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Genistein promotes ionizing 
radiation-induced cell death by 
reducing cytoplasmic Bcl-xL levels 
in non-small cell lung cancer
Zhimin Zhang1, Feng Jin1, Xiaojuan Lian2, Mengxia Li1, Ge Wang1, Baohua Lan1, Hao He1, 
Guo-Dong Liu3, Yan Wu1, Guiyin Sun2, Cheng-Xiong Xu1 & Zhen-Zhou Yang1

Genistein (GEN) has been previously reported to enhance the radiosensitivity of cancer cells; however, 
the detailed mechanisms remain unclear. Here, we report that GEN treatment inhibits the cytoplasmic 
distribution of Bcl-xL and increases nuclear Bcl-xL in non-small cell lung cancer (NSCLC). Interestingly, 
our in vitro data show that ionizing radiation IR treatment significantly increases IR-induced DNA 
damage and apoptosis in a low cytoplasmic Bcl-xL NSCLC cell line compared to that of high cytoplasmic 
Bcl-xL cell lines. In addition, clinical data also show that the level of cytoplasmic Bcl-xL was negatively 
associated with radiosensitivity in NSCLC. Furthermore, we demonstrated that GEN treatment 
enhanced the radiosensitivity of NSCLC cells partially due to increases in Beclin-1-mediated autophagy 
by promoting the dissociation of Bcl-xL and Beclin-1. Taken together, these findings suggest that GEN 
can significantly enhance radiosensitivity by increasing apoptosis and autophagy due to inhibition of 
cytoplasmic Bcl-xL distribution and the interaction of Bcl-xL and Beclin-1 in NSCLC cells, respectively.

Radiotherapy is an important method for malignant tumor treatment. However, radiation therapy often causes 
normal tissue injury, and many types of cancer show resistance to radiation therapy1,2. Thus, enhancing the radi-
osensitivity of tumor cells and protecting the remaining normal tissues are important clinical concerns in cancer 
radiotherapy. According to previous reports, an adjuvant drug can be used during radiotherapy to achieve a 
better clinical outcome, for example, genistein (GEN). GEN is the main isoflavone component in soybeans; it can 
significantly enhance the radiosensitivity of tumor cells3, and it attenuates inflammatory injuries in normal tissue 
caused by ionizing radiation (IR)4. These anti-tumor effects of GEN were identified in both in vitro and in clinical 
cases of a wide variety of cancer types, including prostate cancer, breast cancer, colon cancer, gastric cancer, lung 
cancer, pancreatic cancer, and lymphoma5–8. Studies show that GEN improves the effectiveness of either radio- or 
chemotherapy in cancer cells by enhancing apoptosis and autophagy9,10. However, the detailed mechanism by 
which GEN enhances the apoptosis and autophagy induced by oncotherapy in cancer remains unclear.

Autophagy is the lysosomal degradation pathway11, and it exerts opposing functions in response to IR-induced 
stress in tumor cells. One such function is cytoprotective; inhibition of this activity can sensitize cancer cells to 
treatment modalities. However, excessive autophagy promotes the death of tumor cells12,13. In lung cancer, studies 
show that increased autophagy dramatically abrogates radioresistance14,15. Apoptosis is also a desired effect of 
anti-tumor therapy, and the relationship between autophagy and apoptosis may depend on the biological context 
in which these events occur16,17. The dysregulation of apoptosis is a common phenomenon in cancer cells and is 
one mechanism by which cancer cells can resist oncotherapy. Bcl-xL is an anti-apoptotic protein, and increased 
expression of Bcl-xL was closely associated with radio- and chemotherapy resistance18. Studies show that a com-
bination treatment of IR and a Bcl-xL inhibitor exerts a synergistic effect by activating the Bak-apoptosis pathway 
in cancer cells that are resistant to oncotherapy19,20. Bcl-xL also regulates cellular autophagy by interacting with 
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Beclin-1 to inhibit the initiation of Beclin-1-mediated autophagy21,22. Studies show downregulation of Bcl-xL 
expression with specific siRNAs can activate autophagy and promote cancer cell death23,24, suggesting that Bcl-xL 
plays an key role in the crosstalk between autophagy and apoptosis.

