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HIGHLIGHTS

� Platelet activity and its effector cell

properties are increased in persons with

virologically suppressed HIV on

antiretroviral therapy.

� The platelet transcriptome is differentially

expressed in participants with HIV

compared with healthy individuals.

� ABCC4 expression and translation was

enhanced in HIV-infected subjects

compared with healthy individuals.

� ABCC4 is a membrane transporter that

plays an important role in regulating

several cardiovascular processes,

including platelet activation and

aggregation.

� Platelet ABCC4 inhibition in HIV

attenuated platelet activation and

platelet effector cell function by

regulating cyclic nucleotide homeostasis

and the extrusion of platelet

proinflammatory mediators.
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An unbiased platelet transcriptome profile identified ATP binding cassette subfamily C member 4 (ABCC4) as a

novel mediator of platelet activity in virologically suppressed human immunodeficiency virus (HIV)-infected

subjects on antiretroviral therapy. Using ex vivo and in vitro cellular and molecular assays we demonstrated

that ABCC4 regulated platelet activation by altering granule release and cyclic nucleotide homeostasis through

a cAMP-protein kinase A (PKA)–mediated mechanism. Platelet ABCC4 inhibition attenuated platelet activation

and effector cell function by reducing the release of inflammatory mediators, such as sphingosine-1-phosphate.

ABCC4 inhibition may represent a novel antithrombotic strategy in HIV-infected subjects on antiretroviral

therapy. (J Am Coll Cardiol Basic Trans Science 2018;3:9–22) © 2018 The Authors. Published by Elsevier on

behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
H uman immunodeficiency virus
(HIV)-infected subjects are at sig-
nificant risk for myocardial infarc-

tion and other forms of cardiovascular
disease (CVD), even after controlling for tradi-
tional risk factors (1,2). Due to antiretroviral
therapy (ART), HIV-infected individuals are
living longer, but CVD has become a leading
cause of death (3–5). Themechanism bywhich
HIV infection increases the risk of CVD is not
fully known. Possible mechanisms increasing
the risk of CVD involve chronic inflammation
(6,7), immune dysregulation (8), metabolic changes
(9), increased coagulation (10), dyslipidemia (11), and
endothelial dysfunction (12). Data from our group
and others have demonstrated that platelets in per-
sons with HIV reveal a basally activated state, which
suggests that pathological platelet activation may
contribute to HIV-mediated CVD (13–16).
SEE PAGE 23
Platelets play a major role in hemostasis, with
increased platelet activity contributing to the patho-
genesis of atherothrombosis (17). In addition to their
well-known functions in hemostasis and thrombosis,
platelets play an important role in inflammation and
immune activation (18). Activated platelets synthesize
and release a host of pleiotropic inflammatory media-
tors, including interleukin-1b, CD40L, microparticles,
and tissue factor, which interact with leukocytes and
endothelial cells (19–22). Platelets are discoid, anu-
cleate cells generated from bone marrow megakaryo-
cytes that retain megakaryocyte-derived mRNAs and
test they are in compliance with human studies committe

d Food and Drug Administration guidelines, including patien
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translational machinery for protein biosynthesis
(23–25). Platelet RNA expression profiling has been
used in subjects with sickle cell disease, obesity, sys-
temic lupus erythematosus, and CVD (26–30). Tran-
scriptional profiling may yield novel mechanistic
insights, unbiased by pre-existing disease hypotheses.
We recently found the platelet transcriptome can: 1)
distinguish healthy subjects with hyperreactive versus
hyporeactive platelets; and 2) support a mechanistic
link between platelet activity and CVD (31).

In the present study, we performed unbiased
transcriptome profiling in platelets from subjects
with HIV under ART and healthy controls. The
platelet transcriptome was analyzed and single-
transcript models constructed to identify candidate
mRNAs with differential expression. We then sought
to validate and study the mechanism of our top
candidate transcript using ex vivo and in vitro
cellular and molecular assays.

METHODS

STUDY PERSONS. The study was conducted in
accordance with policies of the New York University
Langone Medical Center Institutional Review Board,
Bellevue Hospital Center, and the central office of
the New York City Health and Hospital Corporation.
Peripheral blood was drawn (3.8% sodium citrate
tubes) with written consent, from healthy controls and
HIV-infected subjects with HIV RNA viral load <200
copies/ml for $3 months on ART. Exclusion criteria
included age <18 and >80 years, nonsteroidal anti-
inflammatory drug (NSAID) use in the past week
(including aspirin), antiplatelet or antithrombotic
es and animal welfare regulations of the authors’

t consent where appropriate. For more information,

, 2017, accepted October 23, 2017.
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drug use, CVD, chronic kidney disease, steroids or
immunosuppressive agents, active drug or alcohol
use, known anemia (hemoglobin <8 mg/dl), or
thrombocytopenia (<100 � 103/ml) or thrombocytosis
(>500 � 103/ml).

PLATELET PREPARATION, LYSATES AND SUPERNATANTS

COLLECTION. Platelet-rich plasma was added to 1:10
acid-citrate-dextrose solution, centrifuged (1,000 g,
10 min) and platelet pellet resuspended in Tyrode’s
buffer and 1 mmol/l PGE1 (Sigma-Aldrich, St. Louis,
Missouri). Platelets were counted on a Coulter AC$T
diff2 Hematology Analyzer (Beckman Coulter, Brea,
California) and adjusted to the desired concentration
by addition of Tyrode’s buffer or endothelial or
monocyte starvation medium. Cells were rested
30 min before thrombin activation. Resting or acti-
vated platelets were pelleted (14,000 g, 3 min) and
lysed in 1% Triton X-100 (Thermo Fisher Scientific,
Waltham, Massachusetts) in Tyrode’s buffer con-
taining protease inhibitor cocktail.

