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SUMMARY

The global prevalence and burden of musculoskeletal (MSK) disorders are
immense. Advancements in next-generation sequencing (NGS) have generated
vast amounts of data, accelerating the research of pathological mechanisms
and the development of therapeutic approaches for MSK disorders. However,
scattered datasets across various repositories complicate uniform analysis and
comparison. Here, we introduce MSdb, a database for visualization and inte-
grated analysis of next-generation sequencing data from human musculoskeletal
system, along with manually curated patient phenotype data. MSdb provides
various types of analysis, including sample-level browsing of metadata informa-
tion, gene/miRNA expression, and single-cell RNA-seq dataset. In addition,
MSdb also allows integrated analysis for cross-samples and cross-omics analysis,
including customized differentially expressed gene/microRNA analysis, micro-
RNA-gene network, scRNA-seq cross-sample/disease integration, and gene reg-
ulatory network analysis. Overall, systematic categorizing, standardized process-
ing, and freely accessible knowledge features MSdb a valuable resource for MSK
research community.

INTRODUCTION

The rising burden of musculoskeletal (MSK) disorders constitutes one of the major global health chal-

lenges. In 2019, over 1600 million adults throughout the world were estimated to have a condition that

would benefit from rehabilitation, with MSK disorders accounting for nearly two-thirds of these cases.1

Due to population growth and aging, the number of people living with MSK disorders and associated func-

tional limitations is continuously growing. With the amplification of this trend, robust prevention and treat-

ment approaches are urgently needed.

In the past decades, scientists have been devoted to understand the mechanisms of MSK disorders and

development in order to develop effective therapeutic, regenerative or rehabilitative treatments.2 The

widespread use of next-generation sequencing (NGS) technologies has led to the accumulation of a wealth

of sequencing data of human physiological and pathological MSK tissues, which has sparked the identifi-

cation of key regulators inMSK disorders. By utilizing gene expression data, recent studies have discovered

disease subtypes of rheumatoid arthritis (RA) and osteoarthritis, advancing our knowledge of the mecha-

nisms underlying arthritis and providing valuable information for precise diagnosis and treatment.3–7 In

addition, integrative analysis of microRNAs and gene expression data revealed gene regulatory networks

(GRNs) governing MSK homeostasis and disease, as well as providing diagnostic markers for MSK disor-

ders.8–14 In recent years, the emergence of single-cell technology permits researchers to discover unex-

pected biological findings relative to bulk-level profiling. Leveraging single-cell RNA sequencing

(scRNA-seq), scientists have revealed developmentally and pathologically important cell populations,

and tracked the trajectories of distinct cell lineages in bone, cartilage, muscle, intervertebral disk and

tendon.15–22 Overall, the rapid emergence of NGS data in recent years offers us an unprecedented oppor-

tunity to understand molecular and cellular mechanisms of MSK disorders and development.

Although the majority of these valuable NGS datasets might be easily accessed from public databases

(such as GEO and EMBL-EBI), there are a number of obstacles that prevent their use: (1) inconsistent sam-

ple information or metadata makes it difficult for researchers to perform comparative analysis, (2) the
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datasets are often in raw data format, which may result in difficulties in data mining and analysis for re-

searchers without sufficient computational powers and bioinformatics skills, (3) even if the pre-processed

data are provided, the nonuniform pipelines make integrative and comparative analysis across datasets

challenging.

Therefore, we propose that a carefully curated NGS database created specifically for the field of orthope-

dic research will greatly benefit clinical and wet lab researchers. To this end, we developed the human

musculoskeletal system database (MSdb), a multi-omics human musculoskeletal NGS database with a

multi-functional and user-friendly web interface. MSdb provides convenient ways for researchers to explore

gene expression at bulk and single-cell level and may provide further insights into musculoskeletal devel-

opment and diseases.

RESULTS

Overview of MSdb

We developed the human musculoskeletal system database (MSdb), an integrated expression atlas specif-

ically for the human MSK system, containing 33 diseases, 126 projects, 3,398 transcriptomes, and micro-

RNAomes at bulk level, as well as 2,833,779 transcriptomes at single-cell level (Figures 1A and S1).

