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The study of protein–protein interaction and the determination of protein functions are
important parts of proteomics. Computational methods are used to study the similarity
between proteins based on Gene Ontology (GO) to explore their functions and possible
interactions. GO is a series of standardized terms that describe gene products from
molecular functions, biological processes, and cell components. Previous studies on
assessing the similarity of GO terms were primarily based on Information Content (IC)
between GO terms to measure the similarity of proteins. However, these methods
tend to ignore the structural information between GO terms. Therefore, considering
the structural information of GO terms, we systematically analyze the performance of
the GO graph and GO Annotation (GOA) graph in calculating the similarity of proteins
using different graph embedding methods. When applied to the actual Human and
Yeast datasets, the feature vectors of GO terms and proteins are learned based on
different graph embedding methods. To measure the similarity of the proteins annotated
by different GO numbers, we used Dynamic Time Warping (DTW) and cosine to
calculate protein similarity in GO graph and GOA graph, respectively. Link prediction
experiments were then performed to evaluate the reliability of protein similarity networks
constructed by different methods. It is shown that graph embedding methods have
obvious advantages over the traditional IC-based methods. We found that random walk
graph embedding methods, in particular, showed excellent performance in calculating
the similarity of proteins. By comparing link prediction experiment results from GO(DTW)
and GOA(cosine) methods, it is shown that GO(DTW) features provide highly effective
information for analyzing the similarity among proteins.

Keywords: protein similarity, graph embedding, gene ontology, link prediction, DTW algorithm

INTRODUCTION

Proteomics essentially refers to the study of the characteristics of proteins on a large scale, including
the expression level of proteins, the functions of proteins, protein–protein interactions, and so
forth. The study of proteome not only provides the material basis for the law of life activities but
can also provide the theoretical basis and solutions for elucidating and solving the mechanism
of many diseases (Xi et al., 2020a). However, at present, research on the function of proteins is
lacking. The functions of proteins encoded by most of the newly discovered genes by genome
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sequencing are unknown. For those whose functions are
known, their functions have mostly been inferred by methods
such as homologous gene function analogy. Therefore,
using computational methods to explore the similarity
between proteins can effectively improve the efficiency of
proteomic studies.

Gene Ontology (GO) (Harris, 2004) describes the function
of genes It is a standardized description of the characteristics
of genes and gene products, enabling bioinformatics researchers
to uniformly summarize, process, interpret, and share the data
of genes and gene products. It provides the representation of
biological knowledge through structured and controlled terms.
GO includes three kinds of ontologies: Biological Processes (BPs),
Cell Components (CCs), and Molecular Functions (MFs). The
words in the three kinds of ontologies are related to each other
and form a Directed Acyclic Graph (DAG), wherein a node
denotes a GO term, while an edge denotes a kind of relationship
between two GO terms. Therefore, it is of great significance to
study the similarity of proteins based on the graph characteristics
of GO to explore the function of proteins.

GO has been widely studied in the field of biology (Xi et al.,
2020b). GO terms have been used to annotate many biomedical
databases [e.g., UniProt database (UniProt Consortium, 2015)
and SwissProt database (Amos and Brigitte, 1999)]. The
characteristics and structure of GO have made GO terms the basis
of functional comparison between gene products (Pesaranghader
et al., 2014). GO annotation defines the semantic similarity of
genes (proteins) and provides a basis for measuring the functional
similarity of proteins. The more information two GO terms
share, the more similar they are, and the more the similarity
between the proteins annotated by the two GO terms (Hu et al.,
2021). In earlier studies, many researchers analyzed protein–
protein interaction (PPI) based on GO (Sevilla et al., 2005).
Studies on computing protein similarity using GO mainly focus
on the IC of GO terms, which is widely used to identify relations
between proteins. The uniqueness of GO terms is often evaluated
by taking the average of the IC of two terms. The IC of a
term depends on the annotating corpus (Sevilla et al., 2005).
Three IC-based methods—Resnik’s (Resnik, 1999), Rel’s (Paul
and Meeta, 2008), and Jiang and Conrath’s (Jiang and Conrath,
1997)—have been introduced from natural language taxonomies
by Lord et al. (2003) to compare genes (proteins). Although
the abovementioned methods are used to calculate semantic
similarity between two GO terms to achieve good results, they
only consider the amount of information of common nodes. They
do not consider the information differences between the nodes
themselves and ignore the structural information of the terms.
The result of term comparison is a rough estimate. For example,
in Resnik’s method, if the ancestors of two terms are the same,
then the similarity of two terms in any layer is not different and
cannot be compared. Obviously, this is unreasonable.

