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Six candidate height-diametermodels were used to analyze the height-diameter relationships.The commonmethods for estimating
the height-diameter models have taken the classical (frequentist) approach based on the frequency interpretation of probability,
for example, the nonlinear least squares method (NLS) and the maximum likelihood method (ML). The Bayesian method has an
exclusive advantage compared with classical method that the parameters to be estimated are regarded as random variables. In this
study, the classical and Bayesian methods were used to estimate six height-diameter models, respectively. Both the classical method
and Bayesian method showed that the Weibull model was the “best” model using data1. In addition, based on the Weibull model,
data2 was used for comparing Bayesianmethodwith informative priors with uninformative priors and classical method.The results
showed that the improvement in prediction accuracy with Bayesian method led to narrower confidence bands of predicted value
in comparison to that for the classical method, and the credible bands of parameters with informative priors were also narrower
than uninformative priors and classical method. The estimated posterior distributions for parameters can be set as new priors in
estimating the parameters using data2.

1. Introduction

Forests play a very important role not only in timber, mining,
and recreational sectors, but also in global carbon cycles and
climate change [1]. One of the most important elements of
forest structure is the relationship between tree height and
diameter. Individual tree height and diameter are the most
commonly measured variables for estimating tree volume,
site index, and other important variables in forest growth
and yield, succession, and carbon budget models [2–4]. Tree
diameter is relatively easy tomeasure accurately in the field at
little cost. Conversely, tree height is not commonly measured
for several reasons, which include (1) being time consuming
to obtain; (2) chance of observer error; (3) visual obstructions
[5]. Consequently,many foresters only subsample tree heights
or do not measure heights at all. Often tree heights are
estimated from observed diameter at breast-height (DBH)
outside bark.The estimation of tree volume and site index, as
well as the description of stand dynamics and succession over
time, heavily relies on accurate height-diameter models [6].

A number of tree height-diameter models have been devel-
oped for various tree species [7–10]. These height-diameter
models can be used to predict “missing” tree heights from
measuredDBHs [11, 12], indirectly predict height growth [13],
and also estimate individual tree biomass using individual
tree biomass equations [14]. Chave et al. [15] found that the
most important parameters in predicting biomass of tropical
forest tree species were in decreasing order of importance,
diameter, wood density, height, and forest type (classified as
dry,moist, orwet forest).The inclusion of heightwas reported
to reduce the standard error of biomass estimates from 19.2
to 12.5%.Thus, accurate prediction of tree heights is essential
for forest inventory, model simulation, and management
decision making [2, 6].

Curtis [6] summarized a great many available height-
diameter equations and used Furnival’s index of fit to com-
pare the performance of 13 linear functions fitted to second-
growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco)
data. Since then, with the relative ease of fitting nonlinear
functions, many nonlinear functions have been developed
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Figure 1: Layout of the sample plots for Chinese fir in this study.

for height predictions [16, 17]. However, as tree form and
allometry are influenced by both environmental and com-
petitive factors [18–20], temporal changes in these conditions
are likely to affect the height-diameter relationship. This
may cause varied uncertainty in estimating height-diameter
relationships at any given time. A major limitation of these
equations is that they produce very different results when
applied to different stands where the equations were orig-
inally developed [21, 22]. The height-diameter relationship
is also not stable over time even within the same stand [23,
24]. Such differences could hold important implications for
biomass and carbon storage potential.

This uncertainty resulting from temporal changes needs
to be accounted for when interpreting height-diameter
relationships in natural stands. Available methods do not
apply to this problem. Bayesian inference is an alternative
method of statistical inference that is frequently being used
to evaluate ecological models [25–28]. In forestry, Bayesian
methods have been adopted in several applications such as
aboveground tree biomass [29], diameter distribution [30,
31], tree growth [32], individual tree mortality [33, 34], stand-
level height and volume growth models [35, 36], and stand
basal distribution [37]. Despite aforementioned studies, there
is still a shortage of publications about application of the
Bayesian methods in forestry, compared with other fields.
Furthermore, to our knowledge, we found that there are no
reports about the use of Bayesianmethods in height-diameter
curves.