CELL CULTURE. Human umbilical vein endothelial
cells (HUVECs) (Lonza, Basel, Switzerland) were
cultured in endothelial growth medium (Lonza) sup-
plemented with 10% fetal bovine serum (Invitrogen,
Carlsbad, California). For all experiments, HUVECs
were used between passages 3 to 5. THP-1 cells (ATCC,
Manassas, Virginia) were grown in RPMI 1640
medium (Corning, Corning, New York) supplemented
with 10% fetal bovine serum.

PLATELET-HUVEC COINCUBATION. HUVECs, serum-
starvedovernight (0.5%bovine serumalbumin [BSA] in
basal medium), were incubated with either untreated
or stimulated (0.05 U/ml thrombin, 5 min) platelets
(1:100 ratio, 2 h, 37�C). Unbound platelets were washed
away and HUVECs lysed in QIAzol (Qiagen, Hilden,
Germany).Where indicated, plateletswere pre-treated
(30 min, 37�C) with the highly selective ATP
binding cassette subfamily C member 4 (ABCC4)
inhibitor Ceefourin 2 (3-chloro-5-4-methylphenyl)-7-
(trifluoromethyl)pyrazolo[1,5-a]pyrimidine-2-carboxylic
acid; Abcam, Cambridge, United Kingdom) (32) before
coincubation.

PLATELET-MONOCYTE COINCUBATION. Platelets,
resuspended in serum-free RPMI 1640 containing
10 mg/ml polymyxin B sulfate (Sigma-Aldrich) were
either left untreated or stimulated (0.25 U/ml
thrombin, 5 min) before coincubation with THP-1
(1:100 ratio) in polystyrene round-bottom tubes (2 h,
37�C). THP-1 were pelleted (120 g, 5 min) and stored in
QIAzol. Where indicated, platelets were pre-treated
with Ceefourin (30 min, 37�C) before coculture.

PLATELET PURIFICATION. As previously described
(33), platelets were subjected to negative selection
based onmagnetic cell sorting using human CD45þ and
GLY Aþ depletion kit (EasySep, STEMCELL Technolo-
gies, Vancouver, British Columbia, Canada). All puri-
fied platelets were lysed in QIAzol for RNA isolation. A
relative purity (platelet/leukocyte ratio, 1 � 107) of
platelet cell populations by flow cytometry and gene
expression was obtained (31), consistent with other
groups measuring platelet RNA expression (27).

RNA SEQUENCING. RNA sequencing (RNA-Seq) was
performed in leukocyte-depleted platelet RNA from
6 subjects with HIV and 3 controls. Raw sequencing
data were received in FASTQ format. Read mapping
was performed using TopHat version 2.0.9 (Center for
Computational Biology at Johns Hopkins University,
Baltimore, Maryland) against the hg19 human refer-
ence genome. The resulting BAM alignment files were
processed using the HTSeq version 0.6.1 Python
framework (Python Software Foundation, Beaverton,
Oregon) and respective hg19 GTF (gene transfer
format) gene annotation, obtained from the UCSC
Genome Browser database. The Bioconductor package
DESeq2 (release version 3.2) was used to identify
differentially expressed genes. This package provides
statistics for determination of differentially expressed
genes using a model based on the negative binomial
distribution. The resulting values were then adjusted
using the Benjamini and Hochberg’s method for con-
trolling false discovery rate. Genes with a nominal p
value#0.01were determined differentially expressed.
RNA sequencing data from platelet samples and sub-
jects’ clinical characteristics have been submitted to
GEO (accession number GSE99737). Gene Set Enrich-
ment Analysis (GO) of transcripts differentially
modulated between HIV and controls was performed.

FLUORESCENCE MICROSCOPY. Adhesion of platelets
to HUVECs was performed as described earlier in the
text, with an additional step. Briefly, freshly isolated
platelets were stained with 3 mmol/l CellTracker Green
CMFDA Dye (Life Technologies, Carlsbad, California)
and left untreated or treated with 0.05 U/ml thrombin
for 5 min. After incubation with HUVECs, cells were
fixed with 3.7% paraformaldehyde (10 min, room
temperature [RT]) and permeabilized with 0.5% Triton
X-100 in phosphate-buffered saline [PBS] (10 min, RT).
Coverslips were mounted with VECTASHIELD
Mounting Medium with DAPI (Vector Laboratories,
Burlingame, California) and examined on an EVOS FL
Imaging System microscope (Thermo Fisher Scienti-
fic). In some experiments, platelets were treated with
Ceefourin after staining with CellTracker.

For ABCC4 and f-actin double staining, coverslips
were coated with 40 ml of human collagen type I
(1 mg/ml, Sigma-Aldrich), incubated (1.5 h, 37�C),



TABLE 1 Study Population Characteristics

Controls
(n ¼ 7)

HIV*
(n ¼ 55)

Age, yrs 42.1 � 8.5 53.5 � 7.8

Female 57.1 42.6

BMI, kg/m2 25.6 � 1.8 27.0 � 5.5

Race

White 71.4 18.5

Black 28.6 81.5

Asian 0 0

Other 0 1.9

Ethnicity

Hispanic 28.6 11.1

Smoking status

Current 0 50.0

Former 14.3 40.0

Never 85.7 10.0

CD4þ T-cell count (c/mm3) 0 665.6 � 353.2

Years of HIV duration 0 19.7 � 7.0

Years on antiretroviral therapy 0 14.4 � 6.3

Values are mean � SD or %. *All variables were significantly different between HIV
and controls (p < 0.05) except for BMI (0.51).

