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Abstract

Prediction and early detection of kidney damage induced by nonsteroidal anti-inflammato-

ries (NSAIDs) would provide the best chances of maximizing the anti-inflammatory effects

while minimizing the risk of kidney damage. Unfortunately, biomarkers for detecting NSAID-

induced kidney damage in cats remain to be discovered. To identify potential urinary bio-

markers for monitoring NSAID-based treatments, we applied an untargeted metabolomics

approach to urine collected from cats treated repeatedly with meloxicam or saline for up to

17 days. Applying multivariate analysis, this study identified a panel of seven metabolites

that discriminate meloxicam treated from saline treated cats. Combining artificial intelligence

machine learning algorithms and an independent testing urinary metabolome data set from

cats with meloxicam-induced kidney damage, a panel of metabolites was identified and vali-

dated. The panel of metabolites including tryptophan, tyrosine, taurine, threonic acid, pseu-

douridine, xylitol and lyxitol, successfully distinguish meloxicam-treated and saline-treated

cats with up to 75–100% sensitivity and specificity. This panel of urinary metabolites may

prove a useful and non-invasive diagnostic tool for monitoring potential NSAID induced kid-

ney injury in feline patients and may act as the framework for identifying urine biomarkers of

NSAID induced injury in other species.

1. Introduction

Non-steroidal anti-inflammatory drugs (NSAIDs) are massively used in both veterinary and

human patients for treating pain and inflammation with approximately 111 million prescrip-

tions dispensed each year in the U.S alone [1].

The main goal of the pharmacological control of pain and inflammation is to prevent suf-

fering, avoid further tissue damage, and promote the recovery of normal tissue structure and
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organ function(s). Nevertheless, one of the greatest challenges in therapeutics is the effective

and safe long-term use of NSAIDs for conditions requiring sustained anti-inflammatory or

pain relief because the repeated administration of NSAIDS can result in gastrointestinal and

kidney damage [2], [3], [4].

Early stages of kidney injury are often subclinical. If kidney damage following acute kidney

injury (AKI) is not appropriately repaired with normal renal parenchyma, this can lead to

chronic kidney disease (CKD) [5]. NSAID-induced kidney damage severely limits the possibil-

ity to provide optimal treatment for a variety of conditions, including: degenerative joint dis-

ease, cancer, etc., all of which require long-term anti-inflammatory therapy.

A potential contributing factor to the development of kidney disease is delayed detection

due to the lack of non-invasive and sensitive diagnostic tests. The most commonly utilized

clinical diagnostic tests for detection and monitoring of AKI and CKD include serum bio-

chemical values including blood urea nitrogen (BUN), creatinine and urine concentrating abil-

ity. However, these tests have severe limitations which hamper early detection and diagnosis of

kidney damage [6, 7]. Unfortunately, serum creatinine and BUN are late markers of kidney fil-

tration and function, with limited specificity and impaired capacity to accurately reflect the

timing and severity of injury.

The European Medicines Agency and the US Food and Drug Administration have encour-

aged further development of eight biomarkers of drug-induced-kidney-injury in early clinical

trials (EMEA/FDA guideline on detection of drug-induced nephrotoxicity. 2009). To date,

however, no specific biomarkers have been identified to detect early kidney damage induced

by NSAIDs. A single-biomarker-to-single-disease approach is highly unlikely to capture the

multifactorial nature of a dynamic progressive process such as kidney disease; whereas a panel

of biomarkers would increase the likelihood of detecting early subclinical kidney damage.

Metabolomics can be applied to many body fluids, such as urine and blood, to identify

alterations in concentrations of 0.8–1.2 kDa molecules. Altered metabolites act as a chemical

fingerprint and can then potentially be utilized as biomarkers for detecting or monitoring bio-

logical processes [8, 9]. Urine is commonly used to study diseases of the renal system because

it offers advantages owing to its minimal invasiveness and non–volume-limited nature. In

addition, urine can be used for measuring time-related metabolic alterations—a valuable fea-

ture for the study of progression and prognostication of acute and chronic diseases [10]. Urine

metabolomics has been successfully applied to understand the mechanism(s) underlying drug

toxicity and discover novel biomarkers for detecting kidney disease [11].

The repeated administration of NSAIDs in cats is known to damage kidneys [12]. Therefore

we hypothesize that the repeated administration of meloxicam alters the urine metabolome.

We addressed this hypothesis by comparing the urine metabolome in meloxicam- and saline

treated cats. Considering that the metabolite profile is analogous to a chemical fingerprint left

behind by NSAID-induced alterations in cellular processes another objective of this study is to

identify small molecular weight substances in urine that could be further studied as putative

biomarkers for monitoring the administration of NSAIDs. Identification of putative biomark-

ers for monitoring the administration of NSAIDs was accomplished by applying multivariate

analysis and artificial intelligence machine learning algorithms.

Artificial intelligence is a rapidly expanding specialty within the field of computer science.

Current uses for artificial intelligence include prediction of Amazon shopping preferences,

search engine recommendations, the training of Google self-driving cars and prediction of

patient outcomes from medical ailments such as myocardial infarction [13]. Machine learning

is a subbranch of artificial intelligence in which patterns and statistical models are extracted

from large complex data sets to train algorithms to identify potentially complex patterns and

interactions within large data sets (e.g. metabolomics data) [14, 15]. These learned patterns
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can be applied to test data sets of interest to make outcome predictions. In the present study,

we trained machine learning algorithms on an initial urine metabolomics training data set to

make data driven identification of putative urinary biomarkers for monitoring cats treated

repeatedly with an anti-inflammatory dose of meloxicam. Then, the panel of metabolites was

validated using an independent testing urinary metabolome data set from cats with meloxi-

cam-induced kidney damage.

2. Materials and methods

The Washington State University Institutional Animal Care and Use Committee approved all

study procedures before their initiation (ASAF#04915 and #04662). All methods were carried

out in accordance with the relevant guidelines and regulations.

2.1 Study population and inclusion criteria

For the biomarker discovery experiment, a training data set of 12 female clinically healthy

intact adult (1–1.5 years old) purpose bred cats (2.5–3.8 kg) were obtained from a USDA-

licensed commercial breeder (Nutrition and pet Care Center UC DAVIS, Davis, USA).

For the biomarker validation experiment, a testing data set of 8 female clinically healthy

intact adult (1–2 years old) cats (2.8–3.7 kg) were obtained from a USDA-licensed commercial

breeder (Liberty Research, Inc., Waverly, NY).