MSdb incorporates cross-repository metadata into controlled vocabulary and uniform format, enabling

efficient retrieval of sample information (Table S1). MSdb provides multiple built-in data exploration and

analysis functionalities, including gene/microRNA expression browsing, customized differentially ex-

pressed genes/miRNAs analysis, integrated microRNA-gene interaction networks, as well as integrated

single-cell expression atlas and cell type-specific GRNs analysis (Figure S2 and Video S1). Furthermore,

MSdb allows downloading of processed datasets and publication-quality plots, offering wet lab scientists

powerful tools to browse and re-analyze the public datasets without technical barriers.

MSdb enables users to retrieve sample information via consistent and validated metadata curated by or-

thopedists and bioinformatics scientists (Table S1). Users can search the database using multiple parame-

ters like project identifier, diseases, and tissue types in order to find datasets that match their interests (Fig-

ure S3A). In metadata, four types of information are available: (i) dataset and publication identifiers, (ii)

patient phenotypes, (iii) sample information, and (iv) data pre-processing summary. These items enable

users to evaluate the biological meaning, clinical relevance and data quality of the samples. Summary sta-

tistics of the metadata are also presented to show global patterns of the studies (Figure S4).

Transcriptome and miRNAome modules of MSdb

At bulk level, MSdb integrates information at two aspects: (i) cross-tissue integration and (ii) cross-omics

integration. For cross-tissue integration, samples were initially integrated by projects to generate gene

or microRNA expression atlas, and then labeled by their tissue types, diseases, cell types, and tissue posi-

tions. Users may explore the expression of genes or microRNAs by these labels (Figures S5 and S6). In

Figures 1B and 1C, uniform manifold approximation and projection (UMAP) plots show the integrated

expression atlas of bulk RNA-seq or microRNA-seq data in MSdb, and samples are colored by represen-

tative tissue types and diseases. Feature plots and violin plots show that COL3A1, a connective tissue

marker, was pervasively expressed in MSK tissues as expected (Figures 1B and S5). Cerebrospinal fluid

from amyotrophic lateral sclerosis (ALS) patients showed enrichment of the potential diagnostic marker

miR-4649-5p (Figures 1C and S6).23 For cross-omics integration, MSdb enables users to analyze bulk

RNA-seq and microRNA-seq data side-by-side and integrate the results to predict disease-related gene

expression regulatory mechanisms. MSdb’s differential expression analysis module allows users to choose

two groups of samples for comparison (Figure S3B). An interactive volcano plot can be used to explore

differentially expressed genes or microRNAs between user-defined groups, and the expression level of

a specific gene or microRNA can be queried and will be displayed in the boxplot (Figure S3B). By inte-

grating differentially expressed genes and microRNAs between normal and pathological intervertebral

disks, we constructed a microRNA-gene interaction network (Figures 1D and 1E). The network revealed

previous reported (indicated by asterisk) and unanticipated disease-associated microRNAs and their po-

tential gene targets, which can be interactively explored on our website (Figure 1E). We demonstrated

that the expression level of miR-146a-5p was down-regulated, while its target SPP1 was up-regulated in

degenerative intervertebral disks when compared to healthy control (Figures 1D and 1E). Since abnormal

expression of SPP1 plays a critical role in the pathological process of intervertebral disk degeneration

(IDD),24 our analysis indicated that targeting SPP1 withmiR-146a-5pmimic might be a therapeutic method
2 iScience 26, 106933, June 16, 2023
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Figure 1. MSdb framework and illustrative data analysis

(A) Overview of MSdb. MSdb is a comprehensive database of next-generation sequencing data on human musculoskeletal system tissues and cells,

enhanced with manually curated patient phenotypes, advanced analysis, and visualization tools.

(B) UMAP plots showing gene expression atlas in MSdb. All gene expression data in MSdb were used for clustering. Samples are colored by tissue types

(top), diseases (middle), and COL3A1 expression levels (bottom).

(C) UMAP plots showing microRNA expression atlas in MSdb. All microRNA expression data in MSdb were used for clustering. Samples are colored by tissue

types (top), diseases (middle), and miR-4649-5p expression levels (bottom).

(D) Volcano plots and boxplots showing dysregulated genes (top) or microRNAs (bottom) between healthy (n = 3) and degenerative (n = 3) intervertebral

disks. RPKM: reads per kilobase per million mapped reads; RPM: reads per million mapped reads. *: FDR <0.01.

