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Semen parameters are been found as a key factor to evaluate the count and morphology

in the given semen sample. The deep knowledge of male infertility will unravel with

semen parameters correlated with molecular and biochemical parameters. The current

research study is to identify the motility associated protein and its structure through

the in-silico approach. Semen samples were collected and initial analysis including

semen parameters was analyzed by using the World Health Organization protocol.

Semen biochemical parameters, namely, seminal plasma protein concentration, fructose

content, and glucosidase content were calculated and evaluated for correlation. Sodium

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted

laser desorption/ionization-time of flight (MALDI-TOF) were carried out for identification

of Septin-4 presence in the semen sample. Mascot search was done for protein

conformation and in-silico characterization of Septin-4 by structural modeling in Iterative

Threading Assembly Refinement (I-TASSER). Twenty-five nanoseconds molecular

dynamics (MD) simulations results showed the stable nature of Septin-4 in the dynamic

system. Overall, our results showed the presence of motility-associated protein in

normospermia and control samples and not in the case of asthenospermia and

oligoasthenospermia. Molecular techniques characterized the presence of Septin-4 and

as a novel biomarker for infertility diagnosis.

Keywords: human semen, seminal plasma, motility associated protein, septin-4, in-silico characterization,

molecular dynamics simulations

INTRODUCTION

Human infertility affects <15% of all couples, <6% of Indian couples. Among these, male partner
contributes 40–50% of total infertility (1–3). This gave a clear picture of the contribution of
males toward human infertility. Semen parameters, namely, spermatozoa concentration, sperm
motility, morphology, etc. plays a major role and act as a deciding factor for fertility rate.
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So, the andrologists majorly focus on these issues primarily
toward the diagnosis of male infertility (4, 5). For analyzing these
factors, a multiple-omics approach is in need to diagnosis male
infertility by having a strong focus on parameter analysis. Semen
parameters were found to be only the primary trump card, with
these, we can just tell about the count and morphology, wherein
the deepest knowledge of male infertility will come only when
semen parameters were correlated with many molecular and
biochemical parameters (6). One such approach is proteomics
of semen, correlating with motility-associated proteins. Motility
is the major parameter analyzed during semen analysis, the
cluster of proteins involved in giving mobility to the sperm
cells when entered into the female reproductive system (7–
11). Many potential biomarkers could be elucidated here
(proteomic approach) which strengthens the diagnosing part
(12). A biomarker is a marker derived from any biological
substances which could be used to study, analyze, and compare
various conditions and strategies. Biomarkers were non-invasive,
with minimal side effects, and could be used for various
diagnostics and therapeutics values (13–17). Currently, the
basic andrology laboratory, various semen analysis parameters,
endocrine research, and antisperm antibodies where assisting
clinicians for diagnosis (18–20).

In addition, the proteomic approach will strengthen the
patient-specific diagnosis and prognosis. Already we studied
the role and influence of many proteins like Semenogelin II,
prostasomes proteins, and epididymal proteins as markers for
various diagnostic approaches. Septin is one of the flagellar
proteins that produce the energy in the annular region and
helps the sperm to move forward in the female reproductive
tract (21–23). Septins are the major cytoskeletal protein with
major and unique filament-forming capabilities (24, 25). Many
mice model studies proved that the downregulated or missing
septin family protein in ejaculated semen will fall under sick
without mobility and thus producing the immotile sperms will
not help further for natural conception (26). So far 14 different
septin genes were identified since the first was 35 years back.
Disruption of septin and its functions shows many abnormalities
to humankind, namely, neoplasia, breast cancer, Parkinson’s
disease, neurogenerative disease, and human male infertility
(27, 28). Each septin presence is important for other septins to
do their functions properly. These septins will bind together to
produce a higher order structure, to form a filament, membranes,
or ring-like structure (29). The septin-rich part of sperm is the
annulus, it is a submembranous ring that separates the middle
and peripheral regions of the sperm flagella. The role of septin
is still in debate whether it is an active GTPases or just as a
guanosine triphosphate binding protein (30, 31). Septin gives
much more energy and the ring structure gives the circulatory
force that drives the sperm to move forward and not immotile in
the female reproductive tract (32, 33).