The enrollment criteria for both training and testing data set cats were no signs of illness or

infection and no history of drug treatment within 30 days prior to initiation of the study. Each

cat enrolled in the study was given a baseline complete history, physical examination, and lab-

oratory evaluation. All cats had normal complete blood count, serum chemistry, and urinaly-

sis. All cats were vaccinated for rabies prior to transfer to Washington State University.

2.1.1 Animal management and monitoring. Cats from both groups were acclimated to

the new housing environment at least 10 days before beginning the study. Each training data

set cat was housed separately in cages 49” wide, 37” tall and 38” deep. Cages were set up in the

room in a way compatible cats could see one another. Each testing data set cat was housed sep-

arately in a 4’ X 8’ partitioned room. A see-through barrier partitioned the room so the cats

could see each other. Bedding, cat trees, and additional enrichment, including toys, were pro-

vided to all cats.

For both groups of cats, the room was temperature (21–23˚C), humidity (25–35%) and 12h

light/dark cycle controlled. The cats had free access to drinking water and food (Purina Cat

Chow Indoor Formula) throughout the study. Fresh water and food were changed every day.

Cages/rooms were cleaned, and litter boxes changed every day. Cats were examined at least

twice daily during the entire study to rule out possible health problems. Body weight and con-

dition scores were assessed every 2 days during the duration of the study.

Following the acclimation period, vascular access ports (VAP, petite size) (Le Port Com-

panion Port, Norfolk Vet, Skokie, IL, USA) were implanted subcutaneously in the training

data set of cats (n = 12) at least 7 days before starting the administration of the treatments fol-

lowing standard procedures as recommended by the manufacturer. VAPs were implanted

aseptically in the jugular vein. The aspiration port was implanted subcutaneously in the

dorsal aspect of the neck cranial to the interscapular space. The VAPs were maintained with

heparinized saline solution (100 I.U./mL, 0.7 mL each time) following the manufacturer

recommendations.

A long-term indwelling jugular catheter (Mila International, Inc) was placed in each testing

data set of cats at least 1 day before starting the study. The jugular catheters were maintained

with 0.5 mL of heparinized saline solution (10 IU/mL, 2–4 times a day).
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2.1.2 Controlled randomized experimental design. Following the VAPs implantation,

the training data cats were randomly allocated to two groups; a saline control group (n = 6)

and a meloxicam treatment group (n = 6). For the testing data set cats, following the acclima-

tion period, cats were allocated randomly to control (n = 4) and meloxicam (n = 4) groups.

Randomization of the treatments for both the training and testing set was done using simple

randomization in R studio. At the end of the treatment phase, three cats from each training

data set group were euthanized within 24h after the last treatment. The remaining cats in the

training data set group (n = 3 per group) were monitored for up to 16 days after the last

administration of treatments and were euthanized within 24h after the last monitoring day. All

testing data set cats (n = 8) were euthanized within 24h of the last treatment. An intravenous

overdose of pentobarbital (Beuthanasia-D, Intervet/Merck Animal Health, Giralda Farms,

Madison, NJ) was used for euthanasia of all cats.

2.1.3 Treatment administrations. Prior to initiation of the biomarker discovery experi-

ment, training data set cats (n = 12) were treated subcutaneously with 0.1 mL/kg body weight

of saline every 24h on days -3, -2 and -1 (6 p.m. +/- 1h). Beginning on day zero, cats in the

meloxicam group were treated subcutaneously with meloxicam at a dosage of 0.3 mg meloxi-

cam/kg body weight (equivalent to 0.1 mL/kg) (Metacam1 injectable, Boehringer Ingelheim

Vetmedica, inc) every 24h for 31 days. Cats in the control group received 0.1 mL/kg body

weight of saline subcutaneously every 24h. The duration of these treatments was defined based

on preliminary experiment information.

For the biomarker validation experiment, testing data set cats in the control group were

treated subcutaneously with a volume of saline at 0.1 ml/kg of body weight (equivalent vol-

ume) every 24 h (7 a.m. +/- 2 h) for 17 days. Testing data set cats were treated with 0.3 mg

meloxicam/kg body weight (Metacam1 Injectable, Boehringer Ingelheim Vetmedica, Inc)

every 24 h (7 a.m. +/- 1 h) for 17 days.

2.1.4 Blood, plasma and urine collection. Blood and urine samples were collected on

days -3, -1, 4, 9, 13, 17, 23, 26, 31, 34, 40, and 47 for the training data set of cats and on days -1,

2, 13 and 17 for the testing data set of cats. For both sets of cats, food was withheld 8h prior to

collection of blood and urine samples. Blood and urine samples were collected during the

afternoon (7 p.m. +/- 1h). Blood samples were collected into 3.2% sodium citrate tubes and

kept in ice until centrifugation. Plasma samples were collected by centrifugation (1800 x g dur-

ing 8 min) within one hour upon blood sample collection. Urine samples were collected by

ultrasound-guided cystocentesis following standard procedures. Upon urine collection,

approximately 100 μL of urine was used to estimate the urinary specific gravity. The remaining

volume of the urine sample was maintained in ice and was centrifuged at 1800 x g for 8 min

within one hour upon collection. The supernatant was aliquoted and stored at -80˚C until

metabolomic analysis. Urine metabolomic analysis was done within 6 months of sample col-

lection. One cat in the treatment group of the testing data set of cats (M4) was euthanized early

due to declining health and samples were collected on days 4, 9, 11 for this cat. The urine sam-

ples collected for cat M4 on days 9 and 11 were included in the metabolomics statistical analy-

sis for days 13 and 17, respectively.

2.1.5 Creatinine quantification and urine specific gravity (USG) determination. For

both the training and testing data set urine samples, plasma creatinine concentrations were

measured using the QuantiChrom TM Creatinine Assay Kit (BioAssay Systems, Hayward,

CA). Urinary specific gravity was determined at room temperature within 2h upon sample col-

lection using a refractometry.

2.1.6 Kidney histopathology. Immediately following euthanasia, cross sections of the left

and right kidney, encompassing the capsule, cortex, and medulla, from each animal from both

the training and testing data sets were trimmed to a maximum thickness of 0.5 cm and fixed in
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10% formaldehyde. Paraffin-embedded kidney specimens were cut at a 5 μm thickness and

stained with either hematoxylin and eosin (H&E), Masson’s trichrome, or periodic acid-Schiff

methenamine silver (PAMS) stains. Each of the three stains was performed on each kidney

sample. Histologic changes of the renal tissues were scored by a blinded pathologist using a

modified semiquantitative scoring system [16]. A representative section of at least one kidney

from each testing data set animal was scored. Traits related to tubular-interstitial disease,

including cortical and medullary tubular damage, basement membrane integrity, interstitial

fibrosis, inflammation and if present, the distribution of the inflammation were evaluated

counting 50 cortical and medullary tubules from at least 10 different fields for each animal.

