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A B S T R A C T   

Background: The coronavirus disease (COVID-19) effected a global health crisis in 2019, 2020, and beyond. 
Currently, methods such as temperature detection, clinical manifestations, and nucleic acid testing are used to 
comprehensively determine whether patients are infected with the severe acute respiratory syndrome corona
virus 2. However, during the peak period of COVID-19 outbreaks and in underdeveloped regions, medical staff 
and high-tech detection equipment were limited, resulting in the continued spread of the disease. Thus, a more 
portable, cost-effective, and automated auxiliary screening method is necessary. 
Objective: We aim to apply a machine learning algorithm and non-contact monitoring system to automatically 
screen potential COVID-19 patients. 
Methods: We used impulse-radio ultra-wideband radar to detect respiration, heart rate, body movement, sleep 
quality, and various other physiological indicators. We collected 140 radar monitoring data from 23 COVID-19 
patients in Wuhan Tongji Hospital and compared them with 144 radar monitoring data from healthy controls. 
Then, the XGBoost and logistic regression (XGBoost + LR) algorithms were used to classify the data according to 
patients and healthy subjects. 
Results: The XGBoost + LR algorithm demonstrated excellent discrimination (precision = 92.5%, recall rate =
96.8%, AUC = 98.0%), outperforming other single machine learning algorithms. Furthermore, the SHAP value 
indicates that the number of apneas during REM, mean heart rate, and some sleep parameters are important 
features for classification. 
Conclusion: The XGBoost + LR-based screening system can accurately predict COVID-19 patients and can be 
applied in hotels, nursing homes, wards, and other crowded locations to effectively help medical staff.   

1. Introduction 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
has resulted in a large-scale global pandemic with its extreme 

contagiousness and high fatality rate [1]. From the onset of the outbreak 
in late 2019 to January 14, 2021, 25.86 million infected cases have been 
reported worldwide, which have resulted in 1,362,700 deaths. Some 
effective methods of controlling the spread of the virus include 
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large-scale screening, patient isolated treatment, and symptom surveil
lance. Most of the current testing methods are based on the reverse 
transcription-polymerase chain reaction (RT-PCR). At the peak of the 
SARS-CoV-2 outbreak, there was a severe RT-PCR test kit shortage; thus, 
computed tomography (CT), clinical features, and temperature testing 
were proposed as alternative diagnostic methods in hospitals [2,3]. 
However, owing to the relative novelty of the disease, doctors and 
medical personnel encounter challenges in accurately identifying coro
navirus disease (COVID-19) cases in underdeveloped regions. As a 
result, many suspected cases cannot be tested, treated, and quarantined 
in time; thus, the spread of the virus may continue [4–6]. Moreover, 
because SARS-CoV-2 is highly infectious, the risk of infection is three 
times higher in doctors and nurses than in the general population, as 
they are closer to patients during treatment [7]. Therefore, this study 
aims at finding a non-contact automated detection device and method 
for testing SARS-CoV-2 infections without assistance from professional 
physicians. 

Infected patients experience symptoms such as fever, fatigue, dry 
cough, and dyspnea [8]. Some researchers have attempted to detect 
these symptoms using non-contact devices and machine learning algo
rithms [9]. They focused on two main issues: the features extracted from 
the subject and the algorithms used to recognize infected subjects. 

Regarding the features, many infectious disease detection systems 
have focused on detecting abnormal changes in heart rate, respiration 
rate, and facial temperature. Yang et al. [10] designed a contactless 
dengue fever screening system with microwave sensors (detecting heart 
rate, respiration rate, and the standard deviation of heartbeat interval) 
while using a neural network and the SoftMax function to determine 
whether the disease is infectious as well as the probability of infection, 
achieving a 98% accuracy. However, they believed that facial temper
ature could be greatly influenced by the environment. Matsui et al. [18, 
19] used respiratory rate, heart rate, and facial thermal imaging to 
rapidly screen influenza based on linear discriminant analysis (LDA). 
Their results revealed that the system has higher accuracy than systems 
with only thermal imaging, achieving an 88.9% accuracy. 