The functions of septin start at spermatogenesis itself, during
this time it helps in establishing the mitochondrial architecture
and cytoskeleton to the annulus. The absence of Septin-4 and−12
in the sperm cell, lacking with the functions of mobility,
midpiece damage, rounded sperm head, acrosomal defects,
etc. (34, 35). Many studies revealed the insufficient energy

for a sperm cell to move forward in the absence of septin
proven by in vitro and in vivo mice models. The absence of
septin in sperm cells is shown with lots of annuli and the
connection between midpiece and head, this will misfunction
the sperm and not able to fuse the ovum as it fails the
forward motility (36, 37). The functions of septin in male
fertility were more, but still, the mechanism of understating
these family proteins was very tough, and correlating with male
infertility diagnosis could be elucidated further (38, 39). Due
to the lack of experimental structure of human Septin-4, the
structural predictionmethods using in-silico characterization will
help in elucidating the structure–function relationship at the
molecular level.

MATERIALS AND METHODS

Semen Sample Collection
Semen samples were collected from the patients who visited
Bangalore Assisted Conception Center, Bangalore, Karnataka
at the Andrology lab. The samples were collected from them
in a wide mounted, sterile, non-toxic plastic ware, they have
been provided with a neat room to collect the samples. The
method followed was 7 days abstinence time and masturbation
technique. Strictly the abstinence time was asked with them as
it influences the results in a great manner. The patients were
provided with all necessary infrastructures for collection as this
also influence the results. Once, the collection was over, the
patient details, namely, the name, hospital number, andrology
number, abstinence time, method of collection, smoking habits,
alcohol habits, last visit date, last collection date, age, and
region were asked for and observed. The sample container
was marked with a patient number, hospital number for
further processing (40).

Ethical Consent
Ethical clearance was done for this work to carry on human
semen samples. Informed consent was also obtained from the
patients in their own language. The patients were explained with
the motive of this work and only after semen analysis report
were ready, and then the remaining samples were utilized for
this work.

Semen Analysis Report Preparation
Soon after the arrival of samples from the patients to
andrologists, a semen analysis report was prepared.WorldHealth
Organization (41) procedure was strictly followed to prepare
the report. Computer-assisted semen analysis, Germany made,
was used to compute the number of spermatozoa, motility,
morphology, etc. (42).

Categorization of Semen Samples
Semen samples were segregated into groups by prepared
semen analysis report; the categories were asthenozoospermia,
oligozoospermia, normozoospermia, and healthy volunteers or
controls. The segregation was done purely by using semen
parameter values and semen analysis reports (42).
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Statistical Analysis
We have used Graphpad prism (GraphPad Software, USA),
version 5.1 for this research statistical data. Values were
mentioned with mean ± standard error of the mean for
experiments repeated (43).

Separation of Spermatozoa and Seminal
Plasma for Biochemical and Molecular
Analysis
For this research, after semen sample analysis, samples were
collected according to the standard protocol followed by WHO
and as per Rao et al. (44).

Spermatozoa Disruption for Obtaining the
Intracellular Protein Content
Spermatozoa separated from seminal plasma; sperm pellets
were suspended which was supplied with buffers with
various detergents. The standard protocol is followed for
spermatozoa disruption (42).

Protein Estimation
Protein estimation was done on each fraction of seminal
plasma and spermatozoa with the standard protocol followed by
standard protocol (45).

Fructose Content Estimation
Fructose content in each sample was evaluated with the standard
protocol given byWHO (41), with somemodifications done (46).

Enzyme α-Glucosidase Estimation
α-Glucosidase estimation in each sample was evaluated with the
standard protocol given by WHO (41), with some modifications
done (47).

Estimation of Trace Element Zn
Zinc (Zn) plays a major role in human male fertility.
Estimation of Zn was done with standard protocol by using
atomic absorption spectroscopy and followed standard protocol
(48). Trace element concentrations were estimated using the
standard curve.