In this study, we developed height-diameter models with
nonlinear equations often used and selected the best nonlin-
ear model for describing the height-diameter relationships.

Based on the “best” model, we formulated a Bayesian model-
ing framework for exploring uncertainty of height-diameter
relationships. Finally, we also compared the Bayesianmethod
with classical method.

2. Data

The Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.)
stands are located in Fenyi County, Jiangxi Province, south-
ern China. The longitude is 114∘30E, latitude 27∘30N.
Mean annual temperature, precipitation, and evaporation are
16.8∘C, 1656mm, and 1503mm, respectively.

The plots were established in 1981, planted in a random
block arrangement with the following tree spacings: 𝑁1:
2m × 3m (1667 trees/ha); 𝑁2: 2m × 1.5m (3333 trees/ha);
𝑁3: 2m × 1m (5000 trees/ha); 𝑁4: 1 m × 1.5m (6667
trees/ha);𝑁5: 1 m × 1m (10,000 trees/ha). Each spacing level
was replicated three times. Each plot comprised an area of
20m × 30m and a buffer zone of similarly treated trees
surrounded each plot. Layout of the sample plots is shown
in Figure 1. The tree diameter measurements in all of the
plots were conducted after the tree height reached 1.3m.More
than 50 trees in each plot were tagged and measured for
total height. Sampling was performed in each winter from
1983 to 1988 and then every two years until 2007. The forest
structure of Chinese fir is stable when the forest is 25 years
old. In this study, two data sets, data1 (24 years old) and
data2 (26 years old), were used for modeling height-diameter
relationships. The data1 was used for selecting the “best”
model for analyzing the relationships of height-diameter and
generating prior distributions of parameters for Bayesian
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Table 1: Summary statistics of tree diameter and height for two data sets.

Attributes Data1 (24 years old, 𝑛 = 445 trees) Data2 (26 years old, 𝑛 = 424 trees)
DBH 𝐻 DBH 𝐻

Min. 6.7 6 7.5 8.1

Max. 31.5 20.7 32.4 21.3

Mean 15.73 14.52 16.41 15.04

SD 4.28 2.39 4.40 2.37
SD: standard deviation.
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Figure 2: Scatter plot of tree height (𝐻) against diameter at breast (DBH) for different densities.𝑁1 = 2m × 3m (1667 trees/ha),𝑁2 = 2m ×
1.5m (3333 trees/ha),𝑁3 = 2m × 1m (5000 trees/ha),𝑁4 = 1m × 1.5m (6667 trees/ha), and𝑁5 = 1m × 1m (10,000 trees/ha).

Table 2: Nonlinear height-diameter equations selected in the study.

Model References
Chapman-Richards:𝐻 = 1.3 + 𝑎(1 − exp(−𝑏DBH))𝑐 [56]
Weibull:𝐻 = 1.3 + 𝑎(1 − exp(−𝑏DBH𝑐)) [57, 58]
Logistic:𝐻 = 1.3 + 𝑎/(1 + 𝑏exp(−𝑐DBH)) [58]
Gompertz:𝐻 = 1.3 + 𝑎exp(𝑏/(DBH+𝑐)) [59]
Bertalanffy:𝐻 = 1.3 + 𝑎(1 − exp(−𝑏DBH))3 [60]
Power law:𝐻 = 1.3 + 𝑎DBH𝑏 [61]

method. The data2 was used for comparing the classical
methodwith Bayesianmethodwith uninformative priors and
informative priors.The two data sets are described in Figure 2
and summary statistics are shown in Table 1.

3. Method

3.1. Base Height-Diameter Equations. Many nonlinear mod-
els have been used to model tree height-diameter rela-
tionships. Six nonlinear models (Table 2) were selected as
candidate height-diametermodels based on their appropriate
mathematical features (e.g., typical sigmoid shape, flexibility)
and possible biological interpretation of parameters (e.g.,
upper asymptote, maximum, or minimum growth rate)
described in the literature [4, 38, 39].