BMI ¼ body mass index; HIV ¼ human immunodeficiency virus.
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washed twice with PBS, and blocked by BSA (2 mg/ml,
1 h, 37�C). After another wash with PBS, coverslips
were incubated with 20 ml of platelet suspension
(106/ml, 30 min, RT), washed with PBS 3�, and fixed
by formaldehyde in PBS (1%, 30 min, RT). Platelets
were then permeabilized with 0.5% Triton X-100 in
PBS (15 min, RT) and blocked by 1% BSA in PBS (30
min, RT). ABCC4 staining was carried out using the
ABCC4 antibody (1:500, overnight, 4�C; Abcam) and
secondary fluorescein isothiocyanate antibody
(1:200, 1 h, RT, Santa Cruz Biotechnology, Austin,
Texas). Phalloidin staining, was added with ABCC4
secondary antibody (1:40, Thermo Fisher Scientific).
Imaging was performed on a Zeiss AxioObserver with
63� N.A. 1.40 lens, Axiocam 503 mono, and narrow
pass fluorescent filter blocks (Carl Zeiss, Oberkochen,
Germany). For ABCC4 quantification, platelets from
controls and HIV-infected subjects were compared.
Fifty cells of each condition were imaged. Fields
were imaged randomly, and all cells in each field
were manually counted for the number of green dots
per cell.
MEPACRINE ASSAY. Washed platelets (108/ml) were
diluted 1:40 in Hanks’ balanced salt solution. Cee-
fourin or vehicle was added to platelets to a final
concentration of 10 mmol/l (30 min, 37�C). Platelets
were then stimulated with thrombin (0, 0.05 or 0.25
U/ml, 5 min, 37�C). Mepacrine (10 mmol/l, Sigma-
Aldrich) was added (30 min, 37�C) to stain dense
granules. Samples, diluted 1:2 in Hanks’ balanced salt
solution were run on the flow cytometer. In these
experiments, 10,000 platelets were collected off of
forward and side scatter properties.

SPHINGOSINE-1-PHOSPHATE MEASUREMENT. Sphingo-
sine-1-phosphate (S1P) was analyzed, with minor
modifications, as described (34). Twenty-five or 50 ml
of sample (sera and supernatants, respectively) were
extracted by vortexing in a 1:30 v/v solution of
diethylamide 10%/dichloromethanol: methanol 1:1
containing sphingomyelin C12 (d18:1/12:0, 120 mmol/l)
as internal standard. External standards were quan-
tified and processed identical to samples. The ana-
lyses were carried out in organic acid-resistant deep
96-well plates (Agilent Square 96-well, 2 ml
# 51333009, Agilent, Santa Clara, California).

STATISTICS. Data were analyzed using standard
descriptive and multivariable methods. Data were
expressed as mean � SEM or median (25th, 75th
percentile), as appropriate. The statistical signifi-
cance between 2 groups was determined by para-
metric (Student t test) or nonparametric (Mann
Whitney U test) testing, as appropriate. Unadjusted
and multivariable linear regression analysis was used
to determine the impact of HIV status on platelet
mRNA ABCC4 expression, controlling for potentially
influential demographic and biological covariables,
including duration of HIV, CD4 count, and HIV ther-
apy type. Probability values <0.05 were considered
statistically significant. Analyses were performed
using SAS (version 9.3, SAS Institute, Cary, North
Carolina) and GraphPad Prism (version 7.00 for Win-
dows, GraphPad Software, La Jolla, California).

Methods for quantitative polymerase chain reac-
tion (qPCR), Western blot, flow cytometry, and cyclic
adenosine monophosphate (cAMP) measurement
available in the Supplemental Methods.

RESULTS

SUBJECTS DEMOGRAPHICS. Median age of HIV-
infected subjects was 53.5 (range 29 to 68) years.
Nearly 82% of the population was black, and 57%
were men. Fifty percent were current smokers. Mean
CD4þ T-cell count was 665.6 (range 214 to 1,727).
Mean years of HIV-1 diagnosis was 19.7 (range 5 to 32)
years, and mean years on effective ART therapy with
a suppressed HIV-1 RNA viral load was 14.4 (range 1 to
26) years. An overview of clinical characteristics and
treatment at the time of blood sampling is presented
in Table 1 and Supplemental Table 1.

ENDOTHELIAL CELL AND MONOCYTE ACTIVATION

BY PLATELETS FROM HIV-INFECTED SUBJECTS. We
and others have previously shown that platelet
activity is increased in the setting of HIV (13–16). We
now sought to determine the effects of HIV-related

https://doi.org/10.1016/j.jacbts.2017.10.005
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FIGURE 1 Endothelial and Monocytic Activation by Platelets Is Enhanced in HIV Subjects

(A) Immunofluorescence microscopy of platelet adhesion to HUVECs in healthy and HIV subjects. Freshly isolated platelets (green) from controls (C) and HIV subjects

(HIV) were stained with CellTracker dye and left untreated (Basal, left panels) or treated with thrombin (0.05 U/ml for 5 min; Activated, right panels) before

incubating with HUVECs. HUVEC nuclei are stained with DAPI (blue). The images are representative of 3 subjects for each group. Magnification, 20�. **p < 0.01.