Identification of Septin-4 Protein in
Spermatozoa
The centrifuged and ultrasonicated samples were used to
identify the fertility-associated protein in spermatozoa (Septin-
4); intracellular proteins isolated from different semen samples’
categories (asthenozoospermia, oligospermia, normospermia,
and control) were subjected to SDS-PAGE analysis. The silver
stating protocol was used to stain the gel. To the extend, the
protein band which was differentially expressed (downregulated)
in the asthenozoospermia category was subjected to matrix-
assisted laser desorption/ionization- time of flight- mass
spectrometry (MALDI-TOF-MS) analysis and then Mascot
search for identification of the protein.

The differentially expressed band from the gel was excised
and dehydrated with a minimum of 50% 50mM ammonium
bicarbonate and 50% acetonitrile. Then follows the standard

protocol overnight. Voyager-DE STR instrument (PerSeptive
Biosystems, Inc., USA) in linear mode was used to acquire
MALDI-TOF-MS spectra. Positive ions accelerated to 20V were
calculated. Both matrix and sample were dissolved in milliQ
water and equal ratios of matrix and sample were mixed and
spotted onto MALDI plate for analysis.

In-silico Characterization
In addition to the wet-lab experiments, the in-silico structural
analysis was evaluated for human Septin-4. The primary analysis
based on the Swissprot database screen proved Septin-4 consists
of 478 amino acids (Uniprot/Swissprot id: O43236). Septin-4
consists of eight isoforms and isoform 1 (identifier: O43236-
1) was selected for the analysis consisting of molecular weight
55,098 Daltons (55 KDa). From the structural database screening,
the absence of an experimental 3D structure of Septin-4 was
identified. The in-silico structural modeling of Septin-4 was
performed using the Iterative Threading Assembly Refinement
(I-Tasser) server (49). Iterative Threading Assembly Refinement
is a fully automated 3D structural prediction of protein server
based on the threading/fold recognition methodology. It ranked
no. 1 among the structural prediction server evaluated by a
critical assessment of structure prediction (CASP14 experiment
in 2020) and also ranked top for the function prediction
(CASP9). The server chooses the suitable structural templates
from database protein data bank (PDB) by a multiple-threading
approach called local meta-threading server (LOMETS) and
protein models constructed by iterative template-based fragment
assembly simulations. The prediction is mainly based on critical
parameters like C-score, TM score, and root mean square
deviation (RMSD). C-score, a scoring function mainly based on
the theoretical concepts were also done. C-score with a range of
[−5, 2] signifies the higher value confirmed the protein model
with the confidence level. The output showed the five best protein
models based on optimal C-score, TM-score, RMSD, and SD.

Molecular Dynamics Simulation
Molecular dynamics (MD) simulations study on human Septin-
4 was carried out using GROMACS 5.0 package (David van der
Spoel, Sweden) (50). Simple point charge (SPC21) water
molecules of 0.9 nmwere used for the solvation of proteinmodels
in the simulation box. The neutralization of the system was
obtained by adding six sodium ions to replace the initial SPC
water molecule in all directions. Energy minimization of all
systems was carried out by steepest descent energy minimization
with tolerance limit 100 kJ/mol and GROMOS96 43a1 force
field was used for the simulations of protein (51). A cutoff of
14 Å for van der Waals interactions and 12 Å for electrostatic
interactions was used for the process. Electrostatic interactions
were computed using the particle mesh Ewald method. The
LINCS algorithm was used to constrain all bond lengths and
the SETTLE algorithm was applied to constrain the geometry
of water molecules in the system. The energy minimization was
done in two equilibration phases, number of particles, volume,
and temperature (NVT) ensemble with a constant temperature
of 300K and with a coupling constant of 0.1 ps for duration
100 ps, and number of particles, pressure, and temperature

Frontiers in Medicine | www.frontiersin.org 3 December 2021 | Volume 8 | Article 723019

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Vickram et al. Human Septin-4 as a Biomarker