In terms of single classification methods, most studies applied a 
single machine learning classifier to detect infections; for example, lo
gistic regression [10], support vector machine (SVM) [11,12], k-means 
[13], k-nearest neighbor (KNN) [14], decision trees [15], and random 
forest (RF) [16,17] were broadly studied in the infectious disease 
screening field. Yao et al. [14] compared the performance of six different 
single classification models, including LDA, quadratic discriminant 
analysis (QDA), SVM, KNN, logistic regression (LR), and the Naive
Beyesian classifier, among which SVM and QDA exhibited the best re
sults. Their research also indicated that the classification performance 
was not affected when the respiratory rate was excluded. A possible 
explanation is that the respiratory rate is difficult to measure owing to 
the short observation period and large noise. Sumiyakhand et al. [15] 
used the random tree method to predict the influenza infection status in 
patients. The sensitivity and negative predictive value (NPV) were 
96.2% and 96.0%, respectively; the random tree showed a high accu
racy. Sun et al. [20] used an LR model and features such as facial tem
perature, respiratory rate, and heart rate to recognize infections, with a 
sensitivity and NPV of 87.5% and 91.7%, respectively. These results 
showed that the facial temperature and heart rate of influenza patients 
were higher than those of the healthy group, although there was no 
significant difference in the respiratory rate. 

The abovementioned studies mainly discussed a few short-term 
features, meaning that these features only contain information about 
the subject over several seconds or minutes. Moreover, the short-term 
monitoring data within 20 s are easily disturbed and cannot reflect the 
long-term fluctuation of patients’ physical data. In addition, some 
studies have shown that the respiration rate over a short period of time 
rarely contributes to the screening of infectious diseases. In our study, 
we attempted to determine more long-term features to describe the 
status of the subject, especially at night—such as sleep quality—to 

screen for infection possibilities. 
Another limitation concerning these studies is that they used a single 

feature classification model, which can result in over-fitting and a less 
robust performance, despite these models performing well on their 
datasets. Furthermore, because we studied more features than these 
studies did, it was necessary to propose a robust model that can handle 
high-dimensional features. 

In this study, we used a biological radar to continuously monitor 
patients throughout the night and obtained 25 long-term and short-term 
features. A combined XGBoost and LR algorithm (XGBoost + LR) was 
applied to the radar monitoring data to screen COVID-19 patients, in 
which the XGBoost model was used to select effective features, and the 
results of the constructed trees of this model were treated as inputs to the 
LR model. In this way, we combined the advantage of decision trees—i. 
e., selecting suitable features—and that of LR, which in turn allows the 
model to deal with massive features. 

The major contributions of this study are as follows:  

● Providing a long-term non-contact COVID-19 screening system for 
use in hotels, wards, and other places located in isolated regions.  

● Illustrating the efficiency of long-term features and the ensemble 
XGBoost + LR model for night monitoring and COVID-19 disease 
screening. 

2. Materials and methods 

2.1. Equipment and data 

In this study, a non-contact vital sign monitoring system was used to 
monitor COVID-19 patients at Wuhan Tongji Hospital, Wuhan, China. A 
total of 140 radar monitoring data from 23 patients were collected from 
March 17, 2020, to April 4, 2020, and 144 sleep monitoring data of 
healthy controls were analyzed. In this experiment, patients ranged from 
mild to moderate cases and were all in the general isolation ward during 
data collection. The healthy subjects’ data were acquired in their own 
homes. Basic information such as age, sex, underlying diseases, and 
medication was recorded. The basic information from both groups dis
played a scattered distribution with no significant difference. Therefore, 
these factors can be regarded as small interference items; thus, the 
effectiveness of this control experiment is validated. 

Doctors collect patient data by placing the monitor at the patient’s 
bedside. This data collection method does not affect the daily activities 
of patients and affords ease of operation to medical staff. This research 
was approved by the Peking University Third Hospital Medical Research 
Ethics Committee (No.2020(081-01)), and the patients (or their care
givers) provided written informed consent prior to participating in the 
experiment. 

The monitoring system consists of a non-contact vital sign monitor 
[23] and remote data service platform. The monitor transmits radar 
signals and then filters the radar echo signals to separate the heartbeat, 
respiratory, and body motion signals, thus extracting the respiration 
rate, heart rate, body movement, and sleep apnea. The monitoring data 
were uploaded to the data platform in real-time via Wi-Fi. After one 
night’s sleep, the system analyzes the sleep and apnea data of the entire 
night and obtains a sleep monitoring report. 

The sleep monitoring report has 25 data points, as shown in Table 1, 
which fully reflect the patient’s nighttime breathing, heartbeat, sleep 
structure, body movement, apnea, and other aspects. 

