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Abstract

Aim

Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) is a hepatic secretory protein which

promotes the degradation of low-density lipoprotein receptors leading to reduced hepatic

uptake of plasma cholesterol. Non-synonymous single-nucleotide polymorphisms in its

gene have been linked to hypo- or hyper- cholesterolemia, depending on whether they

decrease or increase PCSK9 activity, respectively. Since the proliferation and the infectivity

of Plasmodium spp. partially depend on cholesterol from the host, we hypothesize that

these PCSK9 genetic polymorphisms could influence the course of malaria infection in indi-

viduals who carry them. Here we examined the frequency distribution of one dominant

(C679X) and two recessive (A443T, I474V) hypocholesterolemic polymorphisms as well as

that of one recessive hypercholesterolemic polymorphism (E670G) among healthy and

malaria-infected Malian children.

Methods

Dried blood spots were collected in Bandiagara, Mali, from 752 age, residence and ethnic-

ity-matched children: 253 healthy controls, 246 uncomplicated malaria patients and 253

severe malaria patients. Their genomic DNA was extracted and genotyped for the above

PCSK9 polymorphisms using Taqman assays. Associations of genotype distributions and

allele frequencies with malaria were evaluated.

Results

The minor allele frequency of the A443T, I474V, E670G, and C679X polymorphisms in the

study population sample was 0.12, 0.20, 0.26, and 0.02, respectively. For each
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polymorphism, the genotype distribution among the three health conditions was statistically

insignificant, but for the hypercholesterolemic E670G polymorphism, a trend towards asso-

ciation of the minor allele with malaria severity was observed (P = 0.035). The association

proved to be stronger when allele frequencies between healthy controls and severe malaria

cases were compared (Odd Ratio: 1.34; 95% Confidence Intervals: 1.04–1.83); P = 0.031).

Conclusions

Carriers of the minor allele of the E670G PCSK9 polymorphism might be more susceptible

to severe malaria. Further investigation of the cholesterol regulating function of PCSK9 in

the pathophysiology of malaria is needed.

Introduction

Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) is a secretory glycoprotein discovered

in 2003 and initially termed Neural Apoptosis-Regulated Convertase 1 (NARC-1) [1]. It

belongs to the family of proprotein convertases, the serine endoproteinases involved in the

proteolytic activation of a variety of secretory precursor proteins [2, 3]. Its gene is located on

human chromosome 1. It was the segregation of missense mutations at its locus with autoso-

mal dominant hypercholesterolemia (ADH) that led to the identification of its function in cho-

lesterol metabolism [4].

PCSK9 is primarily expressed in the liver. It is biosynthesized as a 692-amino acid pre-

proPCSK9 within hepatocytes and cleaves itself after the prodomain, forming an enzymatically

inactive heteroduplex made of the propeptide and the mature PCSK9. After release into the

bloodstream, it acts as an escort protein for low-density lipoprotein receptor (LDLR) to which

it binds at the surface of hepatocytes; the binding pair is internalized and directed towards

lysosome-like compartments where it is degraded [5]. LDLR mediates hepatic uptake of

plasma LDL and thus contributes to the clearance of plasma cholesterol [6]. PCSK9 genetic

mutations that strongly enhance its LDLR-degrading activity of the protein have been impli-

cated in autosomal dominant hypercholesterolemia [4, 7]. Furthermore, epidemiological stud-

ies have revealed strong associations between several nonsynonymous PCSK9 single-

nucleotide polymorphisms (SNPs) with hyper- or hypo-cholesterolemia in humans [8–14].

Gain-of-function (GOF) SNPs accentuate PCSK9 activity, leading to hypercholesterolemia

whereas loss-of-function (LOF) SNPs attenuate the activity, leading to hypocholesterolemia.

Hypercholesterolemia is a risk factor for atherosclerosis and other cardiovascular diseases

[15]. PCSK9 inhibitors have proven to be effective drugs against this condition [16, 17].

Two of the most effective LOF PCSK9 SNPs are c.426C> G and c.2037C> A, which cause

the nonsense p.Y142X and p.C679X mutations, respectively. The two mutations are found at a

rate of 1 in 40 African Americans and are 100-fold less frequent in European Americans [8].

In a large retrospective study, heterozygosity for these mutations was associated with lifelong

hypocholesterolemia and significant protection against coronary heart disease (CHD) [18]. In

West African ethnic groups the minor allele frequency (MAF) of the C679X mutation averages

3.3% overall but ranges from 0 to 7% [19].