Our study shows that GEN treatment inhibits cytoplasmic translocation of Bcl-xL in NSCLC cells, and the 
level of cytoplasmic Bcl-xL was negatively correlated with radiosensitivity in NSCLC. In addition, our data show 
that GEN treatment can enhance IR-induced cell death in NSCLC cells by simultaneously activating apoptosis 
and autophagy. Furthermore, we identified that increased autophagy by GEN is due to the promotion of Bcl-xL 
dissociation from Beclin-1, thereby activating Beclin-1 induced autophagy.

Results
GEN reduced cytoplasmic of Bcl-xL levels in NSCLC cells.  Bcl-xL is an important anti-apoptotic pro-
tein. Our in vitro experiment shows that GEN treatment significantly reduces the levels of cytoplasmic Bcl-xL 
while simultaneously increasing the nuclear Bcl-xL levels in a time- and dose-dependent manner in A549 cells 
(Fig. 1a,b). However, GEN does not affect the total expression of Bcl-xL in A549 cells (Fig. 1a,b). These results, we 
confirmed in another NSCLC cell line, Calu-1. As shown in Fig. 1c, similar with A549 cells, GEN treatment signifi-
cantly reduced cytoplasmic levels of Bcl-xL as well as increased nuclear Bcl-xL levels in Calu-1 cells, however, does 
not affect the total expression of Bcl-xL in Calu-1 cells. Finally, we used immunofluorescence analysis to confirm 
the effect of GEN on Bcl-xL subcellular distribution. As shown in Fig. 1d, GEN treatment significantly inhibited 
cytoplasm distribution of Bcl-xL while increasing nuclear Bcl-xL levels in A549 cells in a dose-dependent manner. 
Taken together, these results suggest that GEN affects the subcellular distribution of Bcl-xL in NSCLC cells.

Cytoplasmic Bcl-xL levels are negatively associated with radiosensitivity in NSCLC.  Next, we 
investigated the correlation between the levels of cytoplasmic Bcl-xL and radiosensitivity in NSCLC cell lines. 
First, we measured the expression level of cytoplasmic Bcl-xL in different NSCLC cell lines. As shown in Fig. 2a, 
H460 cells have lower cytoplasmic Bcl-xL levels and higher nuclear Bcl-xL levels compared to other NSCLC cells, 
including H1975, Calu-1 and A549 cells. Interestingly, the CCK-8 assay shows that H460 cells are more sensitive 
to IR treatment compared to the NSCLC cell lines that have higher basal cytoplasmic Bcl-xL levels (Fig. 2b). 
Consistent with this result, treatment with IR significantly induced more expression of the pro-apoptotic protein 
cleaved PARP, cleaved caspase-3 (Fig. 2c) and DNA damage (Fig. 2d–f) in H460 cells compared to the other 

Figure 1.  GEN affects the subcellular distribution of Bcl-xL in NSCLC cells. (a) A549 cells were treated with 
60 µM GEN for the indicated times. Then, either nuclear and cytoplasmic or total proteins were isolated and 
subjected to Western blot to detect Bcl-xL. The experiment was repeated three times. (b) A549 cells were treated 
with the indicated concentration of GEN for 24 h. Then, either nuclear and cytoplasmic or total proteins were 
isolated and subjected to Western blot to detect Bcl-xL. The experiment was repeated three times. (c) Bcl-xL 
levels in Calu-1 cells were measured at 24 h after treatment with the indicated concentration of GEN. (d) 
Representative fluorescence images of the distribution of Bcl-xL protein in A549 cells at 24 h post-treatment 
with the indicated concentration of GEN. Bcl-xL expression was detected with an anti-Bcl-xL primary antibody 
and a FITC-labeled secondary antibody. The cell nuclei were stained with DAPI. tBcl-xL, total Bcl-xL; cBcl-xL, 
cytoplasmic Bcl-xL; nBcl-xL, nuclear Bcl-xL. *P < 0.05; **P < 0.01, ***P< 0.001.
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NSCLC cell lines. Furthermore, we investigated the impact of cytoplasmic Bcl-xL levels on the objective response 
rate (ORR) of radiotherapy in NSCLC patents. The expression of Bcl-xL was analyzed in tumor samples from 29 
NSCLC patients using immunohistochemistry and categorized into two groups based the immunostaining score 
(Fig. 3a). As shown in Fig. 3b, 22 and 7 cases of the 29 tested NSCLC samples showed low and high expression of 
cytoplasmic Bcl-xL, respectively. Interestingly, in the cytoplasmic Bcl-xL high expression group, only 28.57% of 
NSCLC patients responded to radiotherapy, whereas the remaining 75.9% of patients experienced either recur-
rence or new metastasis (Fig. 3b). In contrast, 90.9% of NSCLC patients in the cytoplasmic Bcl-xL low expression 
group responded to radiotherapy, whereas the remaining 9.1% patients did not respond (Fig. 3b). These findings 
suggest that level of cytoplasmic Bcl-xL was negatively associated with radiosensitivity in NSCLC.

