pivotal role in creating and maintaining a growth-permissive environment for tumor cells. A
growing body of work has uncovered that tumor cells recruit and educate CAFs to
remodel the TME, however, the mechanisms by which this occurs remain incompletely
understood. Recent studies suggest that the signal transducer and activator of
transcription 3 (STAT3) is a key transcription factor that regulates the function of CAFs,
and their crosstalk with tumor and immune cells within the TME. CAF-intrinsic STAT3
activity within the TME correlates with tumor progression, immune suppression and
eventually the establishment of metastases. In this review, we will focus on the roles of
STAT3 in regulating CAF function and their crosstalk with other cells constituting the TME
and discuss the utility of targeting STAT3 within the TME for therapeutic benefit.

Keywords: STAT (signal transducer and activator of transcription), tumor development, cancer associated
fibroblasts (CAF), cytokines, tumor microenvironment
THE STAT3 SIGNALING PATHWAY

Signal transducer and activator of transcription 3 (STAT3) was originally coined as acute-phase
response factor (APRF) when it was first identified as a DNA-binding protein downstream of the
interleukin (IL)-6 cytokine (1, 2). STAT3 shares structural similarities with the other 6 members of
the STAT proteins containing an amino terminus, a coiled-coil domain, a DNA-binding domain, a
SH2-domain, and a transcription activation domain. Among the major cytokines that act upstream
of STAT3 are members of the IL-6 family. Canonical STAT3 signaling involves glycoprotein 130
(GP130) receptor homodimerizing with ligand-bound receptor leading to the recruitment of Janus
kinases (JAKs) to facilitate STAT3 phosphorylation (Figure 1). This signaling cascade is negatively
regulated by suppressor of cytokine signaling 3 (SOCS3) which binds simultaneously to JAK and
Y757 on GP130 (3). Such binding non-competitively inhibits JAK activity independently of ATP.
Indeed, mice containing a knock-in phenylalanine mutation at Y759 (equivalent to Y757 in
humans) disrupting SOCS3-binding results in the spontaneous development of gastric adenomas
in a cytokine-dependent manner, highlighting the oncogenic potential of dysregulated STAT3
activity (4). Adding to another layer of negative regulation, GP130 is ubiquitinated by the c-Cbl E3
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ligase in a ligand-dependent manner resulting in its lysosomal
degradation (5). Upon STAT3 Y705 phosphorylation, STAT3
forms homodimers or STAT3:STAT1 heterodimers, enabling its
active nuclear translocation and binding to a palindromic DNA
consensus sequence. While Y705 phosphorylation necessitates
the transcriptional activities of STAT3, further S727
phosphorylation potentiates maximal transcriptional activation
(6). In addition to its prototypical roles in transcription, STAT3
Frontiers in Immunology | www.frontiersin.org 2
can regulate metabolism following S727 phosphorylation where
it translocates to the mitochondria and modulates electron
transport and reactive oxygen species production (7).

STAT3 signaling and its transcriptional outputs are integral
to normal biological processes and maintenance of homeostasis
as Stat3-deficient mice are embryonic lethal (8). STAT3 co-
ordinates many of the tightly regulated processes that underpin
the wound healing response to restore epithelial integrity
FIGURE 1 | Canonical and non-canonical STAT3 signaling. Binding of ligands such as cytokines and growth factors to their cognate receptors stimulate receptor
dimerization and recruitment of Janus kinase (JAK). JAK phosphorylates the cytoplasmic tails of the receptor to create a docking site for STAT3. In the canonical
pathway, STAT3 is phosphorylated at the Tyr705 residue and form homodimers or STAT3:STAT1 heterodimers that modulate gene expression in the nucleus.
Maximal transcriptional activation can also be induced by the non-canonical activation of STAT3 via phosphorylation at the Ser727 residue. p-Ser727 STAT3 can then
translocate to the mitochondria to regulate the electron transport chain (ETC) and production of reactive oxygen species (ROS).
November 2021 | Volume 12 | Article 767939
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following barrier disruption and dysfunction (9). Yet deviation of
these processes is frequently observed in solid malignancies and
is in part attributed to aberrant STAT3 activity in stromal
cancer-associated fibroblasts. Fibroblasts are critical mediators
of all stages of the wound healing response by virtue of their
ability to produce, remodel and contract extracellular matrix
(ECM), in addition to the production of growth factors and their
pro-angiogenic properties (10). However, when unchecked
STAT3 can exploit the wound healing characteristics of
cancer-associated fibroblasts (CAFs) to sculpt a tumor milieu
that is conducive to fibrosis, cancer cell migration and
dissemination, while limiting immune cell-infiltration and
responsiveness to therapy.
CAFS IN TUMOR DEVELOPMENT

During the wound healing and regenerative response, normal
fibroblasts play a critical role in maintaining tissue homeostasis
after injury, where they trans-differentiate into a subtype of
fibroblasts called myofibroblasts which induce force-mediated
contractility and the deposition of ECM components, such as
collagen I–IV, XVIII, proteoglycans, glycosaminoglycans
(GAGs) and hyaluronic acid (HA) (10, 11). Myofibroblasts can
break down fibrin clots and remodel collagens to eventually
promote wound closure. In addition, activated fibroblasts in a
wound healing setting recruit immune cells to the site of injury to
fight any infections and promote proliferation (12).