2.2. Data exploration 

First, we verified whether differences existed in the nighttime 
respiration, heartbeat, body movement, and sleep quality between the 
COVID-19 patients and the healthy subjects. Fig. 1 shows that the heart 
and respiratory rates of the healthy subjects are relatively concentrated, 
whereas those of the patients are scattered and the values are relatively 
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large. The mean body dynamic density and wake-up times of patients 
were approximately twice those of healthy subjects. The data distribu
tion of patients was significantly different from that of healthy subjects. 
Therefore, we can classify patients and healthy subjects based on these 
features. 

Fig. 2 shows the distribution of hospitalization days and the joint 
distribution of average heart rate, average respiratory rate, and apnea 
frequency during sleep and hospitalization days. The average heart rate 
and average respiratory rate decreased with an increase in hospitaliza
tion days, and the wake up time increased with an increase in hospi
talization days. 

2.3. Model building 

XGBoost is an ensemble-learning algorithm based on gradient 
descent iterations. XGBoost uses decision tree as the base learner for 
integration. The algorithm continuously splits features to grow a tree. 
Each decision tree calculates the feature and threshold with the best 
branch effect and completes the split construction. Finally, the predic
tion results become consistent with the patient’s diagnosis results, and 

the screening model is obtained. 

ŷ(t)
i =

∑T

t=1
f t(xi) (1)  

ŷ(t)
i = ŷ(t− 1)

i + f t(xi) (2)  

where hypothesis f t(xi) is the output of the t-th tree, ŷ(t)
i is the current 

output of the model, and yi is the actual result. T represents the number 
of decision trees, and t represents the t-th iteration, that is, every time we 
find an optimal model to add to the existing model to make the predicted 
value closer to the real value. We build the optimal model by minimizing 
the loss function. When the training dataset is small, it is easy to over-fit; 
therefore, it is generally necessary to add a regular term to reduce the 
complexity of the model. 

L=minf∈F
1
N

L(yi, f (xi)) + λJ(f ) (3)  

where F is the hypothetical space and J(f) is the control of the 
complexity of the model. 

Therefore, the objective function is given by the following equation: 

obj(t)=
∑n

i=1
l
(

yi, ŷi

)

+Ω(f (t)) + Contstant (4) 

The first part on the right side of equation (4) is the training error, 
and the middle part is the complexity of the penalty model (the sum of 
the complexity of all trees), which contains two parts: the number of leaf 
nodes and the value of each leaf node. The expression is given as 

Ω(f)=ΥT +
1
2

λ
⃒
⃒
⃒
⃒|w||

2 (5)  

where T is the number of leaf nodes, ||w|| is the module of the leaf node 
vector, Υ is the difficulty of node segmentation, and λ is the L2 regula
rization coefficient. 

We expand the loss function using Taylor’s approximation to the 
quadratic term and use the greedy algorithm to solve the model 
parameters. 

LR is a basic binary classification model. Based on linear regression, 
the input function value is mapped to interval (0,1) by the sigmoid 
function to represent the probability of various types of discrimination. 
Let y be a secondary dependent variable, indicating whether the subject 
is a COVID-19 patient or not; y = 0 means the subject is healthy, y = 1 

Table 1 
Monitoring data during sleep.  

Metric Abbreviation Metric Abbreviation 

Mean respiratory rate meanRR Mean heart rate meanHR 
Median respiratory 

rate 
medRR Median heart rate medHR 

Maximum respiratory 
rate 

maxRR Maximum heart rate maxHR 

Minimum respiratory 
rate 

minRR Minimum heart rate minHR 

Percentage of awake 
sleep 

awakPrct Percentage of rem sleep REMSPrct 

Percentage of light 
sleep 

lightSPrct Percentage of deep sleep deepSPrct 

Sleep latency latnMin Sleep duration slepMin 
Sleep efficiency slepEffic Sleep score slepScore 
Mean body dynamic 

density 
meanNMD Percentage of body 

movement per minute 
movMinPrct 

Wake up times awakTims Turn over times timesTO 
Number of apneas 

during sleep 
slepATims Apnea-hypopnea index AHI 

Number of apneas 
during rem 

REMSATims Number of apneas 
during light sleep 

lightSATims 

Number of apneas 
during deep sleep 

deepSATims    

Fig. 1. Distribution of a) heart rate and respiratory rate and b) mean body dynamic density and wake up times in healthy subjects and COVID-19 patients.  
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means he/she/they are a patient. p(y= 1|x, θ) denotes the probability 
that y belongs to category 1 under the condition of a given feature vector 
x. Let hθ(x) = p(y = 1|x,θ); hθ(x) can be expressed as 

hθ(x)=
1

1 + c− θT x
(6) 

The above formula is called the LR model, where θ = {θ0, θ1,…θp}

represents the coefficient corresponding to each feature. Parameters θ 
can be obtained using the gradient descent method. 