GEN enhances the radiosensitivity of NSCLC cells by enhancing IR-induced DNA damage and 
apoptosis.  We next investigated whether the combination of IR and GEN could exert a synergistic effect on 
inhibition of NSCLC cell viability. As shown in Fig. 4a and b, the combination of GEN and IR treatment signif-
icantly inhibited more cell growth and induced more apoptosis compared to either GEN or IR treatment alone 
in A549 cells. Consistent with these results, the combination treatment of GEN and IR significantly increased 
the expression of the DNA damage marker protein γ-H2AX, the pro-apoptotic protein Bax, cleaved-PARP 
and -caspase-3 in A549 cells compared to cells receiving solo treatments of either GEN or IR (Fig. 4c and d). 
Additionally, we detected significantly reduced levels of cytoplasmic Bcl-xL in the GEN and IR combination 
treatment group (Fig. 4d). Furthermore, we confirmed that synergistic inhibition effect of combination of IR and 
GEN treatment on NSCLC growth using A549 xenograft model. Consistent with in vitro cell viability assay, the 
combination treatment of GEN and IR significantly inhibited tumor growth in xenogaft model (Fig. 4e). Taken 
together, these findings suggest that GEN can enhance the radiosensitivity of NSCLC cells through reducing 
plasmic Bcl-xL levels and promoting IR-induced DNA damage and apoptosis.

GEN enhances the radiosensitivity of NSCLC cells through promote autophagy.  Finally, we 
investigated whether GEN affects IR-induced autophagy in NSCLC cells because previous studies have shown 
that GEN can affect chemotherapy- induced autophagy10. As shown Fig. 5a, the combined treatment of GEN and 
IR significantly increased the level of autophagy maker protein LC3II while decreasing p62 compared to either 
control cells or cells receiving a single treatment. Consistent with this Western blot data, IF staining show that 

Figure 2.  Effect of cytoplasmic Bcl-xL on DNA damage and apoptosis induced by IR in NSCLC cells. (a) 
Cytoplasmic and nuclear proteins were isolated form the indicated NSCLC cell lines and subjected to Western 
blot to detect Bcl-xL. (b) The noted cells were treated with the indicated dose of IR. After 24 h of IR treatment, 
cell viability was measured using CCK-8 assays. (c) The indicated cells were treated with 4 Gy of IR. After 2 h of 
IR treatment, cells were subjected to Western blot analysis of cleaved PARP and cleaved caspase-3. (d) γ-H2AX 
was measured in the indicated cells at 2 h after of treatment with 4 Gy of IR. (e) DNA damage was analyzed in 
the indicated cells by performing neutral Comet assays at 2 h after of treatment with the indicated dose of IR. (f) 
Quantification of DNA damage. *P < 0.05; **P < 0.01, ***P < 0.001.
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LC3 expression was significantly increased in GEN and IR combined treatment group compare to either control 
or single treatment (Fig. 5b), suggesting that the combination of GEN and IR treatment exerts synergistic effects 
on autophagy. This phenomenon was further confirmed by flow cytometry (Fig. 5c). Because the AKT/mTOR 

Figure 3.  Scoring standards for Bcl-xL immunohistochemistry (IHC) staining. (a) Bcl-xL levels were 
determined by IHC in biopsy samples from patients with NSCLC. The representative images are the standard 
scoring images used to evaluate the intensity of Bcl-xL staining. (b) The correlation between cytoplasmic Bcl-xL 
and objective response rate of radiotherapy in patients with NSCLC was analyzed.