For a long time, cancer progression was thought to be
primarily driven by cells that acquire oncogenic mutations
leading to their transformation into malignant cells. However,
it is now appreciated that non-malignant cells within the tumor
microenvironment (TME) play equally important roles in
driving the development and progression of tumors (13, 14).
Owing to the complexity and heterogenous nature of tumors,
different approaches have been employed to target various facets
of the TME in an effort to modulate the extracellular matrix
(ECM), cytokines that drive chronic inflammation, hypoxia and
angiogenesis (reviewed in (14–20)). In addition, other strategies
home into targeting the cellular components of the TME
including stromal and immune cells. Blocking CAF activity
and subsequently the recruitment and differentiation of tumor-
promoting immune cells such as macrophages and myeloid-
derived suppressor cells (MDSCs) correlate with better patient
prognosis in many solid malignancies including pancreatic,
colorectal, gastric, ovarian, prostate, and squamous cell
carcinoma cancers [reviewed in (21–24)]. These seminal
findings highlight the importance of targeting different
compartments of the TME in combination with conventional
therapies for best possible patient treatment outcome.

In the context of cancer, activated fibroblasts transform into
CAFs where their functions are exploited by tumor cells within
the TME. It is unclear if the transformation of normal fibroblasts
into CAFs is due to the acquisition of genetic mutations.
However, it is well-established that inflammatory cytokines
Frontiers in Immunology | www.frontiersin.org 3
(e.g. IL-1, IL-4, IL-5, IL6, IL-8, IL-10, IL-11 and IL-17) (12),
vitamin A and D deficiency (25, 26), stromal stiffness and
mechanical forces exerted on normal fibroblasts in the TME,
are all vital factors in driving this transformation (27, 28). CAFs
are a key cellular component in the TME and play an essential
role in promoting favorable conditions for tumor cell survival
and proliferation (23). CAFs remodel the TME through excessive
production and transforming of ECM components, production
of cytokines and growth factors, which together impact normal
resident and tumor cells. CAFs are typically categorized into two
major classes based on their functions. Fibroblasts which induce
high levels of ECM remodeling and participate in fibrotic tissue
formation are termed myofibroblastic CAFs (myoCAFs) (29).
Immunomodulatory fibroblasts are called inflammatory CAFs
(also known as iCAFs) and produce an array of inflammatory
cytokines including those from the IL-6 family of cytokines (e.g.,
IL-6 and IL-11), which are key upstream effectors for STAT3
signaling (30). MyoCAFs are characterized by high expression of
alpha smooth muscle actin (aSMA), fibroblasts activation
protein (FAP) and low IL-6 expression, while iCAFs typically
harbor low levels of aSMA and high IL-6 expression (30).
Although myoCAFs and iCAFs are the most studied subtypes
of CAFs, new emerging subtypes have been reported, including
antigen presenting CAFs (apCAFs) and vascular CAFs (vCAFs)
(23, 31–33). apCAFs are characterized by their surface
expression of major histocompatibility complex II (MHC-II),
which has been shown to have immuno-suppressive effects.
vCAFs reside in the microvascular regions and are
characterized by the expression of melanoma adhesion
molecule (MCAM; also called CD146) and IL-6. vCAFs
promote human intrahepatic cholangiocarcinoma through IL-
6/IL-6R crosstalk with tumor cells (34).

Recently, a wealth of evidence underscores the ability for
CAFs to modulate immune responses within the TME [reviewed
in (35, 36)]. Despite the general consensus that CAFs confer pro-
tumorigenic effects, emerging literature alludes to an anti-tumor
role for CAFs albeit the molecular mechanisms underpinning
this process remain unclear (37, 38). In this review we will focus
on the pro-tumorigenic effects of CAFs and how the
transcription factor STAT3 modulates the tumor-promoting
activities of CAFs in the TME. Emerging evidence points
towards a role for STAT3 in modulating CAF activities in the
TME (39–44). Here, we will focus on how STAT3 signaling
regulates CAF function, and to what extent does this play a role
in ECM remodeling and mediating intercellular crosstalk within
the TME to create favorable conditions for tumor progression
and subsequent metastasis.
EFFECTS OF STAT3 SIGNALING ON CAFS
AND ECM REMODELING

In normal tissue, remodeling of the ECM is in large dependent
on resident fibroblasts which maintain the structural integrity of
the ECM via the secretion of ECM components, including
November 2021 | Volume 12 | Article 767939
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collagens, tenascin, periostin and proteases (23). Collectively,
these components provide the ECM with its unique biochemical
and biomechanical properties, which subsequently modulate the
behavior of other tissue resident cells (11, 45).