3.2. Bayes’ Rule. Let 𝑦 = (𝑦
1
, 𝑦
2
, 𝑦
3
, . . .) represent a vector of

data and let 𝜃 = (𝜃
1
, 𝜃
2
, 𝜃
3
, . . .) be a vector of parameters to be

estimated. Bayes’ rule is then expressed as

𝑝 (𝑦, 𝜃) = 𝑝 (𝑦 | 𝜃) 𝑝 (𝜃) = 𝑝 (𝜃 | 𝑦) 𝑝 (𝑦) , (1)

where 𝑝 represents the probability distribution or density
function. Values for 𝜃 can be obtained by minimum least
squares (MLS) or maximum likelihood estimation (MLE)
in the classical approach. In the Bayesian framework, it
uses probability distributions to describe uncertainty in the
parameters being estimated. 𝜃 had a probability distribution
that can be calculated as the rearranged form of (1):

𝑝 (𝜃 | 𝑦) =
𝑝 (𝑦 | 𝜃) 𝑝 (𝜃)

𝑝 (𝑦)
, (2)

where 𝑝(𝑦) = ∫𝑝(𝑦 | 𝜃)𝑝(𝜃)𝑑𝜃 for continuous 𝜃. Since it
is the integration of admissible values of 𝜃, 𝑝(𝑦) does not
depend on 𝜃 and can be viewed as a constant for fixed 𝑦,
which yields the following [36]:

𝑝 (𝜃 | 𝑦) ∝ 𝑝 (𝑦 | 𝜃) 𝑝 (𝜃) . (3)

We should note that the conditional distribution of 𝜃
given data 𝑦 (𝑝(𝜃 | 𝑦)) is what we are interested in estimating
and represents the posterior probability distribution (simply
called posterior) in the Bayesian framework. 𝑝(𝑦 | 𝜃) tells
us the distribution of 𝑦 assuming that 𝜃 is known, which is
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the likelihood function when regarded as a function of the
parameters [40]. 𝑝(𝜃) is called the prior probability distri-
bution for the parameters (simply called prior) and reflects
information available about the hypothesis. Therefore, (3)
indicates that the posterior distribution of 𝜃 is proportional
to the likelihood of 𝑦 given 𝜃 and the prior distribution of
𝜃. The important characteristic of Bayesian method is that
the parameters are treated as random variables [36, 41]. This
is a very different assumption from that of classical method,
which treats parameters as true, fixed (if unknown) quantities
[40, 42].

3.3. Prior Distribution Specification. The choice of prior
distribution is critical for Bayesian method [43]. In the above
several nonlinear equations, we need to choose appropriate
prior distributions for all parameters, including 𝑎, 𝑏, and
𝑐. Many researchers choose to use uninformative normal
(Gaussian) priors that reflect prior “ignorance,” which would
not have a strong influence on the parameters. Such priors
typically arise in the form of a parametric distribution with
large or infinite variance. Alternatively, if prior information
is available from external knowledge (reported parame-
ters from the literatures), this information can be used to
construct a prior distribution. Often, there is little prior
information regarding model unknowns, in which case an
uninformative or vague prior distribution can be employed.
In this study, we initially used uninformative for data1,
Gaussian priors on all parameters (𝑎, 𝑏, 𝑐): 𝑎 ∼ 𝑁 (0, 1000),
𝑏 ∼ 𝑁 (0, 1000), 𝑐 ∼ 𝑁 (0, 1000). We set the previously
estimated posterior distribution for data1 as the new prior
distribution for data2.