Until recently, CHD was relatively uncommon in sub-Saharan Africa, primarily because of

lower prevalence of lifestyle risk factors [20]. Although it is possible that these cardioprotective

PCSK9 mutations, may have also contributed to the past low occurrence of CHD, it is probable

that these mutations may have been maintained at high frequency in these populations because
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they conferred some protection against major causes of mortality before reproductive age. We

hypothesize that these causes might have been infectious diseases, malaria in particular [21].

This hypothesis was based on the mounting evidence that host cholesterol significantly con-

tributes to invasion and proliferation of infectious agents [22, 23]. In the case of malaria, stud-

ies have shown that hypocholesterolemia conferred protection against malaria by reducing the

infectivity of merozoites [24, 25]. Furthermore, the Plasmodium parasite scavenges endoge-

nously produced or LDLR-captured cholesterol for its proficient replication in hepatocytes

[26]. Merozoites also need cholesterol for development within the erythrocytes, suggesting

that any alteration in cholesterol mobilization and metabolism may influence parasite develop-

ment, and explaining the fact that reduction of plasma lipoprotein-cholesterol has been

observed in individuals with acute malaria [27]. From a therapeutic angle, it has been reported

that Atorvastatin, a member of the statin-family of anti-cholesterol drugs, can potentiate the

efficacy of standard anti-malarial drug such mefloquine and artemisinin in murine model of

cerebral malaria [28, 29].

We wanted to assess whether by affecting cholesterol metabolism, PCSK9 could influence

the pathophysiology of malaria. As a first step, we have determined the frequency of four com-

mon PCSK9 SNPs with a documented cholesterolemia phenotype in sub-Saharan African chil-

dren of Mali enrolled in a case-control study evaluating risk and protective factors for severe

malaria.

Materials and methods

Ethics

The study protocol was reviewed and approved by the Review Board of the University of Mali

Faculty of Medicine, Pharmacy and Dentistry as well as the Research Ethics Committee of the

Clinical Research Institute of Montreal. The original case control study protocol and the use of

archived samples for malaria studies was approved by the University of Maryland Baltimore

Institutional Review Board. Written informed consent was obtained from parents or guardians

of all study participants.

Subjects

The subjects were Malian children (n = 752), aged 3 months to 14 years, enrolled in a case-con-

trol study evaluating risk and protective factors for severe malaria [30]. Index cases of severe

malaria (SM, n = 253) from Bandiagara and surrounding areas were enrolled from July 2000

to December 2001. In all three groups, the mean age was about 40 months, 85% of children

were aged less than 5½ years, and nearly 80% of them belonged to the Dogon ethnic group

(Supporting information: S1 Table). Cases were classified as severe malaria based on the

World Health Organization criteria which include one or more of the following symptoms:

impaired consciousness, prostration, multiple convulsions, acidosis, hypoglycemia, renal

impairment, severe anemia, jaundice, pulmonary edema, shock, or hyperparasitemia [31].

Each index case was age-, residence-, and ethnicity-matched to a case of uncomplicated

malaria (UM) and a healthy control (HC). UM was defined as P. falciparum parasitemia and

an axillary temperature� 37.5 ˚C detected by active surveillance or parasitemia and symptoms

leading to treatment-seeking behavior in the absence of other clear cause of fever on passive

surveillance. Children were enrolled as HC if they were asymptomatic for acute illness, had no

evidence or history of chronic illness, and if the result of their thick blood smears was negative

for malaria. All the subjects gave blood samples that were blotted onto Whatman filter papers

FTA Classic cards and dried.
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Genetic analysis

Genomic DNA was isolated from punctures of the FTA cards (6 mm in diameter) incubated

in 0.4 mL of the phosphate buffered saline (1X PBS), pH 7.4, for 20 min at room temperature

with gentle agitation. Following centrifugation, the supernatant was discarded and the paper

was treated with 40 μL of a solution containing 10 mM NaOH, 200 mM NaCl, and 0.05%

sodium dodecyl sulfate for 6 min at 95˚C. After centrifugation for 3 min, the supernatant was

collected. Aliquots were diluted 12.5 X in water and used for PCR. TaqMan assays were used

for genotyping the SNPs. The assay is based on the presence of fluorescence due to degradation

of allele-specific fluorochrome-conjugated probes after annealing to SNP-containing PCR

amplicon [32]. It was performed on a Stratagene Mx 3005P thermocycler instrument (Cedar