(B to D) HUVECs were coincubated with resting (Basal) or activated platelets from HIV (n ¼ 6 to 7) and healthy controls (n ¼ 6 to 7) for 2 h. Interleukin (IL)-8 (B),

intercellular adhesion molecule (ICAM)-1 (C), and monocyte chemotactic protein (MCP)-1 (D) expression was assessed by quantitative polymerase chain reaction

(qPCR). Values, normalized on 18S5 RNA represent fold change versus respective control. TNF (10 ng/ml) represents the positive control. *p < 0.05. (E and F) THP-1

were cultured with HIV platelets (HIV, n ¼ 7) or control platelets (C, n ¼ 4) at basal (Basal) or after stimulation (thrombin 0.25 U/ml, 5 min) for 2 h. MCP-1 (E) and IL-6

(F) expression was assessed by qPCR and normalized on 18S5 RNA. Lipopolysaccharide (100 ng/ml) was used as positive control. Values represent fold increase versus

respective control. *p < 0.01, **p < 0.05, and p ¼ 0.07. HIV ¼ human immunodeficiency virus; HUVEC ¼ human umbilical vein endothelial cell.
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platelet activation on endothelial cells and monocytic
cell line because these cell types play important roles
in CVD pathogenesis (35,36). Labeled platelets iso-
lated from HIV and healthy individuals were cocul-
tured with HUVECs for 2 h in unstimulated (basal)
conditions and following incubation with thrombin
(0.05 U/ml). In healthy subjects, few unstimulated
platelets adhered to HUVECs (Figure 1A). By contrast,
platelets in their basal state isolated from subjects
with HIV had increased adhesion to endothelial cells
(Figure 1A). Thrombin stimulation further increased
platelet adhesion in both groups, with a more
pronounced effect in the HIV group (Figure 1A).
Moreover, we observed that thrombin-activated
platelets from subjects with HIV surrounded
HUVECs forming rosette-like aggregates (Figure 1A).

We next evaluated whether adherent platelets
induced mRNA expression of endothelial cells and
monocytic cells activation markers. Consistent with
prior reports (37–41), we found that incubating
endothelial cells or monocytic cells with healthy
donor platelets that were activated by thrombin
resulted in up-regulation of inflammatory gene
expression (Figures 1B to 1F). Platelets isolated from



FIGURE 2 Platelet Transcriptome Profiling in HIV

(A) Heat map from hierarchical clustering of differentially expressed genes between controls and HIV platelets. Genes with p < 0.01 were considered for the analysis.

The ABCC4 heat map is highlighted. (B) The data for all genes are plotted as log2 fold change versus the log10 of the p value. The top genes that are significantly

different (sorted by p value) are indicated. (C) GO enrichment analysis (2 unranked list) of differentially expressed genes (p < 0.01). Bars indicate significantly enriched

GO terms associated with cellular process and cell function. (D) ABCC4 mRNA expression in platelets from healthy volunteers (n ¼ 7) and HIV (n ¼ 48) subjects.

qPCR analysis was reported expressing the ABCC4 Ct values after normalization with 18S5 RNA. **p < 0.01. (E) ABCC4 expression (RNA-Seq normalized counts)

correlates with surface P-selectin and PAC-1 (activated Integrin aIIbb3) staining in persons with HIV and controls, measured by flow cytometry (r ¼ 0.72; p ¼ 0.05 and

r ¼ 0.77; p ¼ 0.03, respectively). Ct ¼ concentration-time product; MFI ¼ median fluorescence intensity; MHC ¼ major histocompatibility complex; PAC-1 ¼ activated

glycoprotein IIb/IIIa receptor; other abbreviations as in Figure 1.
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subjects with HIV (vs. controls) induced the expres-
sion of interleukin (IL)-8, intercellular adhesion
molecule (ICAM)-1, and monocyte chemotactic
protein (MCP)-1 in HUVECs. These differences were
observed from platelets in their basal state and after
treatment with thrombin (Figures 1B to 1D). Platelets
isolated from subjects with HIV were also able to
induce expression of IL-6 and MCP-1 in THP-1 cells
(Figures 1E and 1F). Altogether, these data demon-
strate that platelets from HIV-infected subjects cause
endothelial cell and monocyte activation.
DIFFERENTIALLY EXPRESSED PLATELET mRNA IN

HIV. To characterize transcriptional changes
associated with the hyperreactive platelet phenotype
observed in persons with HIV, we conducted an unbi-
ased RNA-Seq analysis of platelet mRNA from 6 HIV
and 3 control subjects. Across the 9 platelet samples,
there was an average of 23 million mapped reads per
sample with an average unique mapping rate of 78.6%.
Using a cutoff of normalized counts$1 averaged across
the 9 samples, we found 11,988 expressed transcripts
(Supplemental Figure 1). We identified candidate
transcripts differentially expressed in platelets be-
tween HIV and controls (Figure 2A, Supplemental
Table 2). The volcano plot of log2 (fold change) versus
log10 (adjusted p values) from differentially expressed

https://doi.org/10.1016/j.jacbts.2017.10.005
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genes between the 2 cohorts is reported in Figure 2B.
Using filtering criteria of a p value <0.01, GO analysis
was performed on 73 differentially expressed tran-
scripts (Supplemental Table 3).