3.4.Model Selection. Therootmean square error (RMSE)was
calculated for classical model performance evaluation. And
deviance information criterion (DIC) was used to evaluate
the Bayesian models. It is very useful in the Bayesian model
selection [44]; DIC is characterized as

DIC = Dbar + pD, (4)

where Dbar refers to the posterior mean of the deviance and
pD is the effective number of parameters in the model. The
posterior mean of the deviance Dbar = 𝐸

𝜃
(−2 log(𝑝(𝑦 | 𝜃)))

and pD = Dbar − Dhat. Dhat is a point estimate of deviance
given by Dhat = −2 log(𝑝(𝑦 | 𝜃)). As with RMSE, the model
with the smallest DIC is selected to the “best” model.

In the Bayesian analysis, we set the previously estimated
posterior distribution of parameters as the new prior distri-
bution using data2. Mean relative deviation (MD), fit index
(similar to 𝑅-square), and RMSE were used to compare the
classical model with Bayesian model in the estimation stage.
MD is given as

MD = 1
𝑛

𝑛

∑
𝑖=1

(�̂�
𝑖
− 𝑌
𝑖
) , (5)

where 𝑌
𝑖
represents the observed tree height of tree 𝑖, �̂�

𝑖
is

the corresponding predicted value, and 𝑛 is the number of
observations.

Bayesian parameters were estimated using theWinBUGS
version 1.4 [45], which implements Markov chain Monte
Carlo algorithms using a Gibbs sampler [46]. Classical model
parameters were estimated by use of the NLIN procedure
(DUDmethod) in SAS.

4. Results

We set 300 000 iterations to run to ensure that maximum
convergence and satisfied posterior distributions of estimated
parameters for Bayesian method are obtained. Among those
300 000 iterations, the initial 20 000 iterations were discarded
from analysis as burn-in iterations. To reduce the correlation
between neighbouring iterations, the thinning parameters
in the six models were all set to 3. After iterating, the
mean, standard deviation (Std.), and 95% credible intervals
with data1 can be obtained. The credible intervals of most
parameters of the classical method were nearly equal to
Bayesian method with uninformative priors (Table 3). In this
study, based on RMSE (Table 3), we also found that Weibull
model was the “best” model for describing height-diameter
relationships of Chinese fir both for classical method and
Bayesian method.

Based on the Bayesian method, the posterior probability
distributions of the three parameters of Weibull model for
data2 were obtained. The posterior probability distributions
based onBayesianmethodwith informative priors weremore
concentrated than uninformative priors (Figure 3). Estimates
of 𝑎, 𝑏, and 𝑐 using Bayesian method and classical method
were numerically identical in height-diameter model. The
intervals of the three parameters estimates using classical
method and Bayesian method with uninformative priors
also had similar range, while they were wider than the
intervals from Bayesian method with informative priors. The
interval of asymptote parameter 𝑎 using Bayesian method
with informative prior was 68.4% narrower than the one of
classical method, 66.7% narrower for 𝑏, and 59% narrower
for 𝑐 (Table 4).

We also found that RMSE and fit index for Bayesian
method and classicalmethodwere nearly equal, and Bayesian
method with informative priors was slightly better than
uninformative priors (Table 5). Despite the numerically equal
evaluation statistics using classical method and Bayesian
method, the credible bands of predicted values with Bayesian
method were narrower than classical method, and the ones
with informative priors were slightly narrower than uninfor-
mative priors (Figure 4).

5. Discussion and Conclusion

The curves generated with empirical models were checked
with respect to their biological meaning; for example, height-
diameter curves were assumed to demonstrate an approx-
imately a sigmoid shape with clear inflection point that
occurred in an early stage and other height increment should
be more than zero [47]. In this study, the values of the
evaluation statistics of the models showed that Weibull
model most accurately estimated the tree height. Zhang [38]
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Figure 3: Posterior density curves of Weibull parameters based on Bayesian method with uninformative priors and informative priors using
data2. The left row is for uninformative priors; the right row is for informative priors.
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Figure 4: Predicted tree height values against observed values
with data2. From up to down, the predicted values were obtained
from classical method, Bayesian method with uninformative priors,
and informative priors, respectively. The “error bars” were 95%
confidence bands.

evaluated the prediction performance of six nonlinear height-
diameter models for ten conifer species and found that
Weibull function gave more accurate results than other
model forms. Considering the model mathematical features,
biological realism, and accurate prediction, we recommend
the Weibull model as the base model in this case for further
study.