Creek, TX). Table 1 describes the SNPs as well as the sequence context from which allele-spe-

cific fluorogenic probes were derived. Primers and fluorogenic probes were purchased from

Applied Biosystems (Etobicoke, ON). The probes for common and minor alleles carried at

their 5’-end a VIC and a FAM fluorochromes, respectively. They all carried a non-fluorescent

quencher (NFQ) at their 3-end. A typical PCR reaction mixture contained 2 μL of DNA sam-

ple, 1x FastStart TaqMan ProbeMaster Rox master mix (Roche, Laval, QC), primers at 0.9 μM

each and fluorogenic probes at 0.2 μM each. The reaction was run for 45–50 cycles involving a

15-20-sec denaturation at 95˚C, a 20-sec annealing at the appropriate temperature, and 20-s

elongation at 72˚C.

Statistical analysis

A preliminary quality control of all data was conducted (Supporting information: S1 Text).

Conformity of each SNP to Hardy-Weinberg equilibrium (HWE) was independently evalu-

ated using an online software (www.oege.org). Chi-square tests or Fisher’ exact tests were used

to compare genotype distributions or allele frequencies between cases and controls. The

strength of allelic association with malaria was expressed as odds ratios (OR) and 95% confi-

dence intervals (95% CI). A P value of< 0.05 was set for significance in all analyses. The data

were analyzed by GraphPad Prism 5 software.

Results

A total of 752 DNA samples were genotyped for the rs28362263 (G>A), rs562556 (A>G),

rs505151 (A>G), and rs28362286 (C>A) SNPs leading to A443T, I474V, E670G, and C679X

PCSK9 polymorphisms, respectively. Their genotype distribution in this population sample

did not deviate from HWE and their MAFs were 0.12, 0.20, 0.26, and 0.022, respectively (see

Table 1).

Since we presumed that plasma cholesterol level could influence the vulnerability to

malaria, we examined the frequency of these cholesterolemia-modifying PCSK9 SNPs among

healthy and malaria-stricken children in our cohort. The results per genotype and per health

condition severity are presented in Table 2.

The percent of heterozygotes for the dominant 679X variant were 5.9%, 3.2, and 3.2%

among HC, UM, and SM groups, respectively. Although the difference was not significant, the

trend would be expected if low cholesterol offered relative protection against malaria. A similar

trend was observed for homozygotes for the recessive 474V variant (HC/UM/SM: 5.5/4.1/

3.2%), but not for homozygotes for the recessive 443T variant (HC/UM/SM: 3.58/0.81/3.16%).

Interestingly, an opposite trend was noted for the recessive GOF 670G variant (HC/UM/SM:

3.6/5.7/7.9%, Chi-square for trend P = 0.035), suggesting that hypercholesterolemia may ren-

der individuals relatively more susceptible to severe malaria.

The E670G PCSK9 polymorphism increases the risk for severe malaria
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When we grouped all malaria cases and compared the genotype distribution and allele fre-

quencies for each SNP, no association was observed (Supporting information: S2 Table). How-

ever, when we compared healthy controls to severe malaria cases or uncomplicated malaria,

we noted a significant association of the GOF 670G variant with susceptibility to severe

malaria (OR: 1.38; 95% CI: 1.04–1.83, P = 0.031) (Table 3), and a significant association of the

LOF 443T variant with protection from uncomplicated malaria (OR: 0.63; 95% CI: 0.43–0.94,

P = 0.024) (Table 4).

Interestingly, when the allele distribution of the E670G polymorphism was considered by

gender, the association of the G variant with severe malaria was significant in males (OR: 2.70;

95% CI: 1.74–4.19; P< 0.0001), not in females (OR: 1.37; 96% CI: 0.89–2.11; P = 0.186).

Indeed, 15 out the 20 homozygous carriers of the 670G variation (75%) were males. No such

gender dichotomy was observed for the A443T polymorphism in relation with uncomplicated

malaria (Supporting information: S3 Table). No association was detected when UM cases were

compared to SM cases for any of the SNPs (see Supporting information: S2 Table). The E670G

genotypes did not influence the manifestation of malaria symptoms (Supporting information:

S4 Table), nor the levels of blood glucose, hemoglobin, white blood cells or parasites (Support-

ing information: S1 Fig).