A semiquantitative scoring system was used as follows: 0, no disease; 1, 1–25%; 2, 26–50%; 3,

51–75%; and 4, 76–100% of tissue affected. Higher scores represent more severe histologic

changes.

2.2 Urine metabolomics

2.2.1 Metabolite determination. Metabolomics analyses for the training and testing data

sets were performed at the West Coast Metabolomics Center (Davis, CA), a National Institute

of Health Regional resource core. For the training data set, metabolomics was performed on

urine samples collected from meloxicam- and saline-treated cats day -1 (time point 1) and on

days 4, 9, 13, and 17 (time points 2–5, respectively). For the testing data set, metabolomics was

performed on urine samples from control and treated cats collected on day -1 (time point 1)

and on days 2, 13, and 17 (time points 2–4, respectively). A graphic representation of the sam-

pling time line is provided in Fig 1. The methods used to determine the urine feline metabo-

lome was fully described elsewhere [17, 18] and described briefly as follows.

2.2.2 Metabolite identification. The metabolomics data acquisition for feline plasma and

urine samples was performed at the West Coast Metabolomics Center (Davis, California), a

National Institute of Health regional resource laboratory on May 2017 for the testing data set

samples and March 2016 for the training data set samples. An in-depth description of the

methods utilized have been previously published and are summarized below ([17], [19], [20]).

2.2.2.1 Extraction, clean-up and derivatization. A 30 μL aliquot of urine sample was added

to a 1.0 mL cooled extraction solution composed of acetonitrile and isopropanol (JT Baker

Center Valley, PA, USA) and 18.2 MO water (MilliQ) at a 3:3:2 v/v/v ratio in a 1.5 mL polypro-

pylene tube. Before adding the extraction mixture to the study samples, oxygen was removed

by sparging nitrogen for 5 minutes. Internal standards with isotope-labeled metabolite

Fig 1. Sampling schedule for metabolite determination in the training and testing groups. Day -1 represents the pretreatment time point. For both the training and

testing data sets, starting on day 0 cats in the treatment groups for each set received 0.3 mg/kg meloxicam every 24h till the end of the study. Cats in the control groups

received 0.1 mL/kg body weight of saline every 24h until the studies end.

https://doi.org/10.1371/journal.pone.0228989.g001
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surrogates were added to the study samples. The study samples were mixed by vortexing for 10

s and then placed in a chilled (4˚C) shaker for 5 mins. Samples were then centrifuged at 14,000

rcf for 2 minutes to pellet insoluble material. A 450 μL aliquot of the supernatant was removed,

placed in a fresh 1.5 mL polypropylene tube and evaporated using a cold trap concentrator.

The dried samples were re-suspended with 450 μL of 50% acetonitrile and centrifuged at

14,000 rcf for 2 minutes. The supernatant was transferred to a new tube and desiccated using a

cold trap concentrator. The dried samples were derivatized by adding 10 μL of 40 mg/mL of

methoxyamine hydrochloride (Aldrich, St. Louis, MO, USA) and shaken at maximum speed

at room temp 30˚C for 1.5 h. A 10 μl aliquot of fatty acid methyl esters (FAME, recipe provided

in Fiehn 2017) was added to 1 mL of N-methyl-N-(trimethylsilyl)-trifluoroactamide (MSTFA:

Aldrich, St. Louis, MO, USA) and vortexed for 10 s. Finally, 91 μL of the MSTFA + FAME

mixture was added to each sample at shaken at 37˚C at maximum speed for 30 minutes. The

final mixture was transferred to glass vials containing micro-inserts and immediately sealed.

A reagent and derivatization blank was used per batch of 50 sample extractions as negative

control. A reagent blank uses all reagents, but does not use extraction tubes or extraction

solvents.

2.2.2.2 Chromatography and mass spectrometry data acquisition. Samples were separated

using an RTX-5Sil MS analytical column made of 0.25 μm thick 95% dimethyl/5%diphenylpo-

lysiloxane film which is 30 m long with a 0.25 mm internal diameter (Restek corporation, Bel-

lefonte, PA USA). This analytical column is surrounded and protected by a 10 m long guard

column. The mobile phase consisted of pure helium with a flow-rate of 1 mL/min and a col-

umn temperature of 50–330˚C. The sample injection volume was 0.5 μL at 50˚C ramped to

250˚C by 12˚C/s. The oven was held at 50˚C for 1 minute and then ramped to 330˚C and held

for 5 minutes. The ramp speed for the oven is 20˚C/min. An Agilent 6890 gas chromatograph

with a Leco Pegasus IV gas chromatography, time-of-flight mass spectrophotometer

(GC-TOF-MS) controlled with Leco ChromaTOF software version 2.32 were used for metabo-

lite data acquisition. The mass spectrophotometer parameters included unit mass resolution at

17 spectra/s from 80–500 Da at -70 eV ionization energy and 1800 V detector voltage with a

230˚C transfer line and a 250˚C ion source.

2.2.2.3 Spectra data processing and metabolite identification. Raw data files were prepro-

cessed using ChromaTOF version 2.32 with the following settings: no smoothing, 3 s peak

width, baseline subtraction, automatic spectral deconvolution and peak detection at signal/

noise levels of 5:1 throughout the chromatogram. Spectra which failed to meet at least one of

these parameters were considered not identified for purposes of this study. All spectra identifi-

cation was done using the BinBase database.

The BinBase algorithm (rtx5) used the following settings: validity of chromatogram (10^7

counts s -1), unbiased retention index marker detection (MS similarity>800, validity of inten-

sity range for high m/z marker ions), retention index calculation by 5th order polynomial

regression. Spectra were cut to 5% base peak abundance and matched to database entries from

most to least abundant spectra using the following matching filters: Parameters used to identify

spectra included retention index window ± 2000 U (around ± 2 s retention time deviation),

unique ion and apex mass validation, mass spectrum similarity and a final isomer filter. Peak

height was reported as quantification using the unique ion as default. A quantification report

table was produced for all database entries that are positively detected in more than 10% of the

samples of a study design class for unidentified metabolites. A subsequent post-processing

module was employed to automatically replace missing values. Replaced values were labeled as

‘low confidence’ by color coding, and for each metabolite, the number of high-confidence

peak detections was recorded as well as the ratio of the average height of replaced values to

high-confidence peak detections. These ratios and numbers were used for manual curation of
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automatic report data sets to data sets released for submission. Peak heights (mz value) at the

specific retention index were reported. Peak heights instead of peak areas because peak heights

are more precise for low abundant metabolites than peak areas, due to the larger influence of

baseline determinations on areas compared to peak heights.