Intrinsic STAT3 activity in CAFs has emerged as a
mechanism by which CAFs support tumor progression
(Figure 2). It has been shown that activation of STAT3 in
CAFs promotes the production of pro-tumorigenic factors
including IL-6, VEGF and TGF-b, suggesting that STAT3
activation is a key feature of activated CAFs (46, 47).
Supporting this hypothesis, high STAT3 activity in CAFs
correlates with poor patient prognosis in colorectal cancer and
inactivation of STAT3 reduces tumor burden in a murine model
of inflammation-associated colon cancer (43). It remains to be
determined if STAT3 activation is a shared feature in activated
CAFs across all cancers. Activated CAFs undergo epigenetic
modifications which trigger uncontrolled actomyosin
contractility leading to stromal stiffness. Long-term exposure to
leukemia inhibitory factor (LIF, member of IL-6 cytokine family)
induces STAT3 acetylation which leads to an epigenetic loss of
the Src homology region 2 domain-containing phosphatase 1
(SHP-1) (48). SHP-1 is a tumor suppressor, and its loss of
expression is frequently observed in many cancers including
hepatocellular carcinoma, leukemia, and lymphoma (49–51).
Importantly, SHP-1 is a negative regulator of JAK1/STAT3
signaling, and its loss induces constitutive activation of JAK1/
STAT3 via GP130, in turn, up-regulating actomyosin
contractility via phosphorylation of the regulatory myosin
light-chain 2 (MLC2) through the RHO-ROCK pathway (48,
52). Actomyosin promotes force-mediated matrix remodeling,
which is characterized by excessive deposition of ECM
components such as collagen and fibronectin, which promotes
stromal stiffness and fibrosis (53, 54).

Interestingly, force-mediated matrix remodeling induces
mechanical stress which in turn potentiates a positive feedback
loop for CAF activation, leading to an increase in stromal
stiffness, irreversible matrix cross-linking and excessive fibrotic
reaction, also known as desmoplasia. Among other solid
malignancies, desmoplasia is a hallmark of pancreatic cancer
and plays an integral role in blocking immune cell infiltration
and mediating chemoresistance (55). Although, there is no
evidence for a direct link between STAT3 activation and
fibrosis in cancer models , i t has been shown that
pharmacological inhibition of STAT3 reduces and lowers the
incidence of fibrotic tissue formation in a mouse model of colitis
(56). Moreover, Papaioannou and colleagues showed that STAT3
binds to the enhancer of the collagen type 1a2 subunit, which
encodes the COL1A2 gene. COLA12 is essential for collagen
deposition by human lung myofibroblasts (40), which highlights
the role of STAT3 in collagen deposition. Indeed, the same
authors showed that pharmacological inhibition STAT3 lowered
the ability of myofibroblasts to produce collagen I and remodel
the ECM. Furthermore, IL-11, an upstream effector of STAT3
and member of the IL-6 family of cytokines, was reported to
induce fibrosis in different fibrotic diseases including, idiopathic
pulmonary fibrosis and systematic sclerosis (57, 58). Therefore, it
Frontiers in Immunology | www.frontiersin.org 4
would not be surprising if STAT3 plays a role in promoting
fibrosis in cancer, however, this warrants further investigation.

CAFs produce matrix proteases which remodel the ECM,
forming tracks within the TME to allow tumor cell migration
and invasion. In addition, CAFs also promote angiogenesis and
neovascularization to allow tumor cell dissemination from the
primary tumor site (59). Although CAFs can promote
angiogenesis via expressing vascular endothelial growth factor
(VEGF), CAFs can also induce angiogenesis by secreting IL-11,
subsequently leading to STAT3 activation in human umbilical
vein endothelial cells in a VEGF-independent manner (60).
Furthermore, CAFs can promote epithelial-to-mesenchymal
transition in lung cancer cells through induction of matrix
proteases (MMP-2, MMP-9) and VEGF in response to IL-6/
STAT3 signaling, which subsequently leads to ECM remodeling
and angiogenesis (41). IL-6 neutralizing antibodies inhibit the
expression of MMP-2, MMP-9 and VEGF which indicates the
importance of IL-6/STAT3 signaling for their expression. Thus,
strong evidence suggests STAT3 activity is a key modulator of
CAF function and their ability to produce and remodel the ECM
which helps sculpt an environment permissible to tumor growth
and spread.
STAT3 MEDIATES CROSSTALK BETWEEN
CAFS AND TUMOR CELLS