Figure 4.  GEN enhances DNA damage and apoptosis induced by IR in A549 cells. (a) A549 cells were treated 
with the indicated concentration of GEN for 24 h followed by treatment with the indicated dose of IR. Cell 
viability was evaluated using the CCK-8 assay after 24 h of IR treatment. (b) After treatment with 60 µM GEN 
for 24 h, A549 cells were either untreated or administered 4 Gy of IR. After 24 h of IR treatment, the cells were 
subjected to flow cytometry analysis. (c,d) A549 cells were either untreated or pretreated with 60 µM GEN for 
24 h. Then, the subsequent cells were either untreated or administered 4 Gy of IR. After 2 h of IR treatment, 
the cells were harvested and subjected to Western blot analysis. (e) Combination treatment of GEN and IR 
significantly inhibited tumor growth compared to single treatment in A549 xenograft model. *P < 0.05; 
**P < 0.01, ***P < 0.001.
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pathway is involved in Beclin-1 induced autophagy, we investigated the effects of GEN and IR combination on 
the AKT/mTOR/Beclin-1 axis in NSCLC cells. Our results show that only Beclin-1 expression was significantly 
increased after treatment with the GEN and IR combination compared to the control and single treatment groups 
(Fig. 5d). Next, we investigated the effects of GEN and IR combination on Bcl-xL/Beclin-1 binding because stud-
ies show that Bcl-xL inhibits Beclin-1-mediated autophagy by binding to Beclin-1 to inhibit autophagosome 
formation21,25. As shown in Fig. 5e, the combination of GEN and IR significantly promotes the dissociation of 
Bcl-xL/Beclin-1 in A549 cells. Together, these data suggest that GEN can enhance IR-induced autophagy by pro-
moting the dissociation of Bcl-xL and Beclin-1.

Then, we investigated whether autophagy plays a critical role on the cell death induced by the combination of 
IR and GEN. Here, we used hydroxychloroquine (CQ) as an autophagy inhibitor (Fig. 6a). Our data show that 
inhibition of autophagy by CQ abolished IR and GEN combination treatment induced high expression of cleaved 
PARP and cleaved caspase-3 in A549 cells (Fig. 6b). In addition, the flow cytometry results show that the inhi-
bition of autophagy dramatically reduced apoptosis induced by the GEN and IR combination treatment (Fig. 6c 
and d). Those data indicate that the combined GEN and IR treatment-induced apoptosis is partially due to the 
stimulation of autophagy in NSCLC cells.

Discussion
Radiotherapy remains one of the prime treatment modalities for many cancers. However, the clinical concern is 
the subset of cancer patients who show resistance to radiotherapy. GEN is an isoflavone isolated from soy, and 
previous reports have highlighted that GEN can enhance the efficacy of radiotherapy in numerous tumor types. 
Consistent with previous reports, we also demonstrated the significantly enhanced efficacy of radiotherapy when 
combined with GEN in NSCLC cells. More importantly, for the first time, we demonstrated that GEN enhanced 
the radiosensitivity of NSCLC cells by simultaneously stimulating apoptosis and autophagy. Interestingly, studies 
show that GEN not only promotes the therapeutic efficacy of radiation in lung cancer but also protects normal 
lung tissues from radiation26. Together, these findings suggest that GEN treatment may be a useful strategy to 
enhance radiotherapy efficacy and protect normal tissues from IR in NSCLC patients.