2.2.3 Data processing. All metabolomics data analyses carried out in this study were per-

formed using Metaboanalyst 4.0, an open source R-based program specifically designed for

metabolomics [21]. The raw data was filtered using standard deviation to identify and remove

variables which were non-informative to downstream modeling [22]. Additionally, the raw

data was normalized through log (base 2) generalized transformation to the metabolite peak

intensities to stabilize the variance and autoscaled by mean-centering and dividing by the stan-

dard deviation of each variable [23], [24].

2.2.4 Identification of putative biomarkers using a training metabolome data set. In

order to minimize the likelihood of capturing irrelevant metabolites, we applied in tandem three

statistical approaches to the training data set including partial least squares discriminant analysis

(PLS-DA) variable importance of projection scores (VIP), random forest (RF) mean decrease in

accuracy (MDA) values and, univariate receiver operating curve (ROC) area-under the curve

(AUC) analysis to the complete set of identified metabolites, for each time point separately.

A combination of four selection criteria were used to identify metabolites as potential bio-

markers in the training data set for discriminating meloxicam-treated from saline-treated cats.

These criteria include metabolites with an i) VIP >1, ii) MDA > 0.4%, iii) AUC>0.85, in at

least one treatment time point and iv) only metabolites which were identified at each treatment

time point [25], [26], [27]. Metabolites which met these inclusion criteria were considered

putative biomarkers and selected for additional analyses in the testing data set.

2.2.5 Supervised dimension reduction. PLS-DA was applied to each time point, 1

through 5, individually to compare meloxicam treated cats against the control groups for

supervised dimension reduction and initial identification of phenotypically significant urine

metabolites of acute feline kidney injury. VIP values were used as one method of identifying

biomarkers with predictive value in separating meloxicam treated cats from control cats.

Metabolites with VIP scores�1 at each time point were considered irrelevant to the prediction

and excluded from analysis [25], [28]. The predictive ability of the model for each time point

was internally validated based on leave-one-out cross validation using the Q2 diagnostic statis-

tic [29].

2.2.6 Random forest classification. The supervised machine learning random forest algo-

rithm was applied to cluster cats based on their phenotype (meloxicam and saline treatments)

and classify metabolites according with their contributions to classification accuracy. The

parameters used for the analysis included 500 trees, 7 predictors and randomness. Each tree

attempts to identify metabolites which contribute the most information to discriminate treat-

ment from controls. Those metabolites with>0.4% MDA in the random forest analysis during

at least one treatment time point were considered for inclusion in the model [26].

2.2.7 Receiver operating characteristic curve analysis. Univariate ROC curve analysis

was used to identify molecules that may represent candidate biomarkers for detecting changes

in urine induced by the repeated administration of meloxicam. We initially used this approach

by assessing the complete set of identified urine metabolites between the saline and meloxicam

group at each time point. The area under the ROC curve (AUC) value was used as a measure

of the prognostic accuracy of individual metabolites. An AUC value of 1.0 indicates a perfect

test due to absence of overlap of the test data from the control and diseased states, whereas an

AUC value of 0.5 shows the test is no better than random chance and therefore has no diagnos-

tic or prognostic value. We only considered metabolites with an AUC>0.85 for inclusion in

the model [27].
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2.2.8 Validation of putative biomarkers using a separate testing metabolome data set.

The putative biomarker model was trained on training data set cats and then applied to a sepa-

rate testing urine metabolite data set generated from an independent experiment of cats

(n = 8).The select set of biomarkers was utilized in the test data set to perform multivariate

ROC curve analysis with PLS-DA and RF machine learning, separately, as the classification

and feature ranking method performed. Sensitivity and specificity, ROC curves, Monte Carlo

cross-validation confusion matrices, predictive accuracies and mean importance were calcu-

lated for each testing data set time point to validate the value of the metabolite model derived

from the training data set. [30], [31].

3. Results

3.1 Training metabolome data set

All animals included in this study were clinically healthy according to physical examinations,

cellular blood counts and blood chemistry panels prior to administration of treatments. Once

treatments were started, cats in the control group remained healthy for the duration of the

study. One cat in the control group vomited once on day 4 after saline administration. In the

meloxicam treated group, the cats’ body-weights and condition scores were relatively stable,

with the exception of one cat (M5) whose body weight was reduced by ~ 7%, likely due to a

decrease in food intake. During the period of sample collection (0–17 days of treatments), 5

out of 6 cats in the meloxicam group vomited 2 to 15 times but no more than once a day. How-

ever, their food intake, body weight, and condition scores were consistent with pre-treatment

values. One cat in the training experiment, meloxicam-treated group failed to develop clinical

pathologic signs of AKI kidney damage (changes in serum creatinine concentrations and

USG) during the study and lacked histopathologic lesions consistent with kidney injury. This

cat had comparable plasma concentrations of meloxicam as compared to other cats within the

meloxicam treatment group (unpublished data). Due to the lack of clinical kidney disease, this

single cat was censored from the biomarker discovery analysis.

3.2 Training data set creatinine and USG

Serum creatinine concentrations initially rose in the meloxicam treated group on day 9 and

stayed markedly elevated for the remainder of the study, consistent with a decreased glomeru-

lar filtration rate (S1 Fig). Similarly, the USG began to drop on day 9 within the meloxicam

treated group, consistent with perturbations in concentrating ability secondary to renal tubular

damage (S2 Fig).

3.3 Urine metabolome of training data set

By applying an untargeted metabolomics approach, we were able to detect 318 low molecular-

weight (LMW) substances in the urine. Of these, 114 have been identified (Table 1), while 204

remain unknown (when spectra or the retention index is not matched to library entries).