Crosstalk between CAFs and tumor cells is essential for tumor
progression which is in part dictated by intrinsic STAT3 activity
in CAFs (Figure 3). CAFs can promote the proliferation and
survival of tumor cells via the release of growth factors,
cytokines, and exosomes (12, 61). Moreover, activated CAFs
can promote the formation of fibrotic tissue, which acts as a
physical barrier against chemotherapy and immune cell
infiltration. Fibrotic tissue is also stiff in nature and can lead to
the collapse of blood vessels creating a low glucose and nutrient
environment for tumor cells, which is a prominent feature in
pancreatic cancers (55, 62). Therefore, the metabolite exchange
between tumor cells and CAFs is essential for tumor cell survival
and proliferation (63, 64). CAFs that undergo autophagy can
supply nutrients required by tumor cells. Interestingly, IL-6 and
IL-17 which act upstream of STAT3 can promote autophagy in
CAFs (65–67). Moreover, STAT3 was shown to induce the
expression of hypoxia-inducible factor (HIF)-1, a transcription
factor which is induced during hypoxia (68), in esophageal
squamous cell carcinoma (ESCC) via binding to its promoter
(69). These observations implicate a potential contribution of the
STAT3 signaling axis in hypoxia-induced autophagy in CAFs
however this is yet to be investigated. CAF-induced autophagy
results in the production of high energy metabolites, including
alanine, ketone and lactate, which fuel the tricarboxylic cycle in
tumor cells (64, 70, 71). In response to this, tumor cells produce
more IL-6 and IL-8 thereby fueling a feed-forward loop and
enabling a continuous supply of nutrients from adjacent CAFs
(72–74). Inhibition of IL-6 or IL-8 using neutralizing antibodies
November 2021 | Volume 12 | Article 767939
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significantly reduced CAF-induced autophagy in mouse
xenograft models of head and neck squamous cell carcinoma
(72), supporting a role for IL-6 and IL-8 in autophagy. CAF-
induced autophagy is also triggered by HIF-1-induced oxidative
stress. Tumor cell-driven reactive oxygen species (ROS) released
by tumor cells induced oxidative stress in CAFs (72).
Interestingly, elevated oxidative stress in mouse embryonic
fibroblasts promotes STAT3 phosphorylation and its
translocation to the nucleus independently of cytokines, which
may subsequently promote tumor cell survival. Moreover, the
ROS/STAT3 signaling axis has been reported to induce tumor
progression in pancreatic, prostate and liver cancers (39, 75, 76).
These findings indicate that STAT3-dependent CAF-induced
autophagy in response to oxidative stress is imposed by tumor
cells. Reciprocally, CAFs with high oxidative stress can induce
high levels of genomic instability in tumor cells via a bystander
effect, promoting tumor heterogeneity and a more aggressive
phenotype (73).

CAFs can produce an array of growth factors and cytokines
(TGF-b, FGFs, HGH, IL-6 and LIF) providing strong evidence
Frontiers in Immunology | www.frontiersin.org 5
for paracrine signaling between CAFs and tumor cells which is
integral to tumorigenesis (36, 61). Interestingly, the spatial
distribution of CAFs in terms of their localization, relative to
tumor cells within the TME, confers nuanced differences in
their phenotypic transformation. For instance, CAFs adjacent
to tumor cells retain a myCAF phenotype, while iCAFs tend to
reside distal from tumor cells within the TME in pancreatic
cancer (77). The crosstalk between CAFs and tumor cells in the
TME plays a critical role in regulating CAFs phenotypic
changes within the TME. Indeed, tumor cells produce high
levels of TGF-b to induce aSMA expression in adjacent
fibroblasts and their transformation into myofibroblasts. In
addition, tumor cell-derived TGF-b suppresses IL-6
expression in adjacent fibroblasts which in turn, inhibits NF-
kB signaling (77). These observations suggest that the crosstalk
between tumor cells and adjacent fibroblasts dictates the
phenotype of CAFs which is also tightly regulated by their
spatial location within the TME. IL-6/STAT3 signaling
promotes an immunosuppressive CAF phenotype (discussed
in detail in the following section), known as iCAFs. iCAFs
FIGURE 2 | Intrinsic effects of STAT3 signaling in CAFs. Cytokines such as IL-6, IL-11 and IL-17 mediate the phosphorylation and activaton of STAT3 resulting in
the transformation of normal fibroblasts into cancer associated fibroblasts (CAFs). Activated CAFs can then remodel the extracellular matrix, promote matrix cross-
linking leading to stromal stiffness and mechanical stress. Mechanical stresses in the stroma consequently leads to the collapse of blood vessels and induction of
hypoxia which creates an environment permissible to tumor development. CAFs can also promote tumor vascularization which facilitates the migration and invasion
of cancer cells to distant sites. VEGF; vascular endothelial growth factor.
November 2021 | Volume 12 | Article 767939
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largely reside at the periphery of tumors (77),, suggesting that
the IL-6/STAT3 signaling axis in iCAFs not only plays a role in
promoting immunosuppression but also limiting immune cells
infiltration towards the tumor core and allowing tumor cells to
evade the immune system.

Fibroblast growth factors (FGFs) released by CAFs are
another key mechanism by which STAT3 modulates the
crosstalk between CAFs and tumor cells. It has been shown
that induction of STAT3 via FGFR2/STAT3 signaling axis
correlated with more aggressive breast cancer (78). In addition,
activation of STAT3 via FGFR induced accumulation of
hyaluronan, an ECM component involved in regulating
Frontiers in Immunology | www.frontiersin.org 6
cellular proliferation and migration as well as the onset of
metastasis (79). Moreover, the same study found that
inhibition of STAT3, compromised the growth of FGFR-driven
tumors and decreased levels of hyaluronan in the TME.
STAT3 MEDIATES THE CROSSTALK
BETWEEN CAFS AND IMMUNE CELLS