This study merged the three categories of ontologies and GO
annotations into a large graph called the GO Annotation (GOA)
graph. We used three categories of ontologies transformed into
a GO graph. Effective graph analysis on GOA and GO graphs
can improve our understanding of the structure and node
information of GO and proteins. Using the GOA information

of the proteins, the similarity among proteins can be calculated,
and the relationship between proteins can be predicted. In
recent years, graph learning-based analytical methods have made
remarkable progress in bioinformatics and other fields (Xi
et al., 2021). At present, graph learning-based analytical methods
focuses on dynamic graphs. Methods such as SDNE (Wang et al.,
2016), DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015),
Node2vec (Grover and Leskovec, 2016), and SINE (Wang et al.,
2020) have been widely used for unsupervised feature learning
in the field of data mining and natural language processing. The
edge prediction task is applied to the PPI prediction to find
new protein interaction relationships. They also provide a basis
for calculating protein similarity based on GO, such as GO2vec
(Zhong et al., 2019), which used the Node2vec algorithm to
compute the functional similarity between proteins.

To explore the performance of graph embedding methods in
measuring protein similarity based on GO and GOA, we used
four typical graph embedding methods to learn the features of
GO terms and proteins. These methods can be divided into
two categories. The first category is the random walk method,
such as the DeepWalk and Node2Vec methods. The DeepWalk
method uses the truncated random walk strategy to obtain
the sequence of nodes and point embedding obtained from
learning with Word2Vec (Goldberg and Levy, 2014). Node2Vec
uses biased random walk to generate a node sequence by
balancing the Breadth First Search (BFS) and Depth First Search
(DFS) of the graph. The second category is based on deep
learning, such as SDNE and LINE methods. SDNE uses an auto-
encoder to optimize the first-order and second-order similarity
simultaneously, while LINE optimizes the orders of similarity
separately. As a result, their learned node embedding can retain
the local and global graph structure and is robust to sparse
networks. We introduce the overall flowchart of this paper in
Figure 1, which is divided into two parts. Firstly, in Part A, the
features of GO terms are learned based on the GO graph using
graph embedding methods. The similarity of proteins is then
calculated based on the features of their annotated GO terms
by Dynamic Time Warping (DTW) distance (Lou et al., 2016).
Secondly, in Part B, the features of proteins are learned based
on the GOA graph directly. Then, the cosine similarity of the
corresponding features is calculated to measure the similarity of
protein. Finally, a link prediction (Li et al., 2018) experiment
is performed in the screened-out protein similarity networks,
using the area under the curve (AUC) (Lobo, 2010) and area
under the precision-recall curve (AUCPR) (Yu and Park, 2014)
to evaluate the reliability of the protein network constructed by
learned vectors.

MATERIALS AND METHODS

Data Source and Preprocessing
We downloaded GO data in Open Biomedical Ontologies (OBO)
format from the GO Consortium Website 1. The GO protein

1http://geneontology.org/page/download-ontology
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FIGURE 1 | Framework for analyzing protein similarity.

annotations were obtained from the UniProt GOA website 2.
The Yeast dataset contained 2,887 proteins, and the Human
dataset contained 9,677 proteins. The GO data were then
preprocessed based on the following processes. First, since several
GO terms annotate a protein, term–term relations of GO terms
and term–protein annotations between GO terms and proteins
were combined into a GOA graph. Second, the GO terms
were then transformed into an undirected, unweighted GO

2http://www.ebi.ac.uk/GOA

graph, regardless of the type and direction of the relationship.
We summarize the numbers of GO terms and edges in
Table 1.

Method
Based on different graph embedding methods, the feature of
GO terms and proteins was learned into vector representations
by fusing GO and GOA graph topologies, respectively. Thus,
we could capture the global information based on the graph
embedding method, and its learned vectors could calculate
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TABLE 1 | Characteristics of GO graphs.

Gene ontology Term Edges

BP* 30,705 71,530

CC** 4,380 7,523

MF*** 12,127 13,658

*Biological Processes, **Cell Components, and ***Molecular Functions.

the similarity between proteins by the DTW distance and
cosine similarity.

Introduction of Different Graph Embedding Methods
In this paper, we used the methods of graph embedding based on
random walk and deep learning to learn the features of GO terms
and proteins through fusing the topology of GO and GOA graphs,
respectively. Random walk-based methods include DeepWalk
(Perozzi et al., 2014) and Node2vec (Grover and Leskovec, 2016).
The DeepWalk method is divided into two parts: random walk
to obtain node sequences and to generate node embedding.
Random walk is used to obtain the local information of the node
in the graph, and the embedding reflects the local structure of
the node in the graph. The path length is controlled by setting
the parameter walk-length (L). The more neighborhood nodes
(higher-order neighborhood nodes) two nodes have, the more
similar they are. Figure 2A illustrates the DeepWalk algorithm
flow. Node2vec method sets two hyper-parameters p and q to
control the random walk and adopts a flexible biased random
walk procedure that smoothly combines BFS and DFS to generate
node sequences. Figure 2B illustrates the Node2vec algorithm
flow. Nodes ci are generated based on the following distribution:

P(ci = x|ci−1 = t) =

{ πtx

Z
(
if (t, x) ∈ E

)
0

(
otherwise

) (1)

where πtx is the transition probability between nodes t and x,
and Z is the normalization constant. According to the node
context information, node sequences are generated by setting the
sizes of the hyper-parameters p and q to control the random
walk strategy. The Skip-gram model is used to obtain the vector
representation of the nodes. The random walk graph embedding
of nodes reflects the local and global topology information of
nodes in the graph.

The second kind of embedding method is SDNE, which
proposed a new semi-supervised learning model. Combining the
advantages of first-order and second-order estimation, SDNE can
capture the global and local structural properties of the graph.
The unsupervised part uses a deep auto-encoder to learn the
second-order similarity, and the supervised part uses a Laplace
feature map to capture the first-order similarity. Figure 2C
illustrates the SDNE algorithm flow. By inputting the node
embedding Si in the model, where Si is compressed by the
auto-encoder, the feature is then reconstructed. Finally, its loss
function is defined as follows:

O2 = 6
∣∣∣∣∣∣S ′i − Si

∣∣∣∣∣∣2
2

(2)

LINE is another method based on deep learning, which optimizes
the first-order and second-order similarities (Figure 2D). The
first-order similarity is used to describe the local similarity
between pairs of nodes in the graph. The second-order similarity
is described as two nodes in the graph not having directly
connected edges, but there are common neighbor nodes, which
indicate that the two nodes are similar.

Introduction to IC-Based Method
In this paper, we chose two typical IC-based methods to measure
the semantic similarity of GO terms, based on Jiang and Conrath
(1997) and Rel (Paul and Meeta, 2008). The IC of a term is
inversely proportional to the frequency of the term being used to
annotate genes in a given corpus, such as the UniProt database.
The IC of a GO term g is defined by the negative log-likelihood
and is given by

IC(g) = − log p(g) (3)

p(g) =
freq(g)
N

(4)

where p(g) is the frequency of term g and its offspring in a
specific GO annotated corpus. N represents the total number
of annotated proteins in the corpus. If there are 50 annotated
proteins in a corpus and 10 of them are annotated by term g, the
annotation frequency of term g is p(g) = 0.2.

Jiang and Conrath and Rel’s methods rely on comparing the
attributes of terms in GO. Jiang and Conrath’s method considered
the fact that the semantic similarity between two terms is closely
related to the nearest common ancestor corresponding to the two
terms. The semantic similarity between two terms is estimated by
calculating the amount of IC in the nearest common ancestor.
Jiang and Conrath’s and Rel’s similarities are expressed as follows:

simJ&C(g1, g2) = 2∗IC(gc)− IC(g1)− IC(g2) (5)

simRel(g1, g2) =
2∗IC(gc)

IC(g1)+ IC(g2)
+ (1− p(gc)) (6)

where gc is the most informative common ancestor of g1 and g2
in the ontology. Given two proteins Pm and Pn annotated with
GO terms Gm =

{
g1, · · · , gi

}
and Gn =

{
g
′

1, · · · , g
′

j

}
, we used

the Best Match Average (BMA) method to compute the similarity
between two sets of GO terms, which can be expressed as follows:

BMA(Pm, Pn) =
1
2
(

1
n

∑
gm∈Gm

max
g′n∈Gn

sim(gm, g′n)

+
1
m

∑
g′n∈Gn

max
gm∈Gm

sim(gm, g′n)) (7)

where sim(gm, g′n) is the similarity between term gm and
term g′n, which could have been calculated using IC-based
similarity methods.
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FIGURE 2 | Framework for graph embedding method. (A) DeepWalk, (B) Node2vec, (C) SDNE, and (D) LINE.

Protein Similarity Calculation
Each node in the GO graph is represented as a low-dimensional
feature vector by considering the topology feature using a graph
embedding method. Usually, a protein is annotated by several
GO terms. For example, the protein “P03882” is annotated by
the GO terms “GO:0004519,” “GO:0005739,” “GO:0006314,” and
“GO:0006397.” Since a set of GO terms can be represented by
its corresponding set of vectors, the similarity between proteins
can be calculated based on the similarity of the two sets of GO
vectors. Therefore, for any GO term gi, we use SDNE (Wang et al.,
2016), DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015),
and Node2vec (Grover and Leskovec, 2016) graph embedding
methods to learn the low-dimensional feature vector vi.