Table 1. PCSK9 SNPs under study.

SNP ID c.#N1>N2 (p.AA1#AA2)a Context Sequences: 5’-3’b Exon Phenotypec MAFd HWEe

rs28362263 c.1327G>A (p.A443T) cccaacctggtggcc[g/a]ccctgccccccagca 8 LOF 0.12 0.23

rs562556 c.1420A>G (p.I474V) cggatggccacagcc[a/g]tcgcccgctgcgccc 9 LOF 0.20 0.96

rs505151 c.2009A>G (p.E670G) gcagcaccagcgaag[a/g]ggccgtgacagccgt 12 GOF 0.26 0.71

rs28362286 c.2037C>A (p.C679X) cgttgccatctgctg[c/a]cggagccggcacctg 12 LOF 0.02 0.90

a Codon.# common nucleotide>variant nucleotide (protein.common amino acid#variant amino acid).
b The polymorphic nucleotides are written in bold and bracketed.
c LDLR-degrading activity: loss-of-function (LOF) or gain-of-function (GOF).
d Minor allele frequency in the whole population sample.
e Hardy-Weinberg equilibrium.

https://doi.org/10.1371/journal.pone.0192850.t001

Table 2. Genotype distribution among healthy and malaria children.

SNP Healthy Controls

(HC, N = 253)

Uncomplicated Malaria

(UM, N = 246)

Severe Malaria

(SM, N = 253)

Statisticsb

G:a 0 1 2 0 1 2 0 1 2 Pexact Ptrend

A443T N 191 53 9 202 42 2 197 47 8 0.112 0.888

% 75.5 20.9 3.6 82.1 17.1 0.8 78.2 18.7 3.2

I474V N 162 77 14 151 85 10 168 76 8 0.437 0.226

% 64.0 30.4 5.5 61.4 34.6 4.1 66.7 30.2 3.2

E670G N 145 99 9 140 92 14 126 106 20 0.110 0.035

% 57.3 39.1 3.6 56.9 37.4 5.7 50.0 42.1 7.9

C679X N 237 15 0 237 8 1 244 8 0 0.269 0.126

% 94.1 5.9 0.0 96.3 3.2 0.4 96.8 3.2 0.0

a G, genotypes by number of variant allele: 0 homozygotes for the common allele; 1, heterozygotes; 2, homozygotes for variant allele; N, number of subjects; % of

subjects per genotype.
b, P exact or trend was determined by Chi2, Strong trends among health conditions is shaded.

https://doi.org/10.1371/journal.pone.0192850.t002
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Discussion

The E670G polymorphism is located in the cysteine/histidine-rich domain C-terminal domain

(CHRD) of PCSK9. This domain is required for the LDLR-degrading activity of the protein

[33]. The substitution of the charged Glu by a neutral Glycine at position 670 increases this

activity presumably by altering CHRD conformation. The E670G polymorphism has been

associated with hypercholesterolemia and increased risk of coronary artery disease [34]. In

adults, for unknown reasons, the association with high plasma cholesterol appears to be male-

gender specific [35]. In our children study, homozygous carriers of the minor allele, were

mostly males and there were more of them among severe malaria patients than among healthy

controls. These observations call for further studies that include lipid profiling to verify

whether E670G-linked chronic hypercholesterolemia is indeed associated with a greater risk of

severe malaria. In patients under septic shock, the GOF 670G variation was associated with

greater blood levels of pro-inflammatory cytokines and greater mortality [36]. In mice,

increased PCSK9 activity was linked to inflammation and septic shock lethality; its deficiency

reversed these adverse outcomes [36, 37]. Therefore it is possible that the E670G polymor-

phism contributes to the inflammatory responses that commonly accompany and sometimes

aggravate malaria [38, 39].

It is intriguing that the risk allele of the E670G polymorphism should be found at such a

high frequency (MAF: 0.26) if it is associated with child morbidity and mortality due to

endemic malaria. As in the case of balanced polymorphisms [40], it could provide some yet

unknown biological benefits to carriers. On the other hand, using long-range haplotype test on

the PCSK9 locus, Ding and Kullo [41] have observed that the ancestral (major) allele of the

Table 3. Association analysis of PCSK9 SNPs and severe malaria.

