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NEURAL REGENERATION RESEARCH 

Harnessing migraines for neural regeneration

Introduction
Since the discovery of neurogenesis in the adult mamma-
lian brain, efforts have been made to use this capacity for 
purposes of neural regeneration. Approaches have included 
transplantation of exogenous or autologous stem cells, and 
the delivery of growth factors and other pharmaceuticals to 
stimulate innate neurogenesis (Carvalho et al., 2015). 

However, there may already be an endogenous, integrated 
mechanism for increasing neural protection and repair that 
is physiologic and prevalent: the migraine attack. In this pa-
per we will first review how the elements and feedback loops 
of a migraine attack may implement a neurorestorative 
function. We will then speculate on how migraine processes 
might be elicited to support exogenously administered stem 
cells in neural restoration. 

Migraines and Oxidative Stress 
Migraine attacks, prototypically lasting from 4 to 72 hours, 
involve moderate to severe throbbing pain that is increased by 
routine physical activity and accompanied by nausea and/or 
painful sensitivity to light and sound (Headache Classification 
Committee of the International Headache Society (IHS), 2013). 
In about 30% of cases, the migraine is preceded by visual aura, 
comprised of such experiences as scintillating lines and blind 
spots. During an attack, migraineurs feel and look ill. 

 In fact, these symptoms and the underlying physiology 
may defend the brain against oxidative stress (Borkum, 2018). 
Transient receptor potential ankyrin-1 (TRPA1) ion channels, 
found on pain-sensitive nerve endings in the dura mater, are 
able to detect oxidative stress and transduce it into a neural 
signal (Kozai et al., 2014). In turn, this signal elicits neurogen-
ic inflammation, the cardinal feature of migraines, in animal 
models (Benemei et al., 2014). 

 In theory, the oxidative stress may have various sources, 
differing among migraineurs, including (1) mitochondrial 
defects (Welch et al., 1989; Markley, 2012) which tend to 
increase the production of superoxide (Stuart and Griffiths, 
2012) and impair antioxidant defenses (Wu et al., 2014); (2) 
cortical hyperexcitability (Coppola et al., 2007), in which oxi-
dative stress may result from the high metabolic rate of brain 
tissue; (3) excessive activity of vasoconstrictors such as angio-
tensin, which entails production of superoxide as a byproduct 
(Ripa et al., 2014); and (4) genetically less active antioxidant 
enzymes (Neri et al., 2015). Moreover, migraine triggers may 
be exposures that further raise levels of oxidants in the brain 
(Borkum, 2016). 

Thus, oxidative stress may be a final common pathway, 
signaling any number of unfavorable conditions in the brain. 
Further, oxidative stress can itself be harmful, as the brain is 
uniquely exposed and susceptible to damage from oxidants. 
Such damage may be a key early step in neurodegenerative 
diseases (Cahill-Smith and Li, 2014). 

Migraine attacks appear to be a naturalistic means for the 
brain to counteract this damage, by reducing the brain’s en-
ergy demands, strengthening antioxidant defenses, delivering 
a range of growth factors, boosting neurogenesis, preventing 
apoptosis, facilitating mitochondrial biogenesis, and support-
ing the survival, proliferation, development, and complex 
architecture of neurons. We will first review these aspects of 
migraine in detail, and then consider possible applications. 

Elements of the Migraine Attack  
The migraine attack unfolds as a complex, coordinated 
sequence of physiological processes (Goadsby, 2012), for 
which one starting point may be the stimulation of pain-sen-
sitive nerve endings in the dura mater (Figure 1). This 
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stimulation may arise from a buildup of oxidative stress, as 
we have seen. Alternatively, in migraine with visual aura, a 
wave of activation is thought to propagate over the cortex, 
followed by a marked decrease in spontaneous firing (corti-
cal spreading depression; CSD), corresponding to the aura’s 
scintillations and scotomas, respectively. The irritation of 
nociceptive nerve endings may then arise from the potassi-
um ions and glutamate released by this activity, in addition 
to the oxidants it generates. 

Irritation of nociceptive fibers causes them to release 
calcitonin gene-related peptide (CGRP) and substance P 
from their distal ends, instigating neurogenic inflammation. 
CGRP causes mast cell degranulation, vasodilation, hyper-
emia and possibly further sensitization of nearby nocicep-
tors. Substance P causes plasma protein extravasation into 
cerebrospinal fluid. 