Platelets from persons with HIV had increased
expression of genes involved in secretion and
exocytosis and leukocyte activation in immune
responses (Figure 2C, Supplemental Table 3). The gene
encoding ABCC4 (ATP binding cassette subfamily C
member 4, also called ABCC4) was the most
up-regulated gene in the platelet transcriptome
of HIV-infected subjects versus controls (3.5-fold
change, p < 0.0001). Consistent with pathways anal-
ysis, ABCC4 is a protein-coding gene known to play an
important role in platelet degranulation
and activation (Figure 2C). Therefore, we selected
ABCC4 as our candidate transcript for further
analyses.

We validated ABCC4 up-regulation in HIV platelets
by qPCR; ABCC4 expression was increased 2.3-fold in
HIV versus controls (Supplemental Figure 2). To
determine the robustness of our findings, ABCC4
platelet mRNA expression was assessed in a larger
cohort of HIV-infected persons (n ¼ 48) and healthy
controls. Consistently, ABCC4 was significantly
up-regulated in the HIV population compared with
the control group, supporting our platelet RNA-Seq
data (Figure 2D). In unadjusted analyses, HIV status
was significantly associated with higher platelet
mRNA ABCC4 expression. Additional variables asso-
ciated with higher ABCC4 platelet expression were
male sex and Hispanic ethnicity (Supplemental
Table 4). No significant difference in ABCC4 expres-
sion was noted for hepatitis B, hepatitis C, CD4 count,
smoking status, HIV duration, or type of ART
(Supplemental Table 3). After adjustment for age, sex,
race/ethnicity, and body mass index, persons with
HIV had significantly higher ABCC4 than controls
(b ¼ �2.9; p ¼ 0.001) (Supplemental Table 5).

Because platelet activity is increased in persons
with HIV, we examined whether expression of
platelet ABCC4 mRNA was associated with platelet
activity. Platelet surface expression of P-selectin
(r ¼ 0.72; p ¼ 0.046) and activated Integrin
aIIbb3(r ¼ 0.77; p ¼ 0.025) significantly correlated with
ABCC4 platelet mRNA expression (Figure 2E).
ABCC4 PROTEIN LEVELS IN PLATELETS OF HIV

SUBJECTS. ABCC4 transcriptional up-regulation in
subjects with HIV was assessed and confirmed at the
protein level. Western blot analysis of platelet lysates
showed a significant increase of ABCC4 protein
expression in HIV-infected subjects versus controls
(p < 0.05) (Figure 3A). Immunofluorescence micro-
scopy of collagen-spread platelets further confirmed
increased ABCC4 expression in platelets isolated from
subjects with HIV (Figure 3B).
ABCC4 INHIBITIONREDUCESPLATELETGRANULERELEASE

AND IMPAIRS CYCLIC NUCLEOTIDE HOMEOSTASIS IN

HIV. Because ABCC4 is involved in the transport of
diverse endogenous compounds, including dense
granule content, we sought to investigate dense
granule release in controls and HIV-infected subjects.
Accumulation of the fluorescent mepacrine is used as
a dense granule marker (42,43).

Consistent with the role of thrombin in inducing
dense granule release (44), thrombin stimulation
decreased mepacrine staining (e.g., increase in dense
granule release) in both groups in a concentration-
dependent manner (Figure 4A). Notably, in the basal
state, subjects with HIV showed decreased mepacrine
staining compared with controls (Figure 4B), sup-
porting our previous data of enhanced basal platelet
activation in HIV (16).

Delta granule release was further characterized by
the highly selective ABCC4 inhibitor, Ceefourin 2.
Delta granule release was measured after incubation
with Ceefourin in both HIV and control subjects. Pre-
treatment of HIV platelets with Ceefourin prevented
granule release after thrombin stimulation. By
contrast, Ceefourin had no effect on granule release
in platelets from controls (Figure 4C). Our data sug-
gest that ABCC4 inhibition would impair delta
granule release in HIV-infected persons, for example,
those with increased expression and function of
ABCC4.

Upon platelet activation and certain pathophysio-
logical conditions, ABCC4 translocates to the plasma
membrane and alters platelet function by increasing
transport of several substrates (45,46). In platelets, a
rise in cyclic nucleotides prevents activation of
signaling pathways. Thus, any change in the distri-
bution or availability of cyclic nucleotides may
interfere with platelet reactivity. We therefore
analyzed whether ABCC4 overexpression in HIV was
associated with platelet levels of intracellular cAMP
and downstream signaling. A significant increase in
the amount of secreted cAMP was observed in per-
sons with HIV versus controls (p < 0.01) (Figure 4D).
To determine whether these differences in cAMP
secretion affected downstream signaling, we
analyzed vasodilator-stimulated phosphoprotein
(VASP) phosphorylation on Ser157, a preferential
cAMP-dependent protein kinase phosphorylation
site. Western blot analysis of platelet lysates in HIV-
infected individuals and healthy subjects revealed
that VASP phosphorylation was significantly reduced
in HIV (Figure 4E), suggesting a decrease in cytosolic
cAMP levels in HIV platelets. Altogether, these data
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FIGURE 3 Enhanced ABCC4 Protein Expression in HIV

(A) Immunoblots of ABCC4 in platelet lysates from controls (C) (n ¼ 8) and HIV (n ¼ 14) subjects. Thirty micrograms of protein were loaded, and GAPDH was used as a

loading control. Quantification after normalization is reported. *p < 0.05. (B) Fluorescence microscopy showing ABCC4 expression (green) and f-actin (red) in HIV

(n ¼ 3) and controls (n¼ 3). Image is representative of a single platelet for each group. The quantification reports ABCC4 green dots/cell counted in 3 subjects per group

(>50 cells for each sample). *p<0.05. Scale bar: 5 mm. GAPDH ¼ glyceraldehyde 3-phoshate dehydrogenase; other abbreviations as in Figure 1.
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suggest that ABCC4 overexpression observed in HIV
contributes to decreased cytosolic cAMP levels in
platelets, resulting in a decreased VASP phosphory-
lation, thus leading to enhanced platelet activation.