The ability of cancer cells to evade detection and clearance by the
immune system is critical for their survival and progression, as
FIGURE 3 | STAT3 mediates reciprocal crosstalk between CAFs, tumor cells and immune cells in the TME. Cytokine-mediated activation of STAT3 promotes
the transformation of normal fibroblasts to cancer associated fibroblasts (CAFs). STAT3 increases the expression of hypoxia-inducible factor-1 (HIF-1) that leads
to hypoxia and autophagy. This results in the production of high energy products that fuel the tricarboxylic (TCA) cycle in tumor cells, as well as the production
of IL-6 that form a positive feedback loop to enable further activation of CAFs. Moreover, elevated oxidative stress induced by tumor-derived reactive oxygen
species (ROS) can induce genomic instability and promote tumor heterogeneity. On the other hand, STAT3-mediated activation of CAFs exert
immunosuppressive effects via the recruitment and polarization of macrophages from an M1 to an M2 endotype, which suppresses the cytotoxic activity of
natural killer (NK) cells. Moreover, CAFs recruit regulatory dendritic cells (DCregs) to inhibit the activation of cytotoxic T cells while simultaneously promoting the
proliferation of regulatory T cells. IL-6/STAT3 signaling in CAFs also promotes the development of myeloid-derived suppressor cells (MDSCs) and induces PD-L1
expression in neutrophils. Collectively, deviation of cytokine mediated STAT3 activity in the TME alters the metabolic landscape of tumors and fosters an
immunosuppressive environment that can evade immune clearance.
November 2021 | Volume 12 | Article 767939
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highlighted by the success of immunotherapy. Neoplastic cells
utilize various subversive mechanisms to avoid immune-
mediated anti-tumor responses such as the suppression of
antigen presentation (i.e., MHC expression), “exhausting”
immune cells via immune checkpoints and the recruitment of
immunosuppressive cells (T regulatory lymphocytes) (80, 81).
Tumors also engage CAFs in the TME to support immune
evasion, allowing tumor cells to disseminate from the primary
site and metastasize to distant sites. The immunosuppressive
effects of CAFs broadly impact cells of the innate and adaptive
immune system, including dendritic cells (DC), macrophages,
neutrophils, mast cells, natural killer cells (NK) and T
lymphocytes (82–86) which have been reviewed in (36, 87–90).

CAFs can recruit monocytes, macrophages and mast cells via
the release of monocyte chemotactic protein-1 and stromal cell-
derived factor-1 (SDF-1) (also known as CXCL12) (91)
(Figure 3). Activated macrophages exist on a spectrum of
phenotypes ranging from classically activated M1- to
alternatively activated M2 macrophages. M2 macrophages
display anti-inflammatory, immune-suppressive and tumor-
permissive endotypes, while M1 macrophages confer pro-
inflammatory, immune-permissive anti-tumor responses (22).
STAT3 has been shown to promote M2 macrophage polarization
in part due to its intrinsic activity in CAFs. Likewise, SDF-1 and
IL-6 released by CAFs and tumor cells in prostate cancer,
promotes the polarization of macrophages into an M2
phenotype (92). CAFs also recruit macrophages to the tumor
niche via macrophage colony stimulating factor (CSF-1) which
induces M2 macrophage polarization (93, 94). CAF-induced M2
macrophage polarization via the release of STAT3 upstream
effectors (e.g., IL-6, CSF-1 and SDF-1) underpins the role that
STAT3 activation plays in regulating CAF-macrophage crosstalk
and the subsequent immunosuppressive effects of M2
macrophages on other immune cells. Consistent with this,
CAF-induced M2 macrophage polarization suppressed NK
cell-mediated immune responses in colorectal cancer (95).
Reciprocally, M2 macrophages promote the transformation of
normal fibroblasts into CAFs via IL-6 and SDF-1 in prostate
cancer (96). Interestingly, high estrogen-alpha (ER-a) expressing
CAFs inhibited tumor progression in prostate cancer, and
lowered IL-6 expression in CAFs and macrophages in co-
culture, suggesting that IL-6 promotes M2 polarization and the
pro-tumor effects of CAFs (97).

DCs present antigen to T cells via the expression ofMHC-I and
-II which in turn triggers an effective immune response (98).
Although the crosstalk between CAFs and DCs remains largely
unclear, emerging studies show that CAFs support regulatory
functions of DCs rather than immune costimulatory functions
in hepatocellular carcinoma (86). Regulatory DCs (DCregs) are
characterized by high expression of inhibitory molecules such as
PD-L1, which suppress effector T cell activation and proliferation
(98). In addition, DCregs produce indoleamine-2, 3-dioxygenase
(IDO) and other metabolites to induce the proliferation of T
regulatory cells (Tregs), which is a T cell subpopulation that
dampens cytotoxic T cell responses (99). IDO is an
immunosuppressive enzyme which regulates degradation of the
Frontiers in Immunology | www.frontiersin.org 7
essential amino acid tryptophan and triggers cellular stress in
response to pro-inflammatory stimulation [reviewed in (100,
101)]. CAF-mediated IL-6 production has been shown to the
up-regulate IDO expression in DCs (86). IL-6 neutralizing
antibodies and STAT3 inhibitors blocked the ability for CAFs to
modulate the function of DCregs. These findings indicate that
CAF-DC crosstalk via IL-6/STAT3 promotes immunosuppression
and tumor progression via either directly suppressing effector T
cell activation or indirectly by promoting Treg expansion and
subsequent effector T cell inactivation.