The activity of the pain fibers is transmitted proximally to 
the trigeminal nucleus caudalis and the thalamus, sensitizing 
central nociceptive pathways and contributing to the pain. 
The activation further spreads to such brainstem nuclei as 
the solitary tract nucleus (responsible for nausea and vom-
iting), the locus ceruleus and the hypothalamus (involved 
in the stress response), the basal ganglia (involved in pain 
reception), and likely the dorsal raphe nucleus (DRN). The 
simultaneous firing of these regions is characteristic of a mi-
graine attack. 

Meanwhile, platelet activating factor (PAF) is released 
early in a migraine, causing platelets to aggregate in the 
cerebral venules. Platelets and presumably the DRN release 
serotonin which, via 5-HT2B receptors in the blood vessels, 
activates endothelial nitric oxide synthase (eNOS) and rais-
es production of nitric oxide. The platelets, in response to 
activation, and the endothelium, in response to nitric oxide, 
then release brain-derived neurotrophic factor (BDNF). 

This stereotyped sequence of responses is further coordi-
nated by feedback loops. Some are reinforcing and may sus-
tain the migraine attack. Thus, serotonin, CGRP, substance P, 
PAF, and BDNF all raise the activity of eNOS. The resulting 
nitric oxide then facilitates the production of BDNF, and 
vice versa, in a positive feedback cycle (Monnier et al., 2017). 
Substance P and eNOS seem to be embedded in a similar 
cycle (Yonehara and Yoshimura, 1999, 2000). 

 There are also negative feedback loops that seem designed 
to prevent the neurogenic inflammation from triggering 
excessive classical inflammation. Thus, CGRP (Matsumoto 
et al., 1996) and nitric oxide (Golebiewska and Poole, 2015) 
limit platelet activation. Moreover, at least in the mouse 
peritoneal cavity, CGRP attenuates the movement of neu-
trophils and monocytes through the endothelium (Gomes et 

Figure 1 Schematic representation of a 
migraine attack. 
5-HT: Serotonin; BDNF: brain-derived neuro-
trophic factor; CGRP: calcitonin gene-related 
peptide; CSD: cortical spreading depression; 
DRN: dorsal raphe nucleus; eNOS: endothe-
lial nitric oxide synthase; LC: locus ceruleus; 
STN: solitary tract nucleus; TNC: trigeminal 
nucleus caudalis; TRPA1: transient receptor 
potential ankyrin-1. 

al., 2005) and thus CGRP may help to maintain the immune 
privilege of the CNS. Serotonin, directly through 5-HT2C 
receptors (Hwang et al., 2008) and indirectly through the 
release of fractalkine (Cardona et al., 2006), limits the extent 
of microglial activation. 

Migraines as a Healing Environment
Let us look more closely at these processes from the stand-
point of neurorestoration.

Platelet activation 
Platelets are classically thought to contribute to migraines by 
releasing serotonin, which may sensitize nociceptive nerve 
endings; proinflammatory cytokines, which may contribute 
to inflammation; and nitric oxide, adding to vasodilation 
(Danese, et al., 2014). 

However, activated platelets are also first responders to a 
site of injury, releasing a range of growth factors to support 
healing, including BDNF, platelet-derived growth factor 
(PDGF), basic fibroblast growth factor (bFGF), vascular en-
dothelial growth factor (VEGF), nerve growth factor (NGF), 
and transforming growth factor-β1 (TGF-β1) (Mancuso and 
Santagostino, 2017). 

Not surprisingly, activated platelets in vitro facilitate an-
giogenesis, induce the survival and proliferation of neural 
stem cells, and support their differentiation into neurons 
and glia (Hayon et al., 2012a). In an in vivo model of cere-
bral ischemia, activated platelets help limit damage and fa-
cilitate repair of brain tissue (Hayon et al., 2012b). 