The XGBoost + LR algorithm consists of two parts, where XGBoost is 
used to extract features from the training set as new training input data 
and LR is the classifier for the new training input data. 

Using XGBoost to construct combined features means every leaf node 
of each decision tree is considered as a new feature. Therefore, the 
number of features constructed is the same as that of the XGBoost leaf 
nodes. For each decision tree, if the input sample falls into a leaf node, 
the value of the leaf node is 1; otherwise, it is 0. 

Fig. 3 shows how our proposed XGBoost + LR model processes a 
sample data. The XGBoost model is obtained by training the original 
sample data. The model consists of two decision trees. Tree 1 has three 
leaf nodes and Tree 2 has two leaf nodes. Each leaf node is regarded as a 
new feature. For example, if a sample falls into the first leaf node of Tree 
1 through Tree 1 and falls in to the second leaf node of Tree 2 through 

Fig. 2. a) Distribution of patients’ hospitalization days. b) Fitting of average heart rate, average respiratory rate, apnea frequency during sleep, and hospitalization 
days. The shaded area represents the 95% confidence band. 

Fig. 3. Structural features of the proposed XGBoost + LR model. First, the 
XGBoost classifier is used as a feature selection model, whose result would be 
one-hot coded. Second, using the results of the XGBoost model as the LR model 
input, the final result is predicted. 
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Tree 2, then the newly constructed feature vector of this sample would 
be [1, 0, 0, 0, 1]. 

For model training, four steps are required to obtain the trained 
proposed ensemble XGBoost + LR model. First, we train the XGBoost 
model with the original training dataset to construct the combined 
features, where the grid searching method is employed to find the 
optimal parameters. Second, the training samples are input to the 
trained model from step 1, and the output of the leaf nodes constitutes 
new construction features. Third, we combine the new features con
structed from step 2 and the original features. Lastly, the final LR model 
with the combined features is trained. 

For model testing, first, the test sample is input into the trained 
XGBoost model to obtain new construction feature vectors. Then, the 
new construction feature vectors and the original feature vectors are 
combined into new feature vectors, which are input to the trained LR 
model, and the output is the classification result of the test sample. 

2.4. Feature selection 

Feature selection improves the speed of model building, enhances 
the generalization ability of the model, and reduces over-fitting prob
lems. A good global feature importance metric must satisfy both con
sistency and accuracy. We use the SHAP value [24] to describe and 
evaluate the importance of the features. 

The SHAP value can visualize the features as a whole. Fig. 4(a) shows 
the impact of the features on each sample. Each row represents a feature 
and the abscissa represents the SHAP value. A point represents a sample, 
and the color represents the feature value (red and blue represent high 
and low values, respectively). For example, Fig. 4(a) shows that a lower 
value of the “REMSATims” feature increases the risk of becoming a 
patient, whereas a higher value of the “meanHR” feature increases the 
risk. 

The average absolute SHAP value of each feature represents a unified 
measure of its importance. A standard bar graph is shown in Fig. 4(b). 
These features are sorted by mean (|Tree SHAP|); revealing that the 
“REMSATims” feature is the strongest factor for detecting COVID-19 
patients. 

We randomly collected data from a group of patients and healthy 
subjects to compare and observe the impact of the features on the 
classification results. Fig. 4(c) and (d) show the SHAP values of patients 
and healthy subjects, respectively. These figures show that each feature 
has its contribution, thus nudging the model result from the base value 
to the model output. Red indicates that the contribution of the feature is 
positive. For example, the longest red bar in the patient graph is 
“REMSATims,” and the SHAP value increased by 0.09886. The longest 
blue bar is “lightSprct,” and the SHAP value decreased by 0.00747. The 
final SHAP value is 0.90. 

Differences are observed in heart rate, respiratory rate, sleep quality, 
and apnea index between patients and healthy subjects. Specifically, 
patients exhibited a higher heart rate, longer sleep duration, shorter 
sleep latency, deeper sleep, and lower apnea index. As previously re
ported, heart rate is one of the most useful characteristics in the classi
fication of infected patients, whereas the contribution of the respiratory 
rate is insignificant. Furthermore, we found that nighttime sleep quality 
and apnea index are important distinguishing indicators. 

Based on the importance of the feature values, the top eight features, 
namely, “REMSATims,” “meanHR,” “slepMin,” “latnMin,” “AHI,” 
“meanNMD,” “maxRR,” and “medHR,” are selected for model training. 