(E) microRNA-gene interaction network built with down-regulated microRNAs and up-regulated genes in degenerative intervertebral disks. Red dots

represent the microRNAs and gray dots represent the genes. Complete and interactive plots of the network are available online on MSdb database.
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to counteract disk degeneration. Collectively, MSdb offers users with integrated expression atlas and use-

ful data analysis functionalities to understand gene function and regulation in homeostasis and diseases.

Single-cell transcriptome module of MSdb

The advent of single-cell technology has enabled researchers to uncover new biological insights compared

to bulk RNA-seq. Intriguingly, MSdb contains a wealth of single-cell RNA sequencing (scRNA-seq) data and

provides a suit of functionalities for users to explore gene expression at single-cell level. For each scRNA-

seq dataset, we provide textual and graphical representations for sample information, quality control met-

rics, unsupervised cell clustering, reference-based cell subtype prediction, as well as marker genes for each

cell type (Figure S7). In a single-cell profiling of synovial tissue from a female patient with RA, cell types

including fibroblasts, macrophages, T cells, and monocytes et al. were identified, and the specific CD68

expression in the predicted macrophages (cluster 2) indicated the reliability of cell clustering and auto-

mated cell type prediction (Figures S7A–S7H). For more sophisticated cell type clustering and annotation,

users can adjust leiden resolution for cell clustering and change reference dataset for cell type prediction

(Figure S7I). To help with manual annotation, a heatmap and a table of marker genes are displayed and

available for download. (Figures S7J and S7K).

We also implemented an in-house variational autoencoder (VAE)-based deep-learning framework (scVAE)

to facilitate the integrative analysis for scRNA-seq datasets from different studies. In line with a recent

study, our analysis demonstrated that the scVAE method produced better integration and cell clustering

results while using Harmony for data integration led to the inter-sample heterogeneity being skewed by

over-integration (Figures 2 and S8), indicating the advantages of variational autoencoder-based algorithms

in complex data integration.25 Figure 2 displays the result of integrated analysis of single-cell gene expres-

sion data from healthy, osteoarthritis (OA), rheumatoid arthritis (RA), and undifferentiated arthritis (UA) pa-

tients. Using the VAE model, we were able to remove batch differences and integrate heterogeneous data

from different studies (Figure 2B). The cell types could be identified by the known marker genes, whose

expression patterns support that our integration method appropriately aligned gene expression for

each cell types (Figures 2A and 2C). Interestingly, we observed a distinct distribution pattern of fibroblasts

from OA and RA patients (Figure 2B). Differential expression analysis revealed that IGFBP3 and LOX were

more enriched in OA-derived fibroblast when compared to RA-derived fibroblast (Figure 2D). IGFBP3 and

LOX were involved in extracellular matrix remodeling, which may determine synovial fibrosis and may be

associated with the clinical symptoms of pain, hyperalgesia, and stiffness in osteoarthritis.26 It was also

noted that CD74 and HLA-DRA were specifically expressed in RA fibroblasts, demonstrating an inflamma-

tory state of fibroblasts that have been reported to be a major source of pro-inflammatory cytokines and

highlighted as a potential therapeutic target in RA (Figure 2D).27,28 Moreover, we inferred GRNs using a

previously published deep regenerative model for each cell types.29 Users may interactively visualize the

GRNs in our database to explore the complicated molecular interactions governing potential cell identity

(Figure S9).

DISCUSSION

Musculoskeletal conditions, including RA, osteoarthritis, low back pain, fractures, amputation, and other

injuries, affect people of all ages everywhere around the world.1 In recent years, vast amount of NGS

data have emerged to facilitate the study of regulatory mechanisms governing musculoskeletal disorders,

which has greatly improved the disease diagnosis and patient management. Considering the value of these

data, it thus will be of great benefit to researchers in themusculoskeletal system field to have all these data-

sets in one database for free exploration. Our MSdb database permits efficient searching of its content
4 iScience 26, 106933, June 16, 2023
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Figure 2. Integrated analysis of scRNA-seq data of synovial tissues-derived cells from OA, RA, UA and healthy patients

(A) UMAP plots showing clustering of 101,610 cells from healthy, osteoarthritis, rheumatoid arthritis, and undifferentiated arthritis patients. Cells are colored

by cell types.