Now, excessive platelet activation could cause a harmful 
procoagulant state. Moreover, platelets, by producing inter-
leukin-1β and certain chemokines, create an inflammatory 
milieu, attracting monocytes and encouraging their differ-
entiation into macrophages (Mancuso and Santagostino, 
2017), potentially decreasing the viability of transplanted 
stem cells (Hermann et al., 2014). We have seen, however, 
that during a migraine attack, CGRP and nitric oxide serve 
to feed back and limit platelet activation. 

Release of CGRP 
CGRP is at the crux of migraines, causing mast cell degran-
ulation, neurogenic inflammation, and pain sensitization in 
the periphery, and contributing to central sensitization in 
the trigeminal nucleus caudalis. 

In addition, CGRP is protective, as it is a strong vaso-
dilator, suppresses apoptosis of neurons under oxidizing 
(Schaeffer et al., 2003) and ischemic conditions (Abushik 
et al., 2017), reduces the expression of oxidant-generating 
NADPH oxidase (Zhou et al., 2010), and upregulates antiox-
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idant enzymes (She et al., 2003). 
CGRP also increases the expression of a number of neuro-

trophic factors, including glial cell line-derived neurotrophic 
factor (GDNF), insulin-like growth factor-1 (IGF-1), NGF, 
VEGF, bFGF, and TGF-β (Russell et al., 2014; Ringer et al., 
2017). Not surprisingly, then, CGRP increases neurogenesis 
in a mouse model of psychosocial stress (Hashikawa-Hobara 
et al., 2015). 

In the brain, CGRP expression can be upregulated by in-
jury and infection, and in turn can activate astrocytes and 
microglia (Reddington et al., 1995). This latter effect could 
work against the survival of transplanted stem cells. Howev-
er, as noted, in migraine, serotonin, directly and via fractal-
kine, limits microglial activation. 

CGRP has been used experimentally in stem cell grafting. 
In vitro, CGRP enhances survival and promotes the differen-
tiation of adipose-derived stem cells into neurons (Yang et 
al., 2014). In an  in vivo model of spinal cord injury, CGRP 
had a chemotactic effect, attracting intrathecally injected 
human umbilical cord stem cells to the site of injury, at least 
in transection lesions (Zhang et al., 2016). Clinically, CGRP 
has been explored for preventing vasospasm following sur-
gery for subarachnoid hemorrhage (European CGRP in 
Subarachnoid Haemorrhage Study Group, 1992). 

Substance P 
Substance P mediates the extravasation of plasma proteins, 
chiefly albumin, into cerebrospinal fluid. Albumin is pro-
tective as it is an antioxidant (Taverna et al., 2013), carries 
unsaturated fatty acids that may aid in the repair of neuro-
nal membranes (Rodriguez de Turco et al., 2002), and stim-
ulates astrocytes to produce oleic acid, which facilitates the 
differentiation of neurons (Bento-Abreu et al., 2008). 

In mice, IV injection of substance P markedly increases 
neural stem cell proliferation and differentiation into neu-
rons, and leads to anatomical recovery after spinal cord 
injury. Substance P also promotes functional recovery, sug-
gesting successful integration of the newly formed cells into 
neural networks (Yang et al., 2017). In ischemia, protein 
leakage through the blood-brain barrier seems to induce 
neurogenesis in latent niches throughout the midline cir-
cumventricular system (Lin et al., 2015). 

Activation of eNOS 
Nitric oxide, produced by eNOS that has been activated by 
serotonin, contributes to the vasodilation of migraines and to 
the release of substance P. Nitric oxide also protects the brain 
under ischemic conditions through a number of mechanisms 
including vasodilation, antagonism of oxidant production by 
the renin-angiotensin system (González et al., 2014), induction 
of antioxidant enzymes (Astort et al., 2014), and stimulation 
of mitochondrial biogenesis (Nisoli et al., 2005). Moreover, 
activated eNOS causes the endothelium to release VEGF and 
BDNF (Zhang et al., 2003; Monnier et al., 2017). 

The endothelium is an important component of stem cells’ 
neurovascular niche. Thus, eNOS can induce the proliferation, 
differentiation, and migration of neural progenitor cells (Chen 
et al., 2005) and spur angiogenesis (Asada et al., 2009). A nitric 
oxide donor increased neurogenesis and functional recovery 
in a rat model of ischemic stroke (Zhang et al., 2001). 