3.4 Identification of putative biomarkers using a training metabolome data

set

3.4.1 Dimension reduction and cluster analysis. PLS-DA was efficient at discriminating

between groups as these supervised multivariate techniques take group identity (i.e. treatment

vs control) into account during dimension reduction analysis. The Q2 statistics of perfor-

mance, an estimate of the predictive ability of the discriminant analysis model, for time points

1 through 5 were 0.03, 0.55, 0.52, 0.52, and 0.33, respectively. These Q2 values support that
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there was not overfitting of the data, except for at time point 1 (prior to meloxicam administra-

tions). However, this is expected for time point 1 as PLS-DA will attempt to force a distinction

utilizing group identity, even prior to treatment (overfitting). The top 15 VIP results for each

time point of the PLS-DA are presented in Fig 2. VIP scores summarize the influence of an

individual metabolite on the overall PLS-DA model (S1 Table). VIP scores� 1 indicate metab-

olites which contribute significantly to the model.

3.4.2 Random forest classification. Metabolites for time points 2–5 were ranked using

machine learning algorithms by contributions to the performance of the model as measured

by the MDA value (Fig 3). A higher MDA value indicate increasing importance of a metabolite

Table 1. List of 114 low molecular-weight molecules identified in feline urine in the training data set using an untargeted metabolomics approach.

3-(3-hydroxyphenyl)propionic acid glycerol phenaceturic acid

3-(4-hydroxyphenyl)propionic acid glycerol-3-galactoside phenol

3,4-dihydroxycinnamic acid glycine phosphate

3,4-dihydroxyhydrocinnamic acid NIST glycocyamine pimelic acid

3,4-dihydroxyphenylacetic acid glycolic acid pinitol

3-aminoisobutyric acid hexadecane propane-1,3-diol NIST

3-hydroxy-3-methylglutaric acid hexitol pseudo uridine

3-phosphoglycerate hexuronic acid putrescine

4-hydroxybenzoate hippuric acid pyruvic acid

4-hydroxybutyric acid hydroxylamine quinic acid

4-hydroxycinnamic acid indole-3-acetate raffinose

4-hydroxyhippuric acid NIST indoxyl sulfate ribitol

4-hydroxyphenylacetic acid inosine ribonic acid

5-hydroxy-3-indoleacetic acid isocitric acid ribose

aconitic acid isohexonic acid saccharic acid

adenosine isomaltose serine

alanine isoribose sorbitol

allantoic acid isothreonic acid stearic acid

alpha-ketoglutarate kynurenic acid succinic acid

benzoic acid lactic acid sucrose

benzylalcohol lysine sulfuric acid

beta-alanine lyxitol tagatose

beta-gentiobiose lyxose taurine

catechol malic acid threitol

citramalic acid mannose threonic acid

citric acid mucic acid trehalose

citrulline myo-inositol tryptophan

conduritol-beta-expoxide myristic acid tyrosine

creatinine N-acetylaspartic acid tyrosol

deoxypentitol n-acetyl-d-hexosamine urea

erythritol N-acetylglutamate uric acid

ferulic acid N-acetylmannosamine uridine

fructose ornithine valine

fucose oxalic acid vanillic acid

galactinol oxoproline xylitol

galactonic acid palmitic acid xylonic acid

gluconic acid pelargonic acid xylose

glyceric acid pentitol xylulose NIST

https://doi.org/10.1371/journal.pone.0228989.t001

Urine biomarkers of NSAID administration in cats

PLOS ONE | https://doi.org/10.1371/journal.pone.0228989 February 13, 2020 9 / 21

https://doi.org/10.1371/journal.pone.0228989.t001
https://doi.org/10.1371/journal.pone.0228989


in predicting phenotype group (control vs. meloxicam). There are 15, 14, 10 and 8 metabolites

which met this inclusion criteria at time points, 2, 3, 4 and 5, respectively during the RF classi-

fication step (S2 Table).

Fig 2. Variable importance in projection (VIP) scores for the top 15 metabolites. VIP scores of top 15 urine metabolites used to differentiate meloxicam-treated

(n = 5) and saline-treated cats (n = 6). VIP scores are derived from PLS-DA analysis performed at each time point, 1–5. VIP scores� 1.0 were considered significant

when selecting metabolites for the final model. The column to the right of each figure display variations in metabolite peak intensities.

https://doi.org/10.1371/journal.pone.0228989.g002
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3.4.3 Receiver operating characteristic curve analysis. Univariate ROC AUC values

were calculated for all metabolites. AUC values represent the accuracy of an individual metab-

olite in correctly separating treatment from control animals. Prior to administration of treat-

ments (time 1), 7 metabolites had an AUC> 0.85 including citrulline, alpha-ketoglutarate,

tyrosol, mucic acid, citric acid, mannose and 3-hydroxy-3-methylglutaric acid. These seven

metabolites were excluded from the training data set time points 2–5 for all analyses performed

on the training data set i.e PLS-DA and RF analyses (S3 Table).

3.4.4 Training data set putative biomarkers. Metabolites present at all treatment time

points which met the inclusion criteria of AUC ROC> 0.85, VIP score> 1.0 and an

Fig 3. Mean decrease in accuracy (MDA) of top 15 urine metabolites. MDA of the top 15 urine metabolites for the discrimination of meloxicam-treated (n = 5) and

saline-controls (n = 6) for each time points (2–5) after the administration of meloxicam derived from random forest analysis. The higher the MDA value the more

important a metabolite is to the performance of the model. Urine metabolites with a mean decrease in accuracy� 0.004 in at least one post-treatment time point (2–5)

were considered for inclusion in the predictive model.

https://doi.org/10.1371/journal.pone.0228989.g003
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MDA > 0.004 in at least one time point include tyrosine, taurine, tryptophan, pseudouridine,

lyxitol, xylitol and threonic acid (Table 2). These seven metabolites were selected for inclusion

in the model as potential biomarker candidates. To evaluate the performance of the proposed

seven metabolite model, multivariate ROC analysis was performed on each treatment time

point, 2–5, and results were verified by the Monte Carlo cross-validation method. The sensitiv-

ity and specificity of the seven metabolite model based on either PLS-DA or RF as the final

classifier are listed in Table 3 when applied to the training data set.

3.5 Testing metabolome data set

All animals were clinically healthy according to physical examinations, cellular blood counts

and blood chemistry panels before the administration of the treatments. Once treatments were

started, cats in the control group remained healthy for the duration of the study. One cat in the

control group vomited once on day 4 after the first drug administration. In the meloxicam

treated group, the cats’ body-weights and condition scores were relatively stable.