SNP (PCSK9) Healthy Controls

(N = 253)

Severe Malaria Cases

(N = 253)

Statisticsb

G:a 0 1 2 0 1 2 Pg Pa OR 96% CI

rs28362263 (A443T) 191 53 9 197 47 8 0.775 0.516 0.88 (0.61–1.26)

rs562556 (I474V) 162 77 14 168 76 8 0.417 0.340 0.85 (0.62–1.17)

rs505151 (E670G) 145 99 9 126 106 20 0.057 0.031 1.38 (1.04–1.83)

rs28362286 (C679X) 237 15 0 244 8 0 0.200 0.205 0.53 0.22–1.25)

a G, genotypes by number of variant allele: 0, homozygotes for common allele; 1, heterozygotes; 2, homozygotes for variant allele.
b Pg, statistical differences of genotypes distribution (Chi2 test); Pa, statistical differences of allelic frequencies (Fisher’s exact test); OR, odds ratio; CI, confidence

interval. Significant differences between cases and controls are shaded.

https://doi.org/10.1371/journal.pone.0192850.t003

Table 4. Association analysis of PCSK9 SNPs and uncomplicated malaria.

SNP (PCSK9) Healthy Controls

(N = 253)

Uncomplicated Malaria

Cases (N = 246)

Statisticsb

G:a 0 1 2 0 1 2 Pg Pa OR (%CI)

rs28362263 (A443T) 191 53 9 202 42 2 0.051 0.024 0.63 (0.43–0.94)

rs562556 (I474V) 162 77 14 151 85 10 0.591 0.877 1.04 (0.76–1.41)

rs505151 (E670G) 145 99 9 140 92 14 0.513 0.605 1.09 (0.81–1.46)

rs28362286 (C679X) 237 15 0 237 8 1 0.297 0.302 0.61 (0.26–1.40)

a G, genotypes by number of variant allele: 0, homozygotes for common allele; 1, heterozygotes; 2, homozygotes for variant allele.
b Pg, statistical differences of genotypes distribution (Chi2 test); Pa, statistical differences of allelic frequencies (Fisher’s exact test); OR, odds ratio; CI, confidence

interval. Significant differences between cases and controls are shaded.

https://doi.org/10.1371/journal.pone.0192850.t004
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E670G SNP may have been under positive selection in African-Americans, not in European-

Americans, suggesting that it may have been advantageous for the survival or the reproduction

of their African ancestors.

It was expected that minor allele of the rs28362286 (C>A) nonsense SNP would be less fre-

quent among severe malaria patients than among healthy controls. It was not to a statistically

significant extent. This SNP was initially identified among African-Americans at MAFs of

0.018 [8, 18]; it was observed in Zimbabwe and West Africa at MAFs of 0.04 and 0.033, respec-

tively [19, 42]. The transversion introduces a premature termination codon leading to the pro-

duction of a truncated protein that is not secreted and thus is incapable of promoting LDLR

degradation [43, 44]. It is associated with a remarkable 28% reduction of mean plasma choles-

terol in heterozygotes [8, 9, 18, 42]. The lower MAF of this SNP would require a larger popula-

tion sample to establish any protective effect against severe malaria.

The rs28362263 (G>A) and rs562556 (A>G) LOF SNPs are found in many populations at

varying frequencies [9, 11, 12, 45, 46]. Their minor alleles encode 443T and 474V LOF PCSK9

variants, respectively. These alleles are recessive since they are associated with significant

reduction of plasma LDL-C level only in homozygotes [9, 45, 46]. The 443T variant has been

shown to be more susceptible to proteolytic inactivation by the furin convertase [44], explain-

ing its LOF phenotype. Why it appears to protect against uncomplicated malaria and not

against the severe form remains to be investigated.

Conclusions

Data presented in this preliminary report support the notion that PCSK9 activity could affect

susceptibility to malaria. This finding should be corroborated by prospectively studying a

larger population sample. It should be pointed out that sub-Saharan Africans commonly carry

more than one non-synonymous LOF and GOF PCSK9 SNPs in various combinations [12]. In

the present cohort, 17.6% of subjects carried two of the four SNPs examined. In such cases, the

resultant phenotype could be difficult to predict unless they are correlated with cholesterole-

mia. A substantial deviation from normal cholesterolemia in the absence of malaria may be a

valid predictor of susceptibility or resistance to it. Furthermore, induction of normocholester-

olemia with anti-PCSK9 drugs in hypercholesterolemic individuals could be useful for anti-

malaria prophylaxis and therapy.
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difference was observed among genotype within either malaria conditions.

(TIF)
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