BDNF
Production of BDNF by neurons and the endothelium is 
increased in migraine, and it released as well by activated 
platelets. It is thought to promote central pain sensitization 
in migraine attacks. 

In addition, through uncoupling protein 2, BDNF decreases 
the production of oxidants by the mitochondria, and BDNF 
upregulates a number of antioxidant enzymes and proteins 
(Wu et al., 2016). In addition, of course, BDNF is a growth 
factor, and seems to underlie endogenous neuroprotection 
(Larsson et al., 1999), angiogenesis (Bowling et al., 2016) and 
the increased neurogenesis from exercise and antidepressant 
treatment (Vilar and Mira, 2016). BDNF has been used in 
mouse models of traumatic brain injury (TBI) (Kim et al., 
2016) and spinal cord injury (Robinson and Lu, 2017) to sup-
port the survival of neural stem cells, their differentiation into 
neurons, and possible integration into neural circuits. 

Serotonin  
Serotonin is released by platelets at the start of a migraine 
(Ferrari et al., 1989). Moreover, there is increased firing in 
the region of the dorsal raphe nucleus (Weiller et al., 1995), 
which may distribute serotonin throughout the cortex 
(Azmitia, 2007). These seem to reverse a serotonin deficit 
that intensifies in the days leading up to a migraine (Hamel, 
2007). Serotonin is thought to participate in an attack by 
promoting inflammation and sensitizing pain receptors. 

 In addition, serotonin has antioxidant properties in vitro 
(Kalogiannis et al., 2016). In vivo it causes astrocytes to re-
lease metallothioneins, a class of antioxidant enzyme, and 
cysteine, which is taken up by neurons and used to produce 
the antioxidant glutathione (Miyazaki and Asanuma, 2016). 
Serotonin is also a growth factor and induces the release of 
such other trophic factors as BDNF, VEGF (Greene et al., 
2009), IGF-1 (Aberg et al., 2003), and S100B (Miyazaki and 
Asanuma, 2016). Through BDNF, serotonin increases the 
proliferation and migration of neural stem cells in the sub-
ventricular zone (Chiaramello et al., 2007). 

 Note that if release of serotonin were the only component 
of migraine, it could work against tissue healing by promot-
ing vasoconstriction. However, this property of serotonin is 
antagonized in migraine by nitric oxide and CGRP. 

 Serotonin agonists have been used in animal models of 
TBI (Cheng, et al., 2016) and a clinical trial following isch-
emic stroke (Chollet, et al., 2011) to promote recovery. 

Cortical spreading depression (CSD) 
CSD is thought to underlie migraine aura (Lauritzen, 1994). 
In CSD, a wave of activation and reactive hyperemia spreads 
geographically over the cortex, leaving in its wake a region of 
diminished cortical firing. These are believed to correspond, 
respectively, to the scintillations and scotomas of aura. 

Acutely, CSD raises oxidant production (Shatillo et al., 
2013). This is followed by a number of processes that protect 
against subsequent ischemia, including activation of AMP 
kinase and downregulation of energy-demanding pathways 
(Viggiano et al., 2014), increased transcription of antioxi-
dant enzymes and proteins (Choudhuri et al., 2002), and in-
duction of uncoupling protein 5, which reduces production 
of superoxide by the mitochondria (Viggiano et al., 2016). 
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Further, the intense neuronal activation and consequent in-
creased blood flow in CSD markedly upregulates the produc-
tion of BDNF and transcription of the gene for its receptor, 
TrkB (Urbach et al., 2006). In this sense, CSD resembles elec-
trical stimulation protocols to improve functional recovery 
after stroke or brain injury (Henrich-Noack et al., 2017). 

Thus, migraine attacks appear to be an integrated set of 
homeostatic processes that defend the brain against oxidative 
stress. Moreover, each component of migraine seems to facil-
itate the survival, proliferation, differentiation, and/or migra-
tion of stem cells. These effects are summarized in the Table 1.

Prospects for Harnessing Migraines
For both grafted and endogenous stem cells, efficacy depends 
on a facilitative environment in the injured tissue (Hermann 
et al., 2014). Moreover, it is unlikely that any single molecule 
will be sufficient for neural regeneration; rather, combina-
tion strategies are needed (Hermann and Chopp, 2012; Mo-
rales et al., 2016). As we have seen, migraine attacks seem to 
function in a multifaceted way to provide a healing milieu. 