Table 2. List of putative urine biomarkers derived from the training data set. The selected seven urine metabolites

were the only compounds in this study which met the following inclusion criteria: MDA� 0.004, VIP score> 1.0,

ROC AUC> 0.85 and in at least one treatment time-point.

Time 2 MDA VIP score ROC AUC

Tryptophan 1.20% 1.7 1.0

Taurine 1.19% 1.6 1.0

Threonic acid 1.11% 1.5 1.0

Tyrosine 0.36% 1.4 0.93

Lyxitol 0.23% 1.4 0.93

Xylitol 0.38% 1.4 0.93

Pseudouridine 0.35% 1.3 0.9

Time 3 MDA VIP score ROC AUC

Tryptophan 0.52% 1.6 0.9

Taurine 1.21% 2.0 1.0

Threonic acid 0.00% 1.3 0.9

Tyrosine 0.17% 1.6 0.93

Lyxitol 1.15% 1.9 1.0

Xylitol 0.16% 1.2 0.97

Pseudouridine 1.77% 1.9 1.0

Time 4 MDA VIP score ROC AUC

Tryptophan 0.44% 1.5 0.97

Taurine 0.46% 1.4 0.93

Threonic acid 0.61% 1.4 0.97

Tyrosine 1.31% 1.8 1.0

Lyxitol 1.47% 1.6 1.0

Xylitol 0.52% 1.5 0.93

Pseudouridine 0.31% 1.2 0.93

Time 5 MDA VIP score ROC AUC

Tryptophan -0.07% 1.2 0.9

Taurine 0.40% 1.5 0.93

Threonic acid -0.23% 1.3 0.87

Tyrosine 2.85% 2.1 1.0

Lyxitol 0.33% 1.5 0.9

Xylitol 0.08% 1.4 0.87

Pseudouridine 0.58% 1.6 0.9

https://doi.org/10.1371/journal.pone.0228989.t002
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3.5.1 Kidney histopathology for testing data set. Following 17 days of consecutive sub-

cutaneous meloxicam treatment every 24h, renal histologic lesions within the treatment group

(n = 4) included multifocal cortical tubular dilation, proximal tubular epithelial degeneration

and necrosis, degeneration and swelling of medullary tubular epithelial cells, heterogeneous

cortical peri-degenerate tubular inflammatory infiltrate composed of peri-degenerate tubular

aggregates of lymphocytes, plasma cells macrophages with fewer neutrophils and rare eosino-

phil. In contrast, cats within the saline control group (n = 4) had no to scattered tubular degen-

eration and minimal interstitial inflammatory infiltrate. These findings are consistent with

acute kidney injury predominantly focused on the renal tubules. Representative photomicro-

graphs, histologic scores, and aggregates scores for each cat are available in the supplementary

data (S4 and S5 Figs, S4 Table).

3.5.2 Testing data set creatinine concentrations and USG. The serum creatinine and

USG values followed a similar clinical progression as observed in the training data set. Serum

creatinine concentrations rose starting on day 7 and stayed elevated for the remainder of the

study (17 days) consistent with decreased glomerular filtration rate (S6 Fig). Similarly, USG

values did not drop below the cut-off of 1.035 until day 11 within the meloxicam treated

group, consistent with renal tubular concentrating ability (S7 Fig).

3.5.3 Validation of putative biomarkers using testing metabolome data set. The seven

metabolite model was applied to the testing data set obtained from a separate meloxicam treat-

ment experiment to confirm the value of these biomarkers in identifying cats treated with

meloxicam.

A model using multivariate ROC analysis with either PLS-DA or RF as the classifier was fit-

ted using the 7 putative biomarkers in the training data set and subsequently employed to pre-

dict the classification of unlabeled treated and control cats in the testing data set. The

sensitivity and specificity for the seven metabolite complete model when applied to the test

data set at each time point is reported in Table 3.

Table 3. Binary classification for the 7 metabolite model. These values were derived from multivariate exploratory ROC analysis with PLS-DA or RF as the final classifi-

cation methods. The 7 metabolite model is composed of tyrosine, tryptophan, threonic acid, pseudouridine, taurine, xylitol, and lyxitol. Sens, sensitivity; Spec, specificity.

When both training and testing time points are listed, the model is trained using data from training time point and used to predict the testing time point classifier (i.e

treated vs control).

Classification Method Training Time Point Testing Time Point True pos. False neg. True neg. False pos. Sens. Spec.

PLS-DA 1 NA 3 2 3 3 60% 50%

PLS-DA 2 NA 5 0 6 0 100% 100%

PLS-DA 3 NA 5 0 6 0 100% 100%

PLS-DA 4 NA 5 0 6 0 100% 100%

PLS-DA 5 NA 5 0 5 1 100% 83.33%

RF 1 NA 2 3 2 4 40% 66.67%

RF 2 NA 4 1 6 0 80% 100%

RF 3 NA 5 0 5 1 100% 83.33%

RF 4 NA 5 0 6 0 100% 100%

RF 5 NA 5 0 5 1 100% 83.33%

PLS-DA 2 2 4 0 4 0 100% 100%

PLS-DA 4 3 0 4 3 1 0% 75%

PLS-DA 5 4 4 0 2 2 100% 50%

RF 2 2 3 1 3 1 75% 75%

RF 4 3 0 4 2 2 0% 50%

RF 5 4 3 1 3 1 75% 75%

https://doi.org/10.1371/journal.pone.0228989.t003
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4. Discussion

In this study, we utilized an untargeted metabolomics approach to identify urine LMWs that

could be further studied as biomarker candidates for monitoring during the administration of

NSAIDs in cats. The subcutaneous administration of meloxicam rapidly and consistently

altered the urine metabolome of cats with marked changes as early as 2 days (training data set

time point 2) following the administration of meloxicam.

One of the earliest and strongest metabolic changes induced by meloxicam was a decrease

in the intensity of most of the urinary metabolites (S5 Table). The exact mechanism for a

decrease in the urine metabolites is unclear. Humans with chronic kidney disease also had

decrease of several metabolites in urine [32]. However, our findings contrast with some earlier

studies done in rodents reporting increased amino acid excretion upon dosing with cisplatin,

aminoglycosides, and other nephrotoxins [33], [34], [35], [36], [37]. Under nephrotoxic condi-

tions, amino acid excretion increases because of impaired reabsorption by the renal tubules,

increased cellular turnover, or increased permeability of the glomerular membranes [38]. In

our study, there was a decrease in the USG that was evident in most of the training data set

cats after 13 days of treatment. A decrease in the USG is likely a result of alteration of the urine

concentration capacity of kidneys. Moreover a decrease in the secretion or increase of reab-

sorption of metabolites could also explain a decrease in the intensity of some urinary metabo-

lites. Interspecies, and experimental model differences and meloxicam-specific effects may be

important factors dictating the studies dissimilarities. Another study suggests that the NSAID

indomethacin increases solute reabsorption at the medullary segment of the thick ascending

limb of the loop of Henle [39]. Whether meloxicam has similar effects as indomethacin in the

kidney remains to be determined but it could also explain, at least partially, a lower urinary

intensity of some metabolites.