(B) UMAP plots showing clustering of 101,610 cells from healthy, osteoarthritis, rheumatoid arthritis, and undifferentiated arthritis patients. Cells are colored

by diseases.

(C) Violin plots showing marker gene expression of each cell type.

(D) Scatterplot showing the expression level of genes specifically expressed in RA- or OA-derived fibroblasts. Cells are colored by the expression of the

indicated genes.
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containing comprehensive information for public bulk RNA-Seq, microRNA-seq, and single-cell RNA-seq

datasets related to human musculoskeletal system development and disease. It provides initial analyses of

the data including gene/microRNA expression levels, cell clustering, cell type annotation and marker gene

identification. It also contains a multi-functional and user-friendly web interface, which provides various

ways for researchers to explore gene expression at bulk and single-cell level.

Overall, MSdb is a resource created for the MSK research community and aims to fulfill the findability,

accessibility, interoperability, and reusability (FAIR) principles of scholarly data.30 The uniformity of sample

information in MSdb enables metadata-based and database-scale analysis. MSdb’s utility will continue to

grow as public NGS datasets of humanmusculoskeletal system expand.We envision that it will broaden the

use of human MSK datasets and will be invaluable to researchers in the MSK field.
iScience 26, 106933, June 16, 2023 5



ll
OPEN ACCESS

iScience
Article
Limitations of the study

The current study presents certain limitations that warrant discussion. Firstly, MSdb contains only the bulk

RNA-seq, microRNA-seq and scRNA-Seq datasets, and has not collected other omics, such as genomics

and epigenetics data. In the future, we will collect more datasets, including Bisulfite-seq, ChIP-seq,

ATAC-seq and Hi-C seq to provide multiple layers of regulatory information that controls gene expression.

Secondly, integrating or splitting scRNA-seq data by individual patients or subjects could facilitate the dis-

covery of shared molecular mechanisms underlying diseases. However, this feature necessitates substan-

tial online computing resources, which our current web server cannot accommodate. We plan to incorpo-

rate this functionality in the subsequent version of the database. Lastly, the integration of scRNA-seq data is

presently confined to arthritis-related diseases, as the inclusion of scRNA-seq datasets from various tissues

and diseases would introduce extraneous information, complicating the interpretation of results. Nonethe-

less, with the increasing of single-cell datasets, we could create more integrated maps of pertinent dis-

eases for MSK database.
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Software and algorithms

R (v4.2.0) The R Foundation for Statistical Computing https://www.r-project.org/

Python3 (v3.9.12) Python Software Foundation https://www.python.org/

FastQC (v0.11.9) N/A https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Cutadapt (v3.7) Martin et al., 201131 https://github.com/marcelm/cutadapt

STAR (v2.7.9a) Dobin et al., 201332 https://github.com/alexdobin/STAR

featureCounts (v2.0.3) Liao et al., 201433 https://subread.sourceforge.net/

Samtools (v1.14) Li et al., 200934 https://github.com/samtools/samtools

ComBat-seq Zhang et al., 202035 https://github.com/zhangyuqing/ComBat-seq

Scanpy (v1.9.1) Wolf et al., 201836 https://github.com/scverse/scanpy

CyTargetLinker (v4.1.0) Kutmon et al., 201837 https://cytargetlinker.github.io/

Cytoscape (v3.9.1) Shannon et al., 200338 https://cytoscape.org/

Cell Ranger (v7.0.0) Zheng et al., 201739 https://support.10xgenomics.com/single-cell-

gene-expression/software/overview/welcome

Drop-seq_tools Macosko et al., 201540 https://github.com/broadinstitute/Drop-seq

Seurat (v4.1.1) Hao et al., 202141 https://satijalab.org/seurat/

SingleR (v1.10.0) Aran et al., 201942 https://github.com/dviraran/SingleR

scVAE This paper https://github.com/wanluliuLab/MSdb

Other

MSdb database This paper https://www.msdb.org.cn/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for data and code resources should be directed to and will be fulfilled by

the lead contact, Junxin Lin (linjunxin@zju.edu.cn).
Materials availability

This study did not generate any new unique reagents.