(NPT) ensemble with a constant pressure of 1 bar was employed
with a coupling constant of 5 ps for duration 100 ps. For both
ensembles of equilibration, the coupling scheme of Berendsen
was employed. Finally, the systems were subjected to production
MD simulation for 25 ns run. MD trajectories of human
Septin-4 were analyzed by GROMACS utilities. The analysis
included RMSD, solvent accessible surface, the radius of gyration
(Rg), and principal component analysis (PCA). The stability
analysis was performed by using utilities like g_ rms, g_ sas, g_
gyrate, g_covar, and g_anaeig, respectively. Principal component
analysis describes a correlated motion of the protein obtained
from the mass-weighted Cα-covariance matrix. The functionally
relevant motion of the protein can be computed by the collective
displacement of domains called essential dynamics. To detect
the collective motion mutant trajectories were subjected to
PCA. The resulting covariance matrix describes the concerted
coordinate motions

In this study, the first and second Cartesian principal
components are considered reaction coordinates derived
from PCA.

RESULTS

The first step was to categorize the semen samples based on the
World health organization values, this was done by using several
semen samples, and each value and its error mean was the final
mark. Based on the semen analysis report oligospermia (N = 18)
meant for less count than normal, asthenospermia (less motility
N = 24) than normal, normospermia (normal as per WHO
N = 15), oligoasthenospermia (both less count and motility
N = 12), and healthy volunteer (control N = 8). The semen
parameter values were tabulated in Supplementary Table 1. The
results suggested that there exists a potential statistical difference
exist between oligospermia and asthenospermia in the case of
motility parameter. As this work will further correlate only
the motility issues, the results we majorly focused on only
motility issues.

Once the semen analysis report and categorization of samples
were done, immediately the samples were kept in liquid nitrogen
preservation. Once the need, the samples were centrifuged
for separation of seminal plasma and spermatozoa. Important
biochemical parameters were analyzed. The total protein
content was done for both seminal plasma and spermatozoa,
fructose content was estimated in seminal plasma, α-glucosidase
estimation was also done in seminal plasma for all samples in all
categories, and Zn content was evaluated in the same way. All
these are very essential biochemical parameters that need to be
evaluated for proper correlation with molecular markers during
diagnosis. All these biochemical values for different categories of
semen samples were tabulated in Supplementary Table 2.

Protein content was already evaluated through Lowry’s
method. After centrifugation, sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) was done
for different infertile categories as mentioned earlier in the
methodology section. The developed silver-stained protein
SDS-PAGE was depicted in Figure 1. Almost eight bands were

FIGURE 1 | The band around 55 kDa was less expressed in the case of

asthenospermia, but present in the case of oligospermia, normospermia, and

healthy volunteers. We guessed the importance of missed 55-kDa protein and

further we want to investigate on this protein. GelAnalyzer was used to analyze

this 1D SDS PAGE bands and all the interpretation has been done by the

standard protocol. 1, marker standard; 2, Normospermia; 3, healthy volunteer;

4, Asthenospermia; 5, Oligoasthenospermia.

found to be visible in the SDS-PAGE, with a maximum of
bands existing in the case of 50 and 110 kDa proteins. The
band around 55 kDa was missing in the case of asthenospermia,
but present in the case of oligospermia, normospermia, and
healthy volunteers. We guessed the importance of missed 55-kDa
protein and further, we want to investigate this protein. The
missed protein was isolated from normospermia and healthy
volunteers and then MALDI-TOF analysis was done for eight
samples to access the similarity in the results. Also, a Mascot
search was done by using the MALDI-TOF results. The missing
protein in asthenospermia was identified as Septin-4. It has
already been evidenced that this protein had played a major role
in Alzheimer’s disease, male infertility, and Down syndrome.
The role of Septin-4 in male infertility is enormous and more
molecular work is in need for the prediction of the pathway
mechanism behind male infertility. The correlation of motility
and its implications with male infertility diagnosis is the key
to success.