Piroxicam (a drug that belongs to the same family of drugs as meloxicam) and other

NSAIDs have been reported to inhibit organic anion transporters (hOATs) and human

organic cation transporters (hOCTs). The exact mechanism of solutes’ renal excretion in cats

is unknown but it is possible that at least some of the metabolites reported in this study are

excreted by transport-mediated mechanisms which could have been altered by meloxicam

[40].

A group of 7 LMWs, including taurine, tryptophan, tyrosine, lyxitol, pseudouridine, xylitol

and threoinic acid were consistently able to discern meloxicam-treated from saline-treated

cats in the training data set. The alterations in peak intensity of these metabolites in urine may

be the result of kidney damage caused by the repeated administration of meloxicam. Urine

samples can be considered a liquid biopsy of the kidneys [10], thus some of the changes in the

urine metabolome might reflect effects of meloxicam on this organ. Interesting, within the

training data set all these LMWs changed in urine earlier (at least 4 days after the first treat-

ment) than creatinine (~10 days after the first treatment) in plasma, suggesting that these mol-

ecules could be used as urinary biomarkers for early detection of meloxicam-induced kidney

damage. However, the metabolite changes in urine observed in this study cannot be solely

associated with kidney damage as NSAIDs have effects in a myriad of body cells and organs

which could also be reflected in the urine metabolome [4], [41], [42].

Notably, taurine, tryptophan, tyrosine, and pseudouridine were identified as potential bio-

marker candidates of kidney disease in other species [43], [44], [45], [46], [47], [48]. Several of

the putative biomarkers proposed here have previously been shown to play a biologically sig-

nificant role both within normal renal homeostasis and disease states. For example, taurine, a

β-amino acid, is involved in regulation of renal blood flow [49, 50], apoptosis of renal tubular

epithelial cells [51], [52] and protection against renal injury [53], [54]. Tyrosine, a non-
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essential amino acid, is produced through metabolism of phenylalanine by renal tubular epi-

thelial cells. As renal function decreases following injury, there is decreased production of

tyrosine.

ROC analysis results suggest that a cats’ phenotype can be discriminated based on seven

metabolites identified in urine metabolome across multiple time points, with an average sensi-

tivity of 95–100% and specificity of 91.7–95.8% in the training data set, depending on the clas-

sification algorithm utilized. Even though it is necessary to assess the robustness of the selected

biomarkers through validation of the findings using independent data sets [55, 56], biological

validation of putative biomarkers is rarely found in scientific biomarker discovery publications

but necessary for increasing the value of the experimental findings. Distinctively, this study

tested prospectively sensitivity and specificity of the 7 metabolites (from the training data set)

on a separate metabolome data set (testing dataset) generated in an independent feline study.

When the 7 metabolites are applied to a separate test data set this resulted in an average of 66–

75%% sensitivity and 50–66% specificity across multiple time points. If testing time point 3 is

excluded from the analysis, this increased the sensitivity and specificity to 75–100% and 75%

respectively. These results using an independent data set support the relevance of the seven

metabolite biomarkers for dichotomizing meloxicam-treated from saline-treated cats. When

interpreting the calculated binary classification values it should be cautioned that these values

are limited by the small sample size of this study. Additional studies in a larger population is

required to confirm the diagnostic potential of the metabolites identified in this study.

This study discovered LMWs that are altered by the repeated administration of meloxicam

and could be used to detect or predict early adverse effects in cats. However, the seven metabo-

lites identified in this study should not be considered biomarkers yet because this study has

several limitations. First, this pilot exploratory study has been performed in a relatively small

and highly homogenous population of intact female domestic cats maintained under experi-

mentally controlled conditions. Many extrinsic factors have been shown to affect the urinary

metabolome including the gastrointestinal microbiota [57], [58], obesity/diet [59], [60], age

[61], exercise [62], diurnal variation [63], gender [61], and environmental chemicals [64]. The

elegance of the study reported here lies in the fact that we tested the metabolite selection using

a separate data set generated during an independent study that included cats from a different

breeder source, hosting conditions, and sampling times which increases the validity of this

study’s findings. However, the data presented in this study should be considered for hypothesis

generation. The validity of the metabolites found in this research should be assessed in studies

including both genders, different ages, diets and other environmental conditions. Even though

the sample sizes were enough to detect differences in the urine metabolome a larger study will

increase the robustness and external validity of the present study’s findings. It is important to

remark that this study provides, untargeted and nonbiased information regarding urinary

metabolites, as the hypothesis is not based on pre-selection of potential candidates to be inves-

tigated. Nevertheless, currently, there is no single-instrument platform that can cover all urine

metabolites (>3000) [65] therefore the LMWs evaluated in this study are likely to be a fraction

of the actual urine metabolome because this study was limited to one analytical platform [18].

It is expected that expanding the metabolome analytical platforms will help to discover other

metabolites that could serve as biomarkers for monitoring cats treated with NSAIDs.

5. Conclusions

This is the first study reporting changes in the urinary metabolome of cats with meloxicam-

induced kidney disease. Using a machine leaning technique, this study identified a novel panel

of 7 metabolites that may help to identify early non-symptomatic effects of the repeated
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administration of meloxicam. This panel of metabolites could be useful for drug development

and clinical trials involving NSAIDs or monitoring clinical patients. However, the clinical

value and robustness of this panel of metabolites need to be assessed in future experiments

with a larger target population of animals.

Supporting information

S1 Fig. Alterations in serum creatinine concentrations for training data set cats treated

with saline (n = 6) or meloxicam (n = 5) at 0.3 mg/kg every 24 hr for up to 47 days. The

dashed line indicates a USG of 1.035. Urine samples were collected on days -3, 0, 4, 9, 13, 17,

23, 26, 31, 34, 40 and 47.

(DOCX)

S2 Fig. Urine specific gravity values obtained by refractometry for the training data set.