2.5. Evaluation method 

We selected precision, recall, and the receiver operating character
istic (ROC) curves as the evaluation criteria [25]. The precision mea
sures the accuracy of the model in terms of false positives, that is, the 
number of healthy subjects misdiagnosed with the disease. The lower 
the false positive rate, the higher the precision of the model. The recall 

rate provides information regarding false-negative cases, that is, the 
number of infected patients predicted to be healthy. In the context of 
disease screening, the missed detection of infected patients is considered 
more serious than that of healthy subjects. Therefore, in terms of eval
uation models, recall is more significant than precision. The ROC curve 
draws a comparison chart of the true positive and false positive rates to 
further evaluate the performance of the model. AUC is defined as the 
area under the ROC curve; the larger its value, the better the effect of the 
corresponding classifier. The precision and recall are defined as follows, 
where TP, FP, and FN represent true positive, false positive, and false 
negative, respectively. 

Precision=
TP

TP + FP
(7)  

Recall=
TP

TP + FN
(8)  

where TP = true positive, which is the number of correctly classified 
positive samples; FP = false positive, incorrectly classified negative 
samples; TN = true negative, correctly classified negative samples, and 
FN = false negative, incorrectly classified positive samples. 

2.6. Comparison of the results 

In this study, six machine learning algorithms, namely, LR, KNN, 
SVM, RF, XGBoost, and XGBoost + LR, were compared. The data of 
healthy subjects and COVID-19 patients were divided, with 75% of the 
data being randomly selected as the training set, while the remaining 
25% were used as the test set. The training set was used to train the 
infection screening model, and the test set was used to test the screening 
performance of the model. 

The 10-fold cross-validation method [26] was used to further divide 
the training set into 10 copies, one such copy was cyclically extracted as 
the validation set for the optimal parameters. Table 2 lists the final 
parameter settings for each algorithm. 

The confusion matrix of the six algorithms is shown in Fig. 5. Here, it 
can be seen that the RF and XGBoost models have the best classification 
results among single algorithms, with both exhibiting a recall rate and 
precision of 88.6% and 93.9%, respectively. The XGBoost + LR model 
exhibits better results, with a recall rate and precision of 97.1% and 
94.4%, respectively. The ROC curve of the six classification models is 
shown in Fig. 6. The classification performance of XGBoost + LR is also 
better than that of other algorithms, with an AUC of 0.988. 

To reduce the randomness of the results, the data extraction and 
modeling were repeated 1000 times. Table 3 shows the average per
formance for each algorithm. Based on these results, it is confirmed that 
the XGBoost + LR model outperforms the other models, with a recall, 
precision, and AUC of 96.8%, 92.5%, and 98.0%, respectively. Any 
model with such performance metrics should be considered suitable for 
clinical use and helpful to doctors. 

Compared with the SVM classifier, our model achieved a 16.2% 
improvement in terms of recall. This improvement is due to the creation 
of new features (OneHOT features) by using the XGBoost model. The 
features determine the upper limit of the effect of all algorithms, and 
different algorithms only differ in the distance from this upper limit. By 
creating new and effective features, our model achieved better 
performance. 

Our proposed XGBoost + LR model combines the advantages of both 
models. The LR algorithm is a linear model, which is easy to parallelize, 
and can easily process hundreds of millions of data, although its learning 
ability is very limited because it requires a lot of feature engineering 
work for it to be improved. However, processing numerous features is 
time- and effort-consuming and might not necessarily improve the re
sults. Therefore, the automatic identification of effective features and 
feature combinations to compensate for the lack of manual experience 
and shorten the cycle of feature engineering in LR models remains a 
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Fig. 4. a) Overall visualization of features by SHAP. b) Feature importance sorted by SHAP. c) SHAP value of a single patient sample. d) SHAP value of a single 
healthy subject sample. 
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major challenge. 
Although the XGBoost and LR algorithms have also achieved better 

results when used alone, the integrated use of the XGBoost and LR al
gorithms can reduce the probability of misdiagnosing patients as 

healthy. In this study, the results of the XGBoost training were encoded 
by OneHOT, and these new results were treated as newly constructed 
features and fed into logistic classification, along with the original fea
tures. Herein, XGBoost functioned as a feature selection tool and created 
new effective features from the original features for the next layer of the 
logistic classification model. It first performs nonlinear changes in 
samples, derives some crossover features, and then uses the LR model for 
discrimination. Compared with single models, the integrated model has 
unique advantages in dealing with complex interactions and nonlinear 
relationships among variables. 