For successful neural repair, stem cells must proliferate, 
differentiate, migrate, mature, survive, and become integrat-
ed into existing neural circuits (Jones and Connor, 2017). 
These processes, in turn, are affected by chemicals secreted 
in the microenvironments of the neurogenic niches and the 
target injured brain region, particularly neurotrophic factors 
(Carvalho et al., 2015). 

However, the administration of these growth factors is 
hampered by their short half-lives in the body, rapid deg-
radation, and poor ability to cross the blood-brain barrier 
(Carvalho et al., 2015). Moreover, an oversupply of neuro-
trophins is associated with epilepsy, autism and bipolar dis-
order, suggesting that their concentration in the brain must 
be tightly regulated (Carvalho et al., 2015). Stem cells them-
selves carry the theoretical risk of creating benign (Amariglio 
et al., 2009) or malignant tumors (Hermann et al., 2014). 

Technologies are being developed to circumvent these 
problems, such as encapsulating neurotrophins in nanopar-
ticles structured to protect the drug, provide sustained 
release, and target specific brain regions through receptor 
binding (Angelova et al., 2013; Angelov and Angelova, 2017; 
Angelova and Angelov, 2017; Guerzoni et al., 2017). How-
ever, the body may have its own techniques for enhancing 
the availability of growth factors. In particular, a migraine 
attack, by creating a physiologic environment conducive to 
neural repair, might be a naturalistic way of upregulating 
neurotrophic signaling, and provide a fertile ground for the 
successful utilization of stem cells. 

This raises the question – admittedly speculative – of pur-
posely drawing on migraine physiology in stem cell treat-
ments. At this point, little is known to guide such a project. 
Logically, however, three broad approaches could be taken: 
(1) eliciting a full migraine attack combined with pain sup-
pression; (2) eliciting a subset of migraine components; and 
(3) eliciting a subthreshold analogue of migraines. 

Full migraine
An obvious way of eliciting a migraine, of course, would be to 
stimulate TRPA1 ion channels chemically. A range of natural-
ly occurring molecules including thymol, ethyl vanillin, allyl 

isothiocyanate, cinnamaldehyde, and hydrogen sulfide open 
TRPA1 ion channels (Wu et al., 2017a; Weinhold et al., 2017). 
At least in skeletal muscle, TRPA1 agonists seem to activate 
stem cells (satellite cells) and facilitate their migration and ear-
ly differentiation into myoblasts (Osterloh et al., 2016). 

However, the effect of such an intervention may depend 
on the specific disorder. Thus, in a transgenic mouse mod-
el of Alzheimer’s disease, TRPA1 ion channels are more 
numerous on cortical neurons and hippocampal astrocytes 
than in wild type mice. Moreover, stimulation of this channel 
led to increased production of proinflammatory cytokines, 
increased deposition of amyloid beta, and exacerbation of 
behavioral deficits (Lee et al., 2016), suggesting that at least 
in genetic Alzheimer’s disease there may be a specific vul-
nerability to TRPA1 agonists. TRPA1 also contributed to 
cell death in a retinal model of ischemia (Araújo et al., 2017) 
but protected cardiac myocytes during reperfusion (Lu et al., 
2016). Thus, the safety and efficacy of TRPA1 agonists would 
need to be assessed carefully in a context-dependent manner. 

Subsets of migraine components
Several techniques that we can now understand to be elic-
iting parts of a migraine attack have already been studied. 
One such approach draws on Raskin et al.’s (1987) observa-
tion that deep brain stimulation (DBS) of the DRN can elicit 
a migraine-like headache. The DRN is one of the brainstem 
nuclei whose coordinated firing characterizes a migraine at-
tack. DBS of the raphe nuclei improved working memory in 
an animal model of TBI (Carballosa Gonzalez et al., 2013). 

Of course, DBS carries the risks of an invasive procedure. 
Moreover, Raskin et al. (1987) describe individuals for 
whom the migraine-like headaches were continuous and 
intractable. However, recent techniques may allow more 
moderate and noninvasive stimulation. Thus, oscillating 
high frequency electric fields can be positioned to interfere 
at a frequency that will influence neural firing at the desired 
depth in the brain (Grossman et al., 2017). 