Figure 5.  Role of Bcl-xL/Beclin-1 in combination with GEN in IR-induced autophagy. A549 cells were in the 
presence or absence of 60 µM GEN for 24 h. Then, cells were either untreated or administered 4 Gy of IR. (a) 
After 2 h of IR treatment, cells were subjected to Western blot to detect autophagy-related proteins. (b) After 
24 h of IR treatment, cells were subjected to immunofluororescense staining of LC3. Green, LC3; Blue, DAPI. (c) 
After 24 h of IR treatment, the cells were subjected to flow cytometry for autophagy detection. (d) After 2 h of 
IR treatment, the expression levels of mTOR, p-mTOR, β-tubulin, p-Akt, Akt, and Beclin-1 were measured by 
Western blot. (e) After 2 h of IR treatment, the cells were subjected to immunoprecipitation.
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In the current study, we also clarified the radiosensitivity regulatory mechanism of GEN in NSCLC cells. 
Bcl-xL is a major anti-apoptotic protein. Studies show that IR treatment induces Bcl-xL expression, thereby caus-
ing radioresistance of NSCLC cells27. In addition, inhibiting the Bcl-xL pathway could improve resistance to 
radiotherapy in lung cancer patients27, suggesting that Bcl-xL plays an important role in the development of 
radioresistance. Previous results show that GEN treatment suppresses Bcl-xL expression to induce apoptosis in 
hepatoma cells28. Contrary to previous reports, we did not observe changes in the total expression of Bcl-xL after 
GEN treatment in NSCLC cells. However, our Western blot and IF analyses clearly show that GEN treatment 
reduces cytoplasmic levels Bcl-xL as well as increases nuclear Bcl-xL levels in NSCLC cells. In addition, our in 
vitro data show that the level of cytoplasmic Bcl-xL was negatively associated with IR-induced DNA damage and 
apoptosis. Consistent with the in vitro experiments, our clinical data revealed a significant correlation between 
the low cytoplasmic Bcl-xL levels and the ORR to radiotherapy. According to Subramanian et al., Bcl-xL inter-
acts with pro-apoptotic proteins, including Bim and Bid, in the cytoplasm29, suggesting that cytoplasmic Bcl-xL 
plays a crucial role in apoptosis. Nuclear Bcl-xL also plays an important role in DNA damage. Nuclear Bcl-xL can 
inhibit the DNA damage repair gene APE1 by interacting with APE1, thus enhancing oncotherapy-induced DNA 
damage and apoptosis30. This suggests that not only total Bcl-xL levels but the distribution of Bcl-xL are also an 
important factor in oncotherapy-induced apoptosis. Together, these findings suggest that GEN enhances the radi-
osensitivity of NSCLC cells through stimulating apoptosis due to the subcellular distribution of Bcl-xL. However, 
the mechanism of how GEN regulates the cellular distribution of Bcl-xL is unclear and requires further research.

Autophagy is the process of self-digestion as it relates to both cell survival and cell death and plays an impor-
tant role in the regulation of cell radiosensitivity. Our results show that GEN treatment promotes both autophagy 
and apoptosis in NSCLC cells and that the autophagy stimulates apoptosis. Cytoplasmic Bcl-xL plays a crucial 
role in maintaining homeostasis of apoptosis and autophagy during stress21. Studies show that Bcl-xL can binding 
to Beclin-1 and inhibit Beclin-1 mediated autophagy21,31. Interestingly, studies show that increased autophagy by 
overexpression of Beclin-1 can significantly abrogate the radioresistance of lung cancer cells14, suggesting that 
Beclin-1-mediated autophagy plays an important role in the radioresistance of lung cancer cells. Here, our data 
clearly show that GEN treatment can increase autophagy, and inhibiting autophagy can partially abrogate the 
cell death induced by the combined IR and GEN treatment in NSCLC cells. In addition, our data show that GEN 

Figure 6.  Role of autophagy in apoptosis induction. (a) The expression levels of p62 and LC3 proteins in 
A549 cells were measured after 12 h of 10 µM hydroxychloroquine (CQ) treatment. (b) A549 cells either in the 
presence or absence of 10 µM CQ for 4 h were treated with or without 60 µM GEN. After 24 h of GEN treatment, 
cells were treated with 0 or 4 Gy of IR. After 2 h of IR treatment, cells were subjected to Western blot. To 
measure (c) LC3 expression, (d) autophagy, (e) apoptosis and (f) cell viability, A549 cells were either untreated 
or subjected to 10 µM CQ for 4 h, after which the cells were either in the presence or absence of 60 µM GEN. 
After 24 h of GEN treatment, the cells were treated with 2 Gy of IR. After 24 h of IR treatment, cells were then 
subjected to flow cytometry analysis. *P < 0.05; **P < 0.01, ***P < 0.001.
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treatment promotes the dissociation of Bcl-xL and Beclin-1 in NSCLC cells. Together these findings suggest that 
GEN treatment can enhance radiosensitivity partially by promoting Bcl-xL and Beclin-1 dissociation to stimulate 
autophagy in NSCLC cells. However, the mechanism of how GEN affect the interaction of Bcl-xL and Beclin-1 
is still unclear.