Data and code availability

All raw data are available on GEO (https://www.ncbi.nlm.nih.gov/geo/) and EMBL-EBI (https://www.ebi.ac.

uk/) repositories. All curated sample information and processed bulk RNA-seq andmicroRNA-seq data can

be downloaded from the MSdb database (https://www.msdb.org.cn). Single-cell RNA-seq matrices are

available upon reasonable request. Original code for scVAE can be found at https://github.com/

wanluliuLab/MSdb. Any additional information required to reanalyze the data reported in this paper is

available from the lead contact upon request.
METHOD DETAILS

Data collection and meta information curation

Bulk RNA-seq, microRNAs-seq and single-cell RNA-seq data of human musculoskeletal system were orig-

inated from NCBI Gene Expression Omnibus (GEO) and EMBL’s European Bioinformatics Institute (EMBL-

EBI).43,44 Wemanually curated both GEO and EMBL-EBI- derived sample information to provide a coherent

and standardized metadata. The resulting collection offers the following information for each data set.

‘SampleName’ contains the sample’s identification code in GEO (e.g. GSM2112324) or EMBL-EBI (e.g.
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ERS1034560). ‘ProjectID’ contains the sample’s project identification code in GEO (e.g. GSE80072) or

EMBL-EBI (e.g. E-MTAB-4304). ‘Publication_DOI’ contains the digital object identifier of the original pub-

lication. ‘Category’ indicates the MSK tissues that the data sets are related to. ‘AssayType’ indicates which

sequencing types were implemented on the samples. ‘LibraryLayout’ refers to pair-end sequencing or

single-end sequencing. ‘Disease’ contains the information about the diseases or health status. ‘SourceTis-

sue_type’ indicates tissue sources of the biological materials used for sequencing. ‘Sourcetissue_condi-

tion’ indicates whether the tissues are pathological or normal. ‘SourceTissue_position’ refers to a more

specific anatomical location of the ‘SourceTissue_type’. ‘SourceTissue_celltype’ indicates whether whole

tissue or a specific cell type in the tissue was used for sequencing. ‘OtherInfo’ contains other information

that can help users to evaluate the biological or clinical relevance of the data, such as whether the patients

were response to treatment. ‘Age’, ‘AgeGroup’ and ‘Gender’ of the patients are also presented, if avail-

able. To assist evaluating the quality of the data sets, we also provide the following information related

to data quality assessment along with metadata: sequencing library preparation kit (‘LibraryPrepKit’),

average spot length (‘AvgSpotLen), sequencing instrument (‘Instrument’), total reads (‘TotalReads’),

uniquely mapped reads (‘UniquelyMappedReads’), percentage of uniquely mapped reads (‘UniquelyMap-

pedReads%’), percentage of multiple mapped loci (‘MultipleLoci%’).

Bulk RNA-seq and microRNA-seq processing and data analysis

Quality control (QC) of raw sequencing reads for each project was performed by FastQC (v0.11.9, https://

www.bioinformatics.babraham.ac.uk/projects/fastqc/). Cutadapt (v3.7) was used to find and remove

adapter sequences, primers, low quality sequence and other types of unmated sequences.31 For bulk

RNA-seq, the trimmed reads were mapped to the reference index built on human genome assembly

GRCh38 (hg38, http://ensembl.org/Homo_sapiens/) using STAR (v2.7.9a) and counts were summarized

to the genomic protein coding genes by featureCounts (v2.0.3).32,33 For microRNA-seq，trimmed reads

were mapped to the reference index built on miRbase hairpins and Samtools (v1.14) was used to report

alignment summary statistics and calculate the microRNA counts.34 Batch effect between different studies

was estimated and adjusted by ComBat-seq.35 Then, all bulk RNA-seq gene counts and microRNA-seq

counts were merged, respectively. To show sample correlation, Scanpy (v1.9.1) was used to reduce dimen-

sion and generate uniform manifold approximation and projection (UMAP).36 To perform differential

expression analysis, a t-test was applied to the normalized RPKM or RPM data and a false discovery rate

(FDR) adjusted p value was canulated using Benjamini–Hochberg method.

The MSdb’s online differential expression analysis tool (https://www.msdb.org.cn/browse/) was used to

obtain differentially expressed mRNAs and miRNAs (FDR <0.01 and fold change >2). Down-regulated mi-

croRNAs and up-regulated genes in degenerative intervertebral disks were used for further analysis.