3. Conclusion 

This study had several advantages. First, more than 20 physiological 
indicators, such as heart rate and sleep quality, were innovatively 
measured to connect patients’ nighttime sleep information with 

Table 2 
Final parameter settings for the six algorithms used in this study.  

Logistic 
Regression 

kNN SVM RF XGBoost XGBoost + LR 

C = 0.01 k_neighbors = 5 kernel = ‘rbf’ n_estimators = 80 learning_rate = 0.2 learning_rate = 0.2 
penalty = ‘l2’ p = 1 C = 100 max_depth = 5 n_estimators = 80 n_estimators = 80   

gamma = 0.001  max_depth = 7 max_depth = 7     
gamma = 0.001 gamma = 0.001  

Fig. 5. Confusion matrix of the six models.  

Fig. 6. ROC curves of the six models.  

Table 3 
Comparison of the classification results of the six models.  

Model Recall (%) 
(95%CI) 

Precision (%) 
(95%CI) 

AUC (%) 
(95%CI) 

LR 85.1 (82.9, 87.3) 87.3 (85.2, 89.4) 92.6 (91.0, 94.2) 
KNN 77.6 (75.0, 80.2) 90.5 (88.7, 92.3) 91.3 (89.5, 93.1) 
SVM 80.6 (78.2, 83.0) 91.5 (89.8, 93.2) 92.8 (91.2, 94.4) 
RF 89.1 (87.2, 91.0) 97.4 (96.4, 98.4) 97.9 (97.0, 98.8) 
XGBoost 91.3 (89.6, 93.0) 96.6 (95.5, 97.7) 97.8 (96.9, 98.7) 
XGBoost + LR 96.8 (95.8 97.8) 92.5 (90.9, 94.1) 98.0 (97.1, 98.9)  
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infectious disease prediction to increase the prediction reliability. 
Among these features, apneas during REM, mean heart rate, and sleep 
parameters are shown to be the key features. Second, the proposed 
XGBoost + LR-based classification algorithm was used to strengthen the 
feature selection and could measure the difference between patients and 
healthy subjects in different features. We innovatively used a XGBoost 
model to process the original data and created new and effective fea
tures, which were used to train an LR model. Furthermore, the proposed 
combined model exhibited a comparable performance to that of tradi
tional machine learning algorithms, achieving a precision, recall rate, 
and AUC of 92.5%, 96.8%, and 98.0%, respectively. Finally, because 
infectious diseases have similar inflammatory symptoms, during the 
next pandemic, it could be used as a convenient, low-cost, automatic 
screening method without the guidance of professional doctors, espe
cially in underdeveloped countries and regions without sufficient health 
facilities and experienced doctors. 

However, this study also had some drawbacks. First, owing to the 
limitations of the conditions, this study included patients and healthy 
subjects with different experimental backgrounds. Environmental fac
tors and other parameters could interfere with the controlled trials. In 
addition, the sample size of this study was small and did not include 
multiple age groups; therefore, in practice, the accuracy index may 
decline. Moreover, the proposed method and system can only monitor 
one patient at a time, which limits the monitoring efficiency in a real- 
world hospital setting. More specifically, the proposed system uses a 
continuous-wave radar, which limits the application to monitor multiple 
subjects simultaneously. In future work, a larger sample size should be 
used to cover a more comprehensive population. Furthermore, the al
gorithm and sensor should also be updated to support multi-person 
monitoring while using only one device. We collected data from pa
tients at different stages of disease development. If we accumulate suf
ficient data, we can continue to distinguish the severity of patients and 
provide a reference for clinical triage and reasonable allocation of 
medical resources. In this study, we used physical sign data to predict 
potential infections; however, these prediction results cannot be directly 
used for medical diagnosis. Although our system has been sufficiently 
tested on COVID-19 patients, it may also incorrectly diagnose COVID-19 
when the patient has a similar disease that causes the body’s inflam
matory response and the system is unable to distinguish them. Never
theless, this prediction system can still be very effective in assisting 
screening during the outbreak of infectious diseases while saving cost 
and labor. 

In summary, we demonstrated the relationship between the data 
obtained from non-contact sleep monitoring equipment and the pre
diction of COVID-19. These preliminary results provide a basis for 
further evaluation of the nocturnal cardiopulmonary status and sleep 
status as physiological signs of COVID-19 infection, which helps to 
identify COVID-19 and other infections in an economical and fast 
manner. 
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