CAFs also exploit immune checkpoint proteins to suppress
anti-tumor cytotoxic T cells and NK cells. For instance, CAFs
support the development of MDSCs in pancreatic, colorectal,
and liver cancer through induction of STAT3 in response to IL-6
(102–105). Activation of STAT3 in MDSCs and M2
macrophages promotes PD-L1 expression, which in turn
inhibits T cell effector function (105–107). In addition, CAFs
induce PD-L1 expression in neutrophils in hepatocellular
carcinoma in response to IL-6/STAT3 signaling (84). CAFs
also express PD-L2 and FASL which suppresses T cell anti-
tumor responses (108). Although STAT3 is a key modulator for
PD-L2 and FASL in tumor cells, it remains unclear if STAT3 is
the key transcription factor that modulates PD-L2 and FASL
expression in CAFs (109, 110). Altogether, these findings
h i g h l i g h t how STAT3 s i gn a l i n g c an impa r t a n
immunomodulatory effect in CAFs during tumor development.
MAJOR CHALLENGES ASSOCIATED WITH
STUDYING STAT3 BIOLOGY IN CAFS

Most experimental studies employ ambiguous cell surface markers
including platelet-derived growth factor receptor (PDGFRa and
PDGFRb), aSMA, vimentin and fibroblast activation protein
(FAP) to enrich for CAFs by flow cytometry (111). Other CAF
biomarkers have been reported including soluble factors (IL-6, IL-
11, TGF-b), ECM components and extracellular vesicles as
previously reviewed in (112). In addition, some studies also use
negative selection against epithelial (EpCAM), endothelial
(CD31), and immune cell markers (CD45). Despite this, these
methods also capture normal fibroblasts as they share many
surface markers with their cancer-associated counterparts. For
instance, while SMA and IL-6 expression can distinguish between
myCAFs and iCAFs as discussed previously, these markers may
also not resolve other heterogeneous and transcriptionally distinct
CAF subpopulations (31) such as apCAFs or vCAFs which express
high levels of IL-6 and activate STAT3 in tumor cells as observed
in cholangiocarcinoma (34). It is anticipated that single cell
sequencing and digital spatial profi ling will aid the
characterization of CAF subpopulations as well as identification
of robust and specific markers to circumvent the current
challenges we face. Overall, advances in CAF classification and
identification will be key to elucidating the full extent of CAFs in
cancer biology and what CAF phenotypes are modulated by
STAT3 activity.
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Compounding the lack of specific markers, assessing CAF
functions in vitro also presents with limitations. Firstly, viable
CAFs are notoriously difficult to isolate from tumors in sufficient
numbers for in vitro analysis even for stroma-rich cancers like
pancreatic cancer. However, studies have reported successful
enrichment of CAFs via negative selection of cells positive for
epithelial, endothelial and immune cell markers (34). Secondly,
isolated fibroblasts and CAFs can change and lose their phenotype
when cultured in vitro and are particularly sensitive to prolonged
passaging in culture. These observations are not entirely surprising,
because physiological conditions are hard to faithfully replicate in
culture, and CAFs adapt to the dynamic changes of the TME. One
method of overcoming this challenge is to culture fibroblasts in 3-
dimensional to mimic a more physiologically relevant environment
akin to their “natural environment” that affects CAF proliferation,
attachment, migration, and elongation (113, 114). Moreover,
cancer and stromal cells can be co-cultured in 3-dimensional
matrices to capture the crosstalk that occurs in the TME (55,
115, 116). This is relevant to studying STAT3 biology given its
pertinent roles in CAF function and CAF-tumor cell crosstalk as
previously discussed. Collectively, these in vitro-based models
bypass the caveats associated with 2-dimensional cultures and
attempt to re-create tumor-stroma crosstalk as observed under
physiological conditions.

Due to the lack of CAF-specific gene drivers, it is also difficult
to lineage trace or conditionally knock out genes in transgenic
mouse models. Nevertheless, various inducible transgenic mice
have been generated to delete Stat3 expression in fibroblast and
CAF populations which at least provide us some insight into how
STAT3 regulates these cell types in vivo. For instance, transgenic
mice with the Cre recombinase expression under the control of
the Col1a2 promoter to selectively delete Stat3 have been
reported (117) and indicate that CAFs promote colitis-
associated colorectal cancer in a STAT3-dependent manner
(43). Pdgfra-cre mice also exist (23) to selectively delete genes
in CAFs however directed ablation of STAT3 in these mice have
not been reported to date. Meanwhile, Schaefer and colleagues
have recently characterized a role for IL-11 in fibrosis using
Col1a2-CreERT, Il11ra1loxP/loxP mice as well as directed Il11
transgene expression in Col1a2-CreER : Rosa26-Il11 mice (118,
119). Intriguingly, IL-11 drives fibrosis in the lung, heart, and
kidney via non-canonical ERK but not STAT3 signaling contrary
to Chakraborty’s findings (117) which instead suggest canonical
STAT3 signaling drives fibroblast function and fibrosis. Taken
together, it is important that appropriate in vitro assays and
murine models are employed to study CAFs in tumor
development as well as understanding the influence STAT3 has
on CAF functionality. In addition, the discovery of emerging
CAF-specific driver genes will facilitate the generation of novel
transgenic mice and enable validation studies to ascertain the
biological effects STAT3 exerts on the CAF population.