CyTargetLinker (v4.1.0) was used to predict and construct the miRNA-gene interaction network with miR-

TarBase Homo sapiens release 8.0 linksets was used as a reference. 37,45 Cytoscape software (v3.9.1) was

used for miRNA-mRNA regulatory network visualization.38

Single cell RNA-seq data processing

The genome reference used in scRNA-seq analysis is GRCh38. For droplet-based scRNA-seq, the raw data

were processed using Cell Ranger (v7.0.0) or Drop-seq_tools with standard pipeline and default parame-

ters to obtain gene expression matrix.39,40 For full-length scRNA-seq, the data were mapped using STAR

(v2.7.9a) and quantified using featureCounts (v2.0.3). To perform downstream analysis, the gene expression

matrix containing UMI counts was read into an AnnData object by Scanpy (v1.9.1) in Python3 (v3.9.12).36

Cells with unique gene counts less than 200 or genes that are detected in less than 3 cells were removed.

To perform unsupervised cell clustering analysis, the UMI counts were normalized to counts per million

(CPM) with scanpy.pp.normalize_total function, followed by log-transformation and principal component

analysis (PCA) using scanpy.pp.log1p and scanpy.tl.pca functions. The neighborhood graph was calculated

based on the PCA results using scanpy.pp.neighbors function and the Leiden algorithm was used to

perform unsupervised cell clustering (scanpy.tl.leiden).46 Marker genes for each cell cluster were identified

by sc.tl.rank_genes_groups function. To perform reference-based cell subtype prediction, the filtered

count matrix was loaded into Seurat (v4.1.1) in R (v4.2.0).41 The annotation of cell subtype was performed

by SingleR (v1.10.0) R-package using different references, including the BlueprintEncodeData and the Hu-

manPrimaryCellAtlasData.42 Marker genes for each annotated cell types were identified by FindAllMarkers

in Seurat package. UMAP was used for the data visualization of unsupervised cell clustering, cell type pre-

diction and marker gene expression.
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We built a single-cell atlas of the synovium containing 101,610 cells from 3 studies and 34 samples. We have

implemented a probabilistic model based on a variational autoencoder to integrate single-cell RNA-seq

data sets and remove batch effects, accepting raw count matrix as input. The variational distribution adopts

the log-normal distribution with scalar mean and variance output from the encoder, regularized by the

Kullback–Leibler divergence. The decoder takes categorical encoding of the sample name to reflect bio-

logical variance and remove batch effects. The count data is modelled by the zero-inflated binomial distri-

bution. The dimension of the latent embedding of the variational autoencoder was chosen to be 10. The

top 3,000 highly variable genes were selected using Scanpy (v1.9.1) for the model to learn the latent em-

beddings.36 The model was trained on NVIDIA GeForce RTX 3090 addressing 24 GB RAM. Cell annotations

for the integrated data sets were based on unsupervised clustering result and prior knowledge of marker

gene expression of major cell types including B cells, T/NK cells, macrophages, monocytes, fibroblasts,

endothelial cells and smooth muscle cells. The final representation of the data set was projected to

2-dimensional space using the UMAP algorithm.

To assess the effectiveness of scVAE for batch correction, we compared the data integration results of

scVAE with Harmony.47 The k-nearest-neighbor batch-effect test (kBET) metric was employed to determine

the degree to which both methods eliminate batch effects while maintaining biological variance.48
Website development

We developed a user-friendly web interface with advanced functions to present our uniformly curated

metadata and NGS data. The front-end interface was developed with HTML5 and CSS3 languages, based

on the BootStrap (v5.2.1) toolkit. All font-end tables were built through DataTables (v1.12.1), a plug-in for

the jQuery Javascript library. All data visualizations were developed by D3.js (v7), a JavaScript library for

document manipulation. All back-end data including the bulk RNA-seq andmicroRNA-seq gene count ma-

trix, UMAP coordinate information, the scRNA-seq clusters, cell subtype annotation, marker genes for

different clusters were maintained into PostgreSQL database management system (v14.5). TheMSdb data-

base is deployed with a Nginx web server (v1.18.0) on an Ubuntu Linux (v20.04.5 LTS) operating system.
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