Mascot Search and Its Implications
The date got through m/Z values were analyzed for each sample
was searched in mascot MALDI-TOF-MS ions search. The
database used as SwissProt, humans as chosen for taxonomy and
enzyme as trypsin in the search tool. The parameters used for
searching the protein of interest through mascot search were
tabulated in Table 1. We looked for a maximum of hits and
were obtained against the Septin-4 protein. The functions of
the query protein were reviewed in Swissprot and involves in
male infertility if downregulated in certain patients. Database
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TABLE 1 | Mascot Search for the identified protein by MALDI TOF and its parameter search.

Variable modification Protein Fixed modification Sequence coverage (%) Significance score

Carbamidomethyl (C) Septin 4 (Homo sapiens) Carbamidomethyl (N-term) 91 85

Carbamidomethyl (C)

Carbamyl (K)

Septin family (Mice) Carbamidomethyl (N-term)

Carbamyl (N-Term)

85 57

Carbamidomethyl (C)

Carbamyl (K)

Semenogelin II

(Homo sapiens)

Carbamidomethyl (N-term)

Carbamyl (N-Term)

80 52

FIGURE 2 | (A) 3D structure model of human septin 4 visualized in PyMOL. (B) Protein quality check from ProSA server.

search was performed in PDB and observed that the absence of
experimental structure of human Septin-4. The in-silico approach
has been used to predict the structure of protein for further
research studies.

Structure Prediction
Using the in-silico structural study on human Septin-4, the 3D
structural model was predicted from the I-Tasser server. Out
of five models, the model with the least C-score −3.19 was
selected as the best structure of Septin-4. The other parameters
also supported the model with an estimated TM score of 0.36 ±
0.12 and an estimated RMSD of 15.2 ± 3.5Å. The threading/fold
recognitionmethod screened the structure of the GTPase domain
of human Septin-12 (PDB code: 6MQ9) as the template for the
Septin-4 modeling. The Septin-4 model falls under the structural
classification of alpha + beta, the architecture of the three-
layer (αβα) sandwich, and the topology of the Rossmann fold,
and is visualized in PyMol in Figure 2A. The major molecular
function of the septin family was catalytic activity, GTPase
activity, hydrolase activity, protein binding, lipid binding, and

protein dimerization activity. The quality of the model was
deciphered by the ProSA server and results showed the Z-score
of−3.5 that related to experimental structures in Figure 2B. The
above predicted human Septin-4 structural model can be used for
further annotation studies related to male infertility mechanisms.

Molecular Dynamics Simulations
The convergence of the protein system during simulations was
measured by RMSD of all Cα atoms from the initial structure.
The initial equilibration of the native structure of human Septin-
4 was done in 5 ns. After the equilibration phase, the structure
of Septin-4 showed an RMSD range in 0.3–0.4 nm during 25 ns
simulations (Figure 3A). The structure was well-converged and
confirmed the protein stability of Septin-4 at end of simulations
and structure with a stable trajectory in the dynamic system.
Radius of gyration was the property of the overall dimension of
protein during simulations. The Rg is termed as a measure of
mass-weighted root mean square distance of all atoms from the
center of mass. Radius of gyration of Septin-4 native structure
started with 1.92 nm but gradually decrease to equilibrate
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FIGURE 3 | Molecular dynamics simulations at 25ns of human septin 4 model (A) RMSD plot, (B) Rg plot, (C) SASA plot, (D) PCA plot.

with 1.85 nm (Figure 3B). Thus, the overall protein folding
pattern of human Septin-4 protein was observed. A solvent-
accessible surface (SASA) plot was constructed and results
showed the accessibility area around 75–80 nm2 confirmed the
behavior of the hydrophilic and hydrophobic residues in Septin-
4 (Figure 3C). Principal component analysis was performed
based on two steps. In the first step, the covariance matrix
was constructed and diagonalized based on Cα atoms using
g_covar and trace value of 5.52816 nm2. The eigenvectors and
corresponding eigenvalues were evaluated from the covariance
matrix using the motion of protein at the atom level. Then PCA
was done using g_anaeig with the projection of the first two
eigenvectors (eigenvector 1 vs. eigenvector 2) and the maximum
motion extracted from the production run of 20 ns. The local
motion of the PCA plot showed the overall motion of human
Septin-4 in the dynamic system related to eigenvector 1 vs.
eigenvector 2. The cluster was more compact and deciphered the
motion of protein with covariance matrix (Figure 3D).