The categorical definition of CAFs is a major area of contention
due to their phenotypic heterogeneity, lack of fibroblast-specific
cell surface markers, and the limitations of assays employed to
functionally characterize CAFs. Understanding and
experimentally identifying the full spectrum of CAF phenotypes
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will be key in mapping out how STAT3 activity contributes to each
of their unique subtypes and plastic states. While it is clear that
STAT3 activity supports tumor promoting “fibroblast-like”
activity, it remains to be reconciled whether the cells assayed in
studies thus far are purely reflective of CAFs. As discussed, many
studies rely only on one method of identification, typically using
non-specific markers which could also enrich for other
mesenchymal cell types and cancer cells that have undergone
epithelial-to-mesenchymal transition. Moreover, emerging roles
for CAFs in anti-tumor responses have been observed highlighting
their complex and dichotomous nature. This underscores the
importance of establishing a standardized and robust method of
studying CAFs to properly inform how we can exploit STAT3-
targeting therapies that target specific CAF subpopulations to tip
the balance towards an effective anti-tumor response.
TARGETING CAFS IN CANCER
AND THE IMPLICATIONS FOR
STAT3-TARGETING THERAPIES

As outlined previously, the mutual relationship between CAFs,
tumor cells and immune cells fuels cancer development, immune
evasion, and resistance to therapy. This bi-directional crosstalk is
facilitated by the secretion of various soluble factors such as
cytokines, chemokines, and growth factors which together with
CAF cell surface markers, present an opportunity to develop and
test their therapeutic intervention in combination with
immunotherapies as summarized in Table 1.

One strategy to target CAFs is through the blockade of growth
factors that lead to their activation. As mentioned above, TGF-b
produced by tumor cells can activate CAFs and promote tumor
development. A phase II clinical trial is currently exploring the
use of Galunisertib, a TGF-b inhibitor, in combination with a
chemotherapy and radiotherapy regime to treat rectal
adenocarcinoma (NCT02688712) (Table 1). In addition, the
FGFR receptor inhibitor, Futibatinib, is being tested in a Phase
II clinical trial for its activity in combination with the anti-PD-1
antibody, Pembrolizumab, for the treatment of advanced
urothelial carcinoma (NCT04601857).

Another approach to target CAFs is by intercepting their ability
to produce and remodel the ECM (120, 121) which would in effect,
dismantle the physical barrier that prevents immune cells from
penetrating tumors and compromise the scaffold that would
otherwise support tumor cell-CAF crosstalk. Blocking the action
of MMPs poses another attractive strategy to target CAF-induced
remodeling of the ECM. Despite their anti-cancer potential, over 50
MMPs have been tested and failed in clinical trials (122). Failure of
MMP inhibitors to confer objective responses in patients is largely
due to their lack of specificity, where most MMP inhibitors tested
are broad-spectrum. However, ongoing clinical trials are still testing
their efficacy particularly in combination with other therapies. For
instance, the anti-MMP-9 monoclonal antibody, GS-5745, is in
Phase I testing in combination with immunotherapy (Bevacizumab)
for the treatment of glioblastoma (NCT03631836).
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The marked heterogeneity of the CAF population is another
modality that can be targeted to specifically limit pathogenic
subsets of CAFs as is the case for cells that highly express FAP
(123, 124). FAP-targeting therapies have entered phase I clinical
testing including RO6874281, an anti-FAP interleukin-2 variant
(125). RO6874281 is currently being assessed as both a single agent
and in combination with Trastuzumab in breast cancer patients or
Cetuximab in head and neck cancer patients (NCT02627274).
Another clinical trial is testing the utility of combining RO6874281
with the immune checkpoint inhibitor, Pembrolizumab, for the
treatment of advanced melanoma (NCT03875079).

Blocking soluble factors produced from CAFs could also
achieve clinical benefit in patients. For instance, CAFs produce
CXCL12 which allow cancer cells to evade detection and
clearance by T cells in preclinical studies (126, 127). A phase II
clinical trial is testing the efficacy of Plerixafor, a CXCR4 receptor
antagonist which blocks the action of CXCL12, in combination
with an anti-PD-1 antibody, Cemiplimab, for the treatment of
patients with metastatic pancreatic cancer (NCT04177810).

Fibroblasts are programmed to become CAFs within the
TME, and hence, there are promising approaches targeting
these phenotypic changes by reprograming CAFs (128). An
example of these targets include, a Phase II clinical trial
currently testing Losartan, an angiotensin inhibitor, in
combination with immunotherapy (Nivolumab), and
chemotherapy for the treatment of advanced pancreatic cancer
(NCT03563248) (121). Angiotensin inhibitors block signals
which promote fibroblast activity such as angiotensin II
(AngII) through AngII receptor type 1 which in turn,
inactivate and reduce the number of CAFs (128). Consistent
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with these observations, a link has been ascribed for Ang II and
IL-6, whereby Ang II can induce IL-6 expression and contributes
to vascular disease and hypertension (129). Thus, by targeting
STAT3 signaling or its upstream cytokine IL-6, Ang II may also
be blocked and in turn, reprogram CAFs into a quiescent form.
Furthermore, vitamin D deficiency has also been associated with
increased fibrosis and aggressive tumorigenesis. The
supplementation of vitamin D subsequently inhibits tumor
development and enhances the delivery of chemotherapies into
the tumor in pre-clinical models (130, 131). In line with this, a
phase II clinical trial is currently underway testing paricalcitol, a
vitamin D analogue, in combination with a standard
chemotherapy program of Gemcitabine and nab-paclitaxel for
metastatic pancreatic adenocarcinoma patients (NCT03520790).