In conclusion, GEN inhibits the cytoplasmic distribution of Bcl-xL, and the reduced levels of cytoplasmic 
Bcl-xL are closely associated with the radiosensitivity of NSCLC cells. GEN treatment also enhanced radiosen-
sitivity by increasing DNA damage induced apoptosis and Beclin-1-mediated autophagy due to the promoted 
dissociation of Bcl-xL and Beclin-1. Our findings suggesting that GEN could be a potent therapeutic agent to 
enhance the sensitivity of radiotherapy in resistant NSCLC.

Materials and Methods
Materials.  Dulbecco’s modified Eagle’s medium (DMEM) and fetal bovine serum (FBS) were obtained from 
Invitrogen (Grand Island, NY, USA). Genistein (GEN), hydroxychloroquine, penicillin, streptomycin and dime-
thyl sulfoxide (DMSO) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Immunoprecipitation (IP) 
lysis buffer, Dynabeads® Protein G, fluorescence isothiocyanate (FITC)-Annexin V and PI were purchased from 
Life Technologies Corporation (Carlsbad, CA, USA). Antibody against Bcl-xL was purchased from Santa Cruz 
Biotechnology (Santa Cruz, CA, USA). Antibodies against mTOR, p-mTOR, p62, Bax, β-tubulin, p-Akt, Akt, 
PARP, horseradish peroxidase (HRP)-conjugated anti-mouse and anti-rabbit IgG antibodies were from Abcam 
(Cambridge, MA, USA). Beclin1, LC3, γ-H2AX, and caspase-3 were purchased from Cell Signaling Technology 
(Danvers, MA, USA). Cyto-ID Autophagy Detection Kits were purchased from Enzo Life Sciences (Farmingdale, 
NY, USA), and NE-PER(R) Nuclear and Cytoplasmic Extraction Kits were from Thermo Scientific Pierce 
(Rockford, IL, USA).

Cell culture.  Human NSCLC cell line A549, Calu-1, H1975 and H460 were obtained from the American Type 
Culture Collection (ATCC; Manassas, VA, USA). All cells were cultured in MEM medium containing 10% FBS 
and 50 mg/mL penicillin/streptomycin, in a 5% CO2, 37 °C humidified incubator.

Western blot analysis.  Equal amounts of proteins were separated on SDS-polyacrylamide gels, and trans-
ferred to PVDF membranes, then blocked with 5% nonfat dry milk in TBST for 1 h at room temperature. Next, 
membranes were incubated with primary antibody for overnight at 4 °C, followed by 1 h incubation at room 
temperature with horseradish peroxidase-conjugated secondary antibodies. Finally reacted with chemilumines-
cent staining reagents. The stained protein bands were visualized with BioMax-Light film (Eastman Kodak Co., 
Rochester, NY, USA), and the staining intensities of the various protein bands were obtained using Gel Doc 2000 
apparatus and software (Quantity One, Bio-Rad; Hercules, CA, USA).

Co-immunoprecipitation (Co-IP) assay.  Cells were harvested by scraping, and washed once with 
ice-cold phosphate-buffered saline (PBS) solution; after which, cells were incubated in IP lysis buffer (Life 
Technologies) supplemented with a protease inhibitor cocktail (Pierce). Protein concentrations were determined 
using the Bradford assay (Bio-Rad, Hercules, CA, USA). A 50 μL (1.5 mg) aliquot of Dynabeads® was trans-
ferred to a tube, which was then placed on a magnet to separate the beads from the solution, and the superna-
tant was removed. Next, Bcl-xl or Beclin-1 antibody in 200 μL of PBS containing Tween®-20 was added to the 
tube, which was then incubated with rotation for 2 h at 4 °C. After removing the supernatant, an equal volume 
of protein extract was added to the tube, which was then incubated with rotation overnight at 4 °C. Next, the 
Dynabeads®-Bcl-xL-protein or Dynabeads®-Belin1-protein complex was washed 3 times with 200 μL of washing 
buffer, the supernatant was removed, and 20 μL of elution buffer, 10 μL of premixed NuPAGE® LDS sample buffer, 
and NuPAGE® sample reducing agent were added to the tube, which was then heated at 70 °C for 10 min. Finally, 
the tube was placed on a magnet and the sample was loaded onto a gel.