Comparing the evaluation statistics from Bayesian
method and classical method, we found that they were
quite close (Table 5). However, we cannot only rely on the
evaluations statistics for assessing a method, the prediction
accuracy should also be taken into account.The improvement
in prediction accuracy with Bayesianmethod led to narrower
confidence bands of predicted value in comparison to that
for the classical method (Figure 4). Bayesian method is an
important statistical tool that is increasingly being used
by ecologists [48, 49] and differs from classical method in
main two ways. Firstly, Bayesian methods are fully consistent
with mathematical logic, while classical methods are only
logical whenmaking probabilistic statements about long-run
averages obtained fromhypothetical replicates of sample data
[50, 51]. Secondly, relevant prior knowledge about the data

Table 4: Parameter estimates of Weibull model using classical and
Bayesian methods with data2.

Method Parameter estimate 95% interval
Mean Std. error Lower Higher

Classical method
a 29.14 8.446 12.54 45.74
b 0.08 0.009 0.06 0.09
c 0.77 0.116 0.54 1.00

Bayesian with
informative priors

a 27.28 2.722 22.6 33.1
b 0.07 0.004 0.07 0.08
c 0.82 0.052 0.73 0.92

Bayesian with
uninformative priors

a 30.41 5.56 22.59 44.84
b 0.07 0.007 0.06 0.09
c 0.76 0.070 0.65 0.92

Table 5: Evaluation statistics of classical and Bayesianmethod using
data2.

Statistics Classical
method

Bayesian with
uninformative priors

Bayesian with
informative priors

MD −0.0003 −0.0033 −0.0017
Fit index 0.7407 0.7407 0.7406
RMSE 1.2063 1.2063 1.2064

can be incorporated naturally into Bayesian analyses whereas
classical methods ignore the relevant prior knowledge other
than the sample data [41, 52]. Bayesian credible interval
and classical confidence are usually numerically identical
if the Bayesian prior is uninformative. An uninformative
prior is one in which the data (by the likelihood, which is
𝑝(𝑦 | 𝜃) in Bayes’ rule) dominates the posterior, and the
prior probabilities of all reasonable parameter values are
approximately equal. Thus the posterior distribution has the
same form as the likelihood. Since the posterior distribution
with uninformative prior is less precise, the credible interval
was wider (Table 4) [52].

With data2, the estimated posterior distributions for
parameters can be treated as new priors in predicting
the parameters. That is, informative new priors obtained
from data1 are used in the estimation process of data2 to
incorporate results from previously fitted models. It is the
advantage of Bayesian method to update a model with new
data.Therefore, not only are the data considered to be samples
from a random variable, but the parameters to be estimated
are regarded as random variables [40]. Thus, informative
priors increased the precision of Bayesian estimates.

It is also noted that there are chances to improve the
research. Additional variables, such as site index, age, and
stand density, can be included in the analysis and develop
hierarchical Bayesian models that can yield more accurate
priors for new data. For example, it would be possible to
develop procedures in which the prior information adapts
to specific site and age. For more comprehensive and accu-
rate relationships of height-diameter, additional variables
describing stand density (e.g., stand basal area or number of
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trees) and site quality (e.g., site index) should be incorporated
into the models [53, 54].

Height-diameter equations are crucial for estimating
vertical forest structure [55], biomass, and carbon storage.
Since collecting height data is costly and time consuming,
the Bayesian method is valuable when data are limited,
because it exploits prior information that can be obtained
from other sources, for example, the fitted models, and it
explicitly accommodates parameter variability. In conclusion,
the Bayesian method is an alternatively feasible method for
analyzing height-diameter relationships.
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