A number of clinical trials are assessing the safety and efficacy
on STAT3 inhibitors (Table 1). Considering the pivotal role
STAT3 plays in promoting CAF transformation and their pro-
tumorigenic functions, therapeutically targeting STAT3
signaling provides an opportunity to indirectly target CAF
function. Moreover, the prospect of combining STAT3
inhibitors with other therapies has utility as evident by active
clinical trials assessing the safety and efficacy of STAT3 inhibitors
in combination with immunotherapies in various cancers
(Table 1). One such example is Danvatirsen, an antisense
oligonucleotide used to target STAT3 mRNA. The utility of
combining Danvatirsen with Durvalumab, a PD-L1 inhibitor,
alone or in combination with chemotherapy is currently being
tested in a clinical trial for the treatment of advanced, solid
tumors and non-small cell carcinoma (NCT03421353). Another
phase II clinical trial is also testing Danvatirsen in combination
TABLE 1 | Clinical trials targeting CAFs and STAT3 in cancer.

Target Cancer Drug Name Combination Therapy Current Status Clinical Trials
Identifier

Depleting CAFs
FAP Breast cancer

Head & neck cancer
RO6874281 Trastuzumab/Cetuximab Phase I; active, not

recruiting
NCT02627274

Advanced or metastatic melanoma RO6874281 Pembrolizumab Phase I; active, not
recruiting

NCT03875079

Blocking CAF activation
FGFR Advanced urothelial cancer Futibatinib Pembrolizumab Phase II; recruiting NCT04601857
TGF-b Rectal adenocarcinoma Galunisertib Chemotherapy &

radiotherapy
Phase II; recruiting NCT02688712

CXCL12 Advanced pancreatic cancer Plerixafor Cemiplimab Phase II; recruiting NCT04177810
Blocking ECM production and remodelling
MMP9 Glioblastoma GS-5745 Bevacizumab Phase I; not yet recruiting NCT03631836
Collagen I
production

Advanced pancreatic cancer Losartan Nivolumab &
Chemotherapy

Phase II; recruiting NCT03563248

Reprogramming CAFs into normal fibroblasts
Vitamin D
receptor

Advanced pancreatic cancer Paricalcitol Gemcitabine Phase II; recruiting NCT03520790

STAT3 Inhibitors
STAT3 mRNA Advanced, solid tumors & non-small cell carcinoma Danvatirsen Durvalumab &/or

chemotherapy
Phase IB/II; active, not
recruiting

NCT03421353

pancreatic cancer & mismatch repair deficient
colorectal cancer

Danvatirsen Durvalumab Phase II; active, not
recruiting

NCT02983578

IL-6 activity Late-stage melanoma Tociluzumab Ipilimumab and Nivolumab Phase I; recruiting NCT03999749
Prostate cancer Tociluzumab Atezolizumab Phase II; recruiting NCT03821246
Metastatic HER2-positive breast cancer Tociluzumab Trastuzumab and

chemotherapy
Phase I; completed NCT03135171
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with Durvalumab but for pancreatic cancer and mismatch repair
deficient colorectal cancer (NCT02983578). As previously
described, blocking IL-6 activity would be another way to
target STAT3 and CAFs function and this could be achieved
with Tocilizumab, a monoclonal antibody against the IL-6
receptor (132). Phase I/II clinical trials are currently recruiting
patients to test the benefit of combining Tociluzumab with
various immunotherapies for the treatment of late-stage
melanoma (NCT03999749), prostate cancer (NCT03821246),
and metastatic HER2-positive breast cancer (NCT03135171). It
remains to be seen whether these combinatorial approaches
provide patient benefits, and whether objective responses are
certainly due to the direct modulation of STAT3-dependent CAF
function, or a more likely combination of effects on other cells in
the TME. Nevertheless, the number of clinical trials is indicative
of the potential for STAT3-targeting therapies to target
pathogenic CAFs and improve the efficacy of immunotherapies.
CONCLUSION

It is apparent STAT3 is a key molecular driver of CAF function
and dictates the crosstalk between cells of the TME to foster
tumor development and metastatic spread. The reciprocal
relationship between CAFs, tumor cells and immune cells is
made possible through the release of soluble factors including the
IL-6 family of cytokines which further reinforces a feed forward
Frontiers in Immunology | www.frontiersin.org 10
loop. Evidently, targeting the activities of STAT3 and its
associated cytokines have shown promising results in patients
and improved the efficacy of immune checkpoint inhibition. Yet
it remains unclear how much CAFs contribute to these objective
responses in patients. Moreover, the implementation of STAT3-
targeting therapies must consider the marked heterogeneity of
CAFs and they should be tailored towards suppressing tumor-
promoting populations while preserving those that do not
contribute to disease to essentially promote an anti-tumor
response in the TME. Nevertheless, blocking STAT3 activity to
specifically limit pathogenic CAFs could bypass the limiting drug
responses observed in broad-spectrum CAF-targeting therapies,
and has great potential to synergise with other therapies to
deliver robust therapeutic responses.
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