CCK-8 assay.  Cells were seeded in 96-well plates at density 2 × 103/well. After 12 hrs of transfection, cells 
were treated as indicated. Cell viability was detected using CCK-8 kit according to manufacture’s intruction. The 
absorbance of each well was determined at 450 nm using a Microplate Reader 550 (Bio-Rad Laboratories).

Comet assay.  A549 cells, H1975 cells, Calu-1 and H460 cells were rinsed twice with ice-cold PBS and har-
vested. The cells were then re-suspended, and each suspension was exposed to IR (2 GY). Either immediately after 
treatment or after 2-hour post-treatment recovery incubation at 37 °C, each cell suspension was placed on ice, or 
an alkaline comet assay was performed using a Comet assay kit (Trevigen; Gaithersburg, MD, USA) according to 
the manufacturer’s instructions with modifications.

Flow cytometry analysis.  A549 cells were cultured in six-well plates and treated as indicated. Then, 
cells were harvested and resuspended in PBS, stained using an annexin V/propidium iodide (PI) kit (Life 
Technologies) following the manufacturer’s instructions, and analyzed by flow cytometry.

Immunofluorescence (IF) and Immunohistochemistry (IHC) analysis.  For IF analysis, A549 
cells were treated with indicated concentrations of GEN. After 6 h of GEN treatment, cells were fixed with 
3.7% paraformaldehyde in PBS for 30 min, permeabilized with 0.2% Triton X-100 in PBS for 10 min, blocked 
with 5% BSA in PBS for 30 min, and incubated with anti-Bcl-xl antibody overnight at 4 °C. After incuba-
tion, the cells were flooded with Texas-Red-labeled secondary antibody for 60 min, then stained with DAPI4 
(6-diamidino-2-phenyl-indole dihydrochloride). Fluorescent images were observed using a laser-scanning con-
focal microscope (Olympus FV500, Chongqing, China) equipped with appropriate filters.
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The expression of cytoplasmic Bcl-xl in human specimens were measured by IHC. After deparaffinization 
and blocking, slides were incubated Bcl-xl monoclonal antibody (1:200 dilution)for overnight at 4 °C; incubated 
with 1:50 dilution of goat anti-mouse secondary antibody for 1 h at room temperature. Finally, slides were incu-
bated with 3,30-diaminobenzidine (DAB) substrate. Scoring for cytoplasmic Bcl-xl staining was performed as 
described previously by three professional pathologist32.

Patients and clinical specimens.  The present study enrolled cancer patients who were treated at the 
Daping Hospital of Third Military Medical University, China between 2011 and 2015. This study was carried out 
after approval by the Ethics Committee of the Daping Hospital and Research Institute of Surgery, Third Military 
Medical University and obtaining informed consent from all subjects. The methods in treating tissues were car-
ried out strictly in accordance with institutional policies and approved guidelines of experiment operations.

Animal experiments.  For the subcutaneous tumor growth assay, 2 × 106 A549 cells in 0.1 mL of 
phosphate-buffered saline (PBS) were subcutaneously injected into 6-weeks old female nude mice (5 mice per 
group). When tumors reached a size of approximately 100 mm3, mice were randomized into the following four 
treatment groups and started to genisetin treatment: (a) control; (b) genestein only; (c) radiation only; (d) com-
bination of genestin and IR. Genistein was injected to mice every day by I.P. injection (100 mg/Kg body weight)4, 
until the end of animal experiment. After 3 days of genistein treatment, tumors were irradiated with 6 Gy radia-
tion. After 20 dyas of genistein treatment, mice were sacrificed. The tumor size were measured using caliper every 
4 days. Animal studies were conducted according to humane animal care standards and were approved by the 
Ethics of Committee of Third Military Medical University, China.

Statistical analysis.  Results are represented by mean ± S.D. Statistical significance was tested by one-way 
ANOVA, with p-value of less than 0.05 considered statistically significant.
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