DISCUSSION

Homozygous Septin-4 (Human semen Septin-4) deletion or its
downexpression was shown to have a complete or partial defect
in the structure of the sperm flagellum; this means it helps a lot

for the forward motility (52, 53). In our results also, the Septin-
4 absent or less expressed yield with less motility and especially
with forward type. The defect in the flagella or neck region always
yields these types of results (54, 55). Other researchers worked
with Septin-4-null sperm or flagella modified with no annulus,
this structure has been replaced by thin segment missing cortical
material, acts like an abnormal-flagella conferring a hairpin-
like structure (56–58). Two major hypothetical utilities have
long been ascribed to the annulus of the spermatozoa: one is
a diffusion barrier function; it is a very essential function for
the fertilization, detaining proteins to various compartments of
the sperm tail to the neck (59, 60). The second one is might
be on morphological planner function given guidance to the
growth of the flagellum and the association of the mitochondria
along the axoneme. Both of these mechanisms were found to
be failed in the case of Septin-4 null sperm. Morphology of
human sperm annulus/flagellum has been known for a long time,
but the mechanism by which it is correlating is poorly studied
(56, 61). Sperm flagella biogenesis, the biochemical composition
of the sperm tail to neck, and its functions remained as same
in the case of rigorous research. For the last decade, septins
have appeared and been explored as constitutive components of
the annulus/flagella of spermatozoa and persuasive evidence has
been evidenced bymany researchers and suggest that a very stable
septin complex/Septin-4 is the prerequisite for morphological
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differentiation of the sperm tail, neck and with an important
mechanism of diffusion barrier function (56). Although current
evidence suggests that septins bind to the plasma membrane
via interaction with phosphoinositides, our previous research
with prostasomes suggest that the Zn present on prostasomes
may transfer the essentials of needed motility factors and
phospholipids for proper movement (62), this achieved through
the fusion process of prostasomes and spermatozoa by means
of protein dependent or pH dependent (63, 64). This finding
suggests that binding to integral membrane proteins could also
be involved.Moreover, the advance of in-silico studies deciphered
the structural annotation of human Septin-4 that can be used
to understand the role of septin in male infertility. Molecular
modeling is the current best method used in the 3D structure
prediction of key protein/enzymes/drug targets in proteomics.
From the model structure, the major mechanism of Septin-4
has been studied using the structural arrangements of helix and
sheets. The structure–function relationship is highly critical in
the research area of male infertility, as very few 3D experimental
structures are available. Also, advancements in MDs simulation
deciphered the behavior of novel biomarker protein Septin-4 in
the all-atom dynamics. In-silico finding acts as a critical point that
can initiate various structure-function studies on human Septin-4
toward male infertility mechanism and pharmacology aspects.

CONCLUSION

Septins are the most important constituents of the annulus
in spermatozoa, a submembranous ring that disconnects the
middle and primary pieces of spermatozoa. This is believed to
be an important protein Septin-4 that plays a major role in
motility and its absence may be associated with asthenospermia.
Many researchers previously reported its essential role in
spermatogenesis and reproduction in animal models. Till now
many researchers worked with labeling techniques and identified
the importance of Septin-4 in the case of male infertility. In this
current research work, we elucidated and identified the presence
of Septin-4 in normal healthy sperm samples and its absence or
less expression in the case of other infertile groups especially in
the case of motility-related issues. The importance of Septin-4 in
male fertility was proved with 3D structural modeling from in-
silico characterization and MDs simulation confirmed the role
of stable Septin-4 in the dynamic system. Less expression was
found exclusively in infertile patients when compared to fertile

patients. Further research on Septin-4 with structural studies
may be used to explore more on the mechanism and its role
in spermatogenesis and human infertility. Hence, our findings
concluded that Septin-4 was a novel biomarker formale infertility
and can be used for diagnosis and pharmacology purposes.
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