ABCC4 INHIBITION DECREASES PLATELET EFFECTOR

CELL FUNCTION AND PLATELET S1P RELEASE IN HIV. To
investigate the potential role of ABCC4 in platelets
as effector cells, we tested platelet adhesion to
endothelial cells in the presence of Ceefourin. Pre-
treatment with Ceefourin of platelets isolated from
HIV-infected persons significantly reduced platelet
adhesion to HUVECs in the basal state or following
thrombin stimulation (47% and 39% reduction
compared with controls, respectively [Figure 5A]),
whereas no differences were observed in healthy
subjects (Supplemental Figure 3). Consistent with
reduced platelet adhesion to endothelial cells,
ABCC4 inhibition in platelets resulted in the reduc-
tion of HUVEC activation markers IL-8, ICAM-1, and
MCP-1 and THP-1 markers IL-6 and MCP-1 only in
the HIV cohort (Figures 5B and 5C, Supplemental
Figure 4). Altogether, these data suggest that
ABCC4 inhibition in HIV may represent a useful
mechanism to reduce platelet-induced endothelial
cell and monocyte activation, by blocking the
release of granule contents from platelets.

S1P, an immune modulating lipid mediator, has
been reported to induce proinflammatory signaling
pathways in the immune and vascular system
(47–49). Platelets release S1P upon activation, and
ABCC4 has been reported to mediate its release from
platelets (50). We therefore sought to investigate
whether platelets from HIV-infected subjects with
ABCC4 overexpression released greater amount of
S1P compared with controls. In the basal state, S1P
levels were markedly increased in HIV platelet su-
pernatants (Figure 5D). After platelet activation, S1P
increased in both groups (Figure 5E). To confirm
whether ABCC4 inhibition affects S1P levels, we
measured S1P release in supernatants of Ceefourin–
pre-treated platelets. ABCC4 inhibition significantly
reduced S1P levels following platelet activation
(Figure 5F). Finally, S1P was measured in plasma of
HIV and controls. S1P levels were significantly
increased in plasma of subjects with HIV (p < 0.0001)
(Figure 5G).
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FIGURE 4 ABCC4 Affects Dense Granule Release and Platelet cAMP Homeostasis in HIV

(A) Mepacrine staining was assessed via flow cytometry in platelets from controls (C) and HIV before and after activation with 0.05 or 0.25 U/ml thrombin.

A representative histogram of 1 healthy control is shown. Quantitative analysis of 8 controls and 9 HIV is shown. *p < 0.05 and ***p < 0.0001. (B) Mepacrine staining

via flow cytometry of platelets from controls (n ¼ 9) and HIV (n ¼ 8) at basal state. **p< 0.01. (C) Platelets from controls (n ¼ 5) and HIV subjects (n ¼ 4) were

pre-treated with Ceefourin 2 (Ceefourin, 10 mmol/l), activated with 0, 0.05, or 0.25 U/ml thrombin and assessed for mepacrine staining. **p < 0.01 and

***p < 0.0001. (D) cAMP was quantified in the supernatants of activated (0.05 U/ml thrombin, 5 min) platelets from controls (n ¼ 9) and subjects with HIV (n ¼ 13).

Levels are reported as pg/ml. **p < 0.01. (E) Platelets from HIV (n ¼ 3) and controls (n ¼ 3) were harvested for Western blot analysis. Blots were probed with anti

P-VASP Ser 157 and anti-VASP, and loading was controlled with anti-GAPDH. Quantitative analysis was obtained by densitometry using ImageJ 1.51n software (NIH,

Bethesda, Maryland). *p < 0.05. cAMP ¼ cyclic adenosine monophosphate; GAPDH ¼ glyceraldehyde 3-phoshate dehydrogenase; MFI ¼ mean fluorescence intensity;

VASP ¼ vasodilator-stimulated phosphoprotein; other abbreviations as in Figure 1.
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DISCUSSION

Prior studies have demonstrated increased cardio-
vascular risk in persons with virologically controlled
HIV on ART (12,51). Nonetheless, the reason(s) for this
heightened risk have yet to be fully clarified. Platelet
activation and immune activation leading to a pro-
thrombotic state have been proposed as significant
contributors to CVD (6,16). Platelets isolated from
persons with HIV have increased surface expression
of P-selectin, activated glycoprotein IIb/IIIa, and
increased aggregation in response to submaximal
agonist simulation (16,52). In the current study, we
expand on these findings and demonstrate an
enhanced platelet effector role in subjects with HIV.
Both in the basal state and following agonist
stimulation, platelets from subjects with HIV were
more adherent to endothelial cells and monocytic
cells and were able to induce a proinflammatory
effect on these cell types. These findings support the