We let Gm =
{
g1, g2, · · · , gm

}
and Gn =

{
g′1, g

′
2, · · · , g

′
n
}

denote the sets of GO terms that annotated proteins Pm and Pn;
thus, Vm = {v1, v2, · · · , vm} and Vn =

{
v′1, v

′
2, · · · v

′
n
}

denote
the sets of vectors that correspond toGm =

{
g1, g2, · · · , gm

}
and

Gn =
{
g′1, g

′
2, . . . g

′
n
}

, respectively. In this paper, we use the idea
of DTW to calculate the similarity between two sets of vectors,
which is denoted as DTW distance. The smaller the value, the
more similar the two proteins. The GO embedding of the two
proteins’ annotations is concatenated as Vm and Vn, and the
lengths are m and n, respectively (m 6= n). For constructing the
matrix Dm×n, the element D(vm, v′n) represents the distance
between points vm and v′n and can be expressed as follows:

D(vm, v′n)

= min



D(vm−1, v′n) = Dist(vm−1, v′n)+ d(vm, v′n)

D(vm, v′n−1) = Dist(vm, v′n−1)+ d(vm, v′n)

D(vm−1, v′n−1) = Dist(vm−1, v′n−1)+ 2d(vm, v′n)

(8)
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FIGURE 3 | Human protein similarity network (τ > 0.4) and PPI coincidence degree. (A) Cosine, (B) DTW.

FIGURE 4 | Comparison of prediction results of Human protein similarity networks.

We used the DTW distance method to find a path W
through several lattice points in the matrix. The shortest path
is the distance between the set of vectors Vm = {v1, v2, . . . vm}
and Vn =

{
v′1, v

′
2, . . . v

′
n
}

. We then calculated the distance
used to measure the similarity between the two proteins. The

process for calculating the DTW distance is presented in
Supplementary Figure 1.

For any protein Pi, the low-dimensional feature ωi is directly
learned from the GOA graph, which contains the information
of term–term and term–protein relations. We use the cosine
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distance of the proteins’ vector ω to measure the similarity of the
proteins. Cosine distance can be expressed as follows:

D(Pm, Pn) = cosine(ωm, ωn) =
ωm · ωn

|| ωm|| ||ωn||
(9)

Link Prediction and Evaluation Metrics
When it is difficult to use a unified standard to measure the
advantages and disadvantages of a network model, link prediction
can be used as a unified comparison method for the similarity
nodes in the network. It provides a standard to measure the
reliability of the structure of the network. In the comprehensive
evaluation, we use two commonly used evaluation indicators,
AUC (Lobo, 2010) and AUCPR (Yu and Park, 2014), widely
used in dichotomy. Therefore, to evaluate the available networks
constructed based on different graph embedding methods in
the GO graph and GOA graph, we perform link prediction
experiments on the protein similarity network and evaluate the
accuracy of the prediction results. For any undirected network
G(V,E), we let E be the complete set of C2

|V| node pairs. We
first remove 20% of the existing edges Er in the network. The
remaining 80% of the edges Es are then divided into Ep and
Et, where Es = Ep ∪ Et , EP ∩ Et=∅, and E = Er ∪ Es. Given a
link prediction method, each pair of unconnected node pairs
vx and vy is given a link probability of two nodes. Sorting all
the node pairs according to the score value in descending order,
we have the top node pair with the highest link probability.
The calculation process of the AUC value is presented in
Supplementary Figure 2. The value of AUCPR is affected by
the precision and recall value. For a link prediction experiment,
accuracy is defined as the proportion of accurate prediction
among the top L prediction edges. If m prediction edges exist,
sort the link probability score value in descending order. If m of
the top L edges are in the Et , the precision is defined as follows:

Precision =
m
L

(10)

The number of existing edges in the network M = E− Er , where
m is the number of edges predicted by the prediction algorithm.
The recall index is defined as follows:

Recall =
m
M

(11)

The similarity between nodes is an essential precondition for
link prediction, and the more similar the two nodes are, the
more likely that a link exists between them. The similarity
of network-based structural information definition is called
structural similarity. Link prediction accuracy based on structure
similarity depends on whether the structure similarity can grasp
target structure characteristics. In the link prediction task, there
are many methods to calculate the structural similarity between
nodes, such as the following:

Common neighbors index
Common Neighbors (CN) (Li et al., 2018) similarity can
be called structural equivalence, that is, if two nodes have
multiple common neighbors, they are similar. In the link
prediction experiment, CN index basic assumption is that if
two unconnected nodes have more common neighbors, they are

more likely to be connected. For nodes vx and vy in the protein
similarity network, their neighbors are defined as 0 (x) and 0

(
y
)
,

and the similarity of the two nodes is defined as the number of
their CN. The index of CN is defined as follows:

Sxy =
∣∣0(x