Cats were treated with saline (n = 6) or meloxicam (n = 5) at 0.3 mg/kg every 24 hr for up to

47 days. The dashed line indicates a USG of 1.035. Urine samples were collected on days -3, 0,

4, 9, 13, 17, 23, 26, 31, 34, 40 and 47.

(DOCX)

S3 Fig. Supervised PLS-DA score plots performed on training data set urine metabolites

obtained at sampling time points 1–5 from saline treated control cats (n = 6) and meloxi-

cam treated cats (n = 5) at 0.3 mg/kg every 24 hr for up to 17 days, represented by triangles

and crosses, respectively. Each data point represents a urine sample from an individual cat.

Axis values are normalized principal component scores. Shaded backgrounds define the 95%

confidence interval for each group. The sampling time point is denoted in the upper left of

each plot.

(DOCX)

S4 Fig. Photomicrographs of representative sections from either control cats treated with

saline (n = 4) or meloxicam (n = 4) at 0.3 mg/kg every 24 hrs for 17 days. A) Kidney, corti-

cal, control, testing data set. Normal cortical tubular components including proximal convo-

luted tubule with intracytoplasmic lipid vacuoles, thick ascending limb of the nephron and a

glomerulus, hematoxylin and eosin (H&E, 200x). B) Kidney, cortical, meloxicam treated, test-

ing data set. Renal tubular dilation, tubular epithelial cell degeneration and interstitial mixed

inflammation (H&E, 200x). C) Kidney, cortical, meloxicam treated, testing data set. Tubular

degeneration characterized by tubular epithelial cells with granular, faintly eosinophilic and

vacuolated cytoplasm with renal tubular epithelial necrosis (H&E, 400x). D) Kidney, medul-

lary, meloxicam treated. Nodular accumulation of lymphocytes, neutrophils and macrophages

admixed with necrotic cellular debris within the medullary interstitium (H&E, 400x). E) Kid-

ney, cortical, control, testing data set. Diffusely intact and histologically unremarkable renal

tubular basement membranes (PAMS, 200x). F) Kidney, cortical, meloxicam treated, testing

data set. Multifocal fraying and loss of basement membrane integrity which correlates to

regions of interstitial inflammation and tubular necrosis in the H&E replicate sections (PAMS,

200x).

(DOCX)

S5 Fig. Box and whisker plot for the aggregate semi-quantitative renal histologic scores for

the testing data set obtained from blinded examination of at least one kidney from each

control cat treated with saline (n = 4) or meloxicam (n = 4) at 0.3 mg/kg every 24 hr for 17

days. The bold center line represents the median score, the boxes above and below the median

line are the first and third quartile. The whiskers represent the maximum and minimum scores
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for each group. Utilizing the non-parametric Mann-Whiney test, there is a significant differ-

ence in renal histologic scores between the meloxicam treated group (M) and the saline treated

control cats (C) (p = 0.006766).

(DOCX)

S6 Fig. Alterations in serum creatinine concentrations for testing data set cats treated with

saline (n = 4) or meloxicam (n = 4) at 0.3 mg/kg every 24 hr for 17 days. Creatinine values

are displayed in percent change from baseline samples. Serum samples were collected on days

-1, 1, 11, 14 and 17.

(DOCX)

S7 Fig. Urine specific gravity values obtained by refractometry for the testing data. Cats

were treated with saline (n = 4) or meloxicam (n = 4) at 0.3 mg/kg every 24 hr for 17 days. The

dashed line indicates a USG of 1.035. Urine samples were collected on days -1, 2, 11, 14 and

17.

(DOCX)

S1 Table. List of variable importance in projection (VIP) scores calculated from partial

least squares discriminant analysis (PLS-DA) performed on training data set urine metab-

olites. The list of identified metabolites is derived from urine collected from control cats

treated with saline (n = 6) or meloxicam (n = 5) at 0.3 mg/kg every 24 hr for up to 17 days

(time point 5). Metabolites with VIP scores> 1 were considered for inclusion in the model.

Blank values indicate the metabolite was not detected at that time point or was removed during

the data filtering step.

(DOCX)

S2 Table. List of mean decrease in accuracy (MDA) scores calculated using the machine

learning algorithm, random forest classification methods performed on training data set

urine metabolites identified in this study. The list of identified metabolites is derived from

urine collected from control cats treated with saline (n = 6) or meloxicam (n = 5) at 0.3 mg/kg

every 24 hr for up to 17 days (time point 5). Metabolites with MDA scores > 0.0004 were con-

sidered for inclusion in the model. Blank values indicate the metabolite was not detected at

that time point or was removed during the data filtering step.

(DOCX)

S3 Table. List of area under the curve (AUC) values calculated using receiver operator

curve analysis methods performed on training data set urine metabolites identified in this

study. The list of identified metabolites is derived from urine collected from control cats

treated with saline (n = 6) or meloxicam (n = 5) at 0.3 mg/kg every 24 hr for up to 17 days

(time point 5). Metabolites with AUC scores > 0.85 were considered for inclusion in the

model. Metabolites with AUC scores> 0.85 at time point 1 were excluded from the model.

Blank values indicate the metabolite was not detected at that time point or was removed during

the data filtering step.

(DOCX)

S4 Table. Raw semi-quantitative renal histologic scores for the testing data set obtained

from blinded examination of at least one kidney from each control cat treated with saline

(n = 4) or meloxicam (n = 4) at 0.3 mg/kg every 24 hrs for 17 days. Tubule damage and

inflammation were assessed on hematoxylin and eosin (H&E) stained sections and basement

membrane integrity were assessed on periodic acid-Schiff methenamine silver (PAMS) stained

sections. Cortical and corticomedullary tubules were assessed for degeneration, necrosis,

regeneration, dilation, attenuation and hypertrophy. Any subtype of inflammatory cell within
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the interstitium (i.e. neutrophil, lymphocyte, macrophage, eosinophil, etc.) were counted

when determining extent of inflammation. The maximum score per category is 4 with a maxi-

mum possible score of 16.
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S5 Table. List of average, maximum, and minimum raw intensity values (m/z) obtained

from GC-MS assay for each time point. The list of identified metabolites is derived from

training data set urine collected from control cats treated with saline (n = 6) or meloxicam

(n = 5) at 0.3 mg/kg every 24 hrs for up to 17 days (time point 5). Values highlighted in red

indicate an increase in average intensity (> 1.2 fold) and values highlighted in yellow represent

a decrease in average intensity (< 0.8) when comparing the meloxicam treated group vs. the

saline treated control group.
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