FIGURE 5 ABCC4 Contributes to Endothelial and Monocyte Activation and Increased S1P Release From Activated Platelets in HIV

(A) Immunofluorescence microscopy of platelet adhesion to HUVECs in subjects with HIV. Stained platelets (green) were left untreated (Untreated) or treated with

Ceefourin2 (Ceefourin, 10 mmol/l) for 30 min. Thrombin (0.05 U/ml, 5 min) was then added (Activated). HUVEC nuclei are stained with DAPI (blue). The images are

representative of 3 subjects for each group. Values are represented as percentage of respective controls. **p < 0.01 and *p < 0.05. Magnification ¼ 20�. (B and C)

Gene expression analysis of HUVEC inflammatory genes IL-8, ICAM-1, and MCP1, and THP-1 markers IL-6 and MCP-1. HUVECs and THP-1 were cocultured with un-

treated or pre-treated (Ceefourin, 10 mmol/l) platelets from HIV-infected subjects at basal (upper graphs) and after stimulation with thrombin (0.05 U/ml, bottom

graphs). Results were normalized on 18S5 RNA. Values represent fold change after normalization to basal or activated condition in 3 different subjects. **p < 0.01

versus Basal and *p < 0.05 versus Activated. (D) Sphingosine-1-phosphate (S1P) in platelet supernatants of HIV (n ¼ 16) and controls (C) (n ¼ 8) at the basal state was

analyzed by high-performance liquid chromatography-mass spectrometry (HPLCMS/MS) and normalized for protein content. *p < 0.05. (E) S1P quantification in

platelet supernatants of subjects with HIV (n ¼ 17) and healthy controls (n ¼ 7) before and after stimulation with thrombin (0.05 U/ml, 5 min). Levels are reported

after normalization to respective basal levels. *p < 0.05. (F) Platelets from healthy subjects (n ¼ 5) were left untreated or stimulated with thrombin in presence or

absence of Ceefourin (10 mmol/l). S1P levels were quantified in platelet supernatants, and values expressed as percentage of resting platelets. *p < 0.05. (G) S1P

quantified in plasma of subjects with HIV (n ¼ 40) and controls (n ¼ 16) by HPLCMS/MS. Abbreviations as in Figure 1.
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role of platelets as inflammatory mediators in persons
with HIV infection.

In pathological conditions in response to extracel-
lular signaling, a transcriptional modulation during
megakaryopoiesis may occur (53). Although anucleate,
platelets retain megakaryocyte-derived cytoplasmic
RNA and may translate small amounts of mRNAs as
well as process miRNAs (54–56). Therefore, platelet
transcript content may play a biological role beyond
being remnant RNA derived from the megakaryocyte.
Herein, we present an unbiased characterization of the
transcriptome of platelets isolated from HIV subjects
under ART using RNA-Seq, to identify mRNAs associ-
ated with increased platelet activity in HIV. Our
platelet transcriptome analysis identified pathways
differentially expressed between HIV and healthy in-
dividuals, including exocytosis and secretion, inflam-
matory response, and immune cell trafficking.

Notably, ABCC4 mRNA emerged as the most upre-
gulated transcript in HIV compared with controls.
ABCC4 has been shown to play an important role in
conveying several molecules that control multiple



FIGURE 6 Schematic Model of Platelet ABCC4 Role in HIV

In HIV, circulating platelets have increased expression of ABCC4 as consequence of enhanced platelet activation. ABCC4 overexpression on

platelet plasma membrane contributes to increased excretion of platelet mediators in the extracellular space, including cAMP, which plays a

crucial role in maintaining platelets in the inactive state. In turn, platelet inflammatory mediators activate endothelial cells and monocytic cells,

and also platelets, promoting the formation of circulating platelet aggregates. The large amount of S1P released by activated platelets likely

contributes to amplify platelet response and the inflammatory process in HIV. Platelet ABCC4 inhibition by Ceefourin in HIV prevents platelet

activation bymaintaining cAMP homeostasis. Moreover, the inhibition of ABCC4 has an important role inmediating platelet–cell interaction and

the inflammatory response inHIV, bydecreasingplatelet-mediator release andactivationof target cells in circulation.Abbreviations as inFigure 1.
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cardiovascular processes, including smoothmuscle cell
proliferation, cardiomyocyte contractility, and platelet
activation (57–59). Recent findings indicate that he-
mostasis and thrombosis are affected in ABCC4-
deficient mice, with ABCC4 promoting platelet aggre-
gation by modulating the cAMP-protein kinase A (PKA)
signaling (44). These results are in line with studies
showing that the absence or inhibition of ABCC4 affects
platelet activation and aggregation (60,61). Therefore,
ABCC4 was chosen as a candidate for further analyses
andwas validated in a larger cohort of personswithHIV
and controls. In this second larger cohort, increased
ABCC4 gene expression was also demonstrated, and
remained significant after multivariable adjustment.
Although HIV status was associated with platelet
expression of ABCC4 mRNA, no association was noted
for different HIV ART regimens, length of HIV diag-
nosis, smoking status, and CD4 count.
We and others have previously noted that platelet
activity is in a heightened state in persons with HIV
on ART (16,52,62,63). It was therefore not surprising
that ABCC4 overexpression in HIV significantly
correlated with platelet activation markers P-selectin
and PAC-1, supporting a link between ABCC4 and
platelet activity in these persons.