There may be other ways of eliciting aspects of the mi-
graine attack by physical means. Thus, transcranial focused 
ultrasound with microbubbles has been used to transiently 
open the blood-brain barrier for delivery of drugs and to 
promote neurogenesis (Scarcelli, et al., 2014). This leads to 
sterile inflammation that shares certain features with mi-
graine, including extravasation of albumin and other plasma 
proteins, and upregulation of VEGF and BDNF (Kovacs et 
al., 2017). However, the sterile inflammation has also in-
cluded activation of microglia, increased proinflammatory 
cytokines, and migration of macrophages to the affected 
area, suggesting classical inflammation, which can result 
from protein extravasation (Ralay Ranaivo and Wainwright, 
2010). This may reflect overly intense treatment parameters 
(McMahon and Hynynen, 2017), with research needed to 
ascertain whether with gentler stimulation the effects can be 
restricted to neurogenic inflammation. 

A milder and more physiologic approach would be to 
simulate several features of a migraine attack simultaneous-
ly. The cholinesterase inhibitor donepezil improves spatial 
learning in mice by causing hippocampal astrocytes to re-
lease CGRP (Narimatsu et al., 2009) and presumably down-
stream growth factors. We have seen that serotonin agonists, 
BDNF, CGRP, substance P, and a nitric oxide donor have 
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been studied individually for promoting stem cell grafting 
and/or functional recovery. Considering migraine as an in-
tegrated system, conjoint activation of these processes might 
be more effective (Table 1). 

Subthreshold analogue of migraine 
An alternative to activating parts of a migraine attack would 
be to elicit a subsyndromal version of an attack. Whether this 
is feasible is not yet known. Interestingly, however, there is 
evidence that stimulation of the Zusanli (ST36) acupuncture 
point, just below the anterolateral knee, increases serotonin 
content of the DRN (Wu et al., 2017b), raises serum levels of 
BDNF (Tao et al., 2014), stimulates hippocampal neurogenesis 
after ischemia (Tao et al., 2014), suppresses apoptosis (Chavez 
et al., 2017), and may raise levels of activated eNOS (Leung et 
al., 2016), CGRP (Lee et al., 2012) and brain antioxidant de-
fenses (Chavez et al., 2017). Thus, stimulation of this acupunc-
ture point appears to replicate many of the neuroprotective 
features of migraine without the pain of a full attack. 

Pain suppression
Of course were a full migraine attack to be elicited, it would 
need to be dissociated from pain in order to be of clinical 
value. Presumably this can be facilitated with analgesic 
medications that do not limit neurogenic inflammation. 
Alternatively, it might theoretically be possible to create a 
“pain-free migraine” by simultaneous use of TRESK po-
tassium channel agonists. The TRESK channel, expressed 
primarily in neurons of the trigeminal, dorsal root, and au-
tonomic ganglia, appears to decrease neuronal excitability 
in response to exposure to histamine, and thus may reduce 
pain under inflammatory conditions (Lafrenière and Rou-
leau, 2011). A very small number of individuals, all of them 
having migraine with typical visual aura, have been found 
to have a frameshift mutation in which TRESK channels are 
non-functional (Lafrenière and Rouleau, 2011). In theory, 
then, a TRESK agonist might make it possible to bring about 
a migraine attack without inducing pain. 

At this point, it is unknown whether such a “migraine” is 
possible or would have neurorestorative properties. How-
ever, we have seen that individual migraine components 
indeed assist in neural repair, suggesting that pain is not an 

obligatory feature for migraines to be of use. 

Conclusions
Thus, the idea that migraine attacks are an endogenous, in-
tegrated mechanism for neural repair, suggests their possi-
ble use in creating a healing environment for application in 
stem cell technology. Nonetheless, this possibility is still in 
its infancy. Research to find effective chemical or mechanical 
techniques for eliciting components of a migraine, dissoci-
ating these components from pain, and studies to determine 
safety and dosing in various pathophysiological contexts will 
be key. Stimulation of the Zusanli (ST36) acupuncture point 
seems a particularly promising candidate. 
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