Localization of ABCC4 in platelets has been debated
and remains uncertain. ABCC4was demonstrated to be
highly expressed on the membrane of dense granules,
which facilitates ADP accumulation and export
(42,46). It was also proposed that ABCC4 localization in
platelets can be shifted from granules to the plasma
membrane in certain high-risk conditions, including
platelet activation (45,64). Other groups found that
ABCC4 is localized primarily to the plasma membrane
in platelets (65,66). We investigated dense granule
ADP accumulation and release in HIV-infected
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subjects and healthy controls.We confirmed enhanced
platelet activity inHIV-infected individuals, compared
with controls in the basal state. The export of ADP and
granule mediators was evaluated in both groups using
the highly selective ABCC4 inhibitor, Ceefourin 2 (32).
In previous reports, ABCC4 platelet inhibition used the
MK571 antagonist (65,67,68). However, MK571 has
been noted to be a non-specific ABCC4 inhibitor as well
as a potent leukotriene D4 receptor and MRP1 antago-
nist (69). In persons with HIV infection, Ceefourin
inhibited dense granule release after thrombin acti-
vation, suggesting that ABCC4 impairs dense-granule
release in HIV.

ABCC4 has been reported to be an endogenous
regulator of intracellular cAMP and cAMP-mediated
signaling pathway in platelets (44,65,68). ABCC4 inhi-
bition was found to protect from hypoxemia-induced
pulmonary hypertension in a murine model by
increasing intracellular cAMP levels and preventing
activation of cAMP-mediated pathways (68). Inmurine
platelets, absence of ABCC4 attenuated collagen-
mediated aggregation and impaired thrombus forma-
tion by producing an elevation in cAMP level (65).
Therefore, we sought to investigate whether ABCC4
modulated platelet activation in HIV through a cAMP-
mediated mechanism. We measured platelet cAMP
secretion and cAMP cytosolic levels through VASP
phosphorylationonSer157.Ourdatademonstratedthat
platelet ABCC4 is an important contributor to platelet
activity in HIV, by impairing cAMP homeostasis.

We then demonstrated that ABCC4 inhibition in
platelets attenuated endothelial cell and monocyte
activation, both in the basal state and after activation.
These data support a new role for platelet ABCC4 in
mediating, not only platelet function, but also the
platelet-mediated effector cell function in HIV. The
mechanism linking platelet ABCC4 expression and
monocyte/endothelial cell activation is unknown, but
signaling lipid S1P is a likely intermediary. Platelets are
known to release high levels of a multifunctional S1P
upon direct activation of protein kinase C signaling
(e.g., thrombin) or during blood clotting (70,71).
Cellular S1P secretion requires active transport across
the membrane by ATP-dependent carriers, such as
ABCC4 (50). A link between platelet S1P in inflamma-
tory processes and immune response has already been
suggested (48,72,73). In our study, we demonstrated
an enhanced basal secretion of S1P from platelets in
HIV, consistent with a hyperreactive platelet pheno-
type in the basal state. Moreover, ABCC4 inhibition
was able to reduce S1P levels following thrombin-
induced platelet activation, suggesting a role of
ABCC4 as amediator of S1P release in subjects with HIV
who showed a basally active platelet phenotype. A
model depicting the role of ABCC4 on platelet function
and regulation of inflammatory response of endothe-
lial cells and monocytic cell line in HIV disease is re-
ported in Figure 6.

As previously mentioned, ABCC4 is involved in the
development and progression of pulmonary artery
hypertension (PAH) (68). Many clinical studies have
demonstrated an association between PAH and HIV
infection (74), both before and after ART (75,76). The
impact of ABCC4 on PAH incidence and severity in
persons with HIV is unknown and deserves further
investigation.

Finally, NSAIDs, including aspirin, increase ABCC4
expression (45,77). ABCC4-mediated aspirin extrusion
from the platelet cytosol causes an incomplete COX-1
inhibition in persons after coronary artery bypass
graft surgery (45). In the current study, NSAID use was
an exclusion criterion for participation. A recent ran-
domized trial from our group demonstrated no signif-
icant benefit on immune activity or vascular health
from low-dose aspirin in persons with HIV (78).
Whether this neutral effect was mediated, in part, by
ABCC4 overexpression in HIV-infected persons is un-
known. A pilot trial of a different antiplatelet therapy,
clopidogrel, in persons with HIV is ongoing.

CONCLUSIONS

Our study is the first to identify increased levels of
ABCC4 mRNA as a novel mediator regulating platelet
function in persons with HIV. Moreover, we provide
insights into the molecular mechanisms by which
ABCC4 mediates a hyperreactive platelet phenotype
and platelet effector cell function in the setting of HIV.
These findings may have important clinical implica-
tions in HIV-infected persons. In fact, by acting on the
extrusion of cyclic nucleotides and inflammatory me-
diators, ABCC4 inhibition might represent a novel
antithrombotic strategy for virologically suppressed
HIV-infected subjects on ART.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: HIV

infection significantly increases the risk of myocardial

infarction and other forms of CVD. Multiple factors

including pathological platelet activation contribute

to this enhanced risk. However, the mechanism by

which HIV infection increases platelet activity is

unknown.

TRANSLATIONAL OUTLOOK: The characterization of

the platelet transcriptome profile in persons with

virologically controlled HIV on antiretroviral therapy

revealed ABCC4 as a central mediator of platelet activity

and platelet-mediated proinflammatory response in

endothelial cells and monocytic cell line. Targeting

ABCC4 in HIV-infected subjects may represent a novel

antithrombotic strategy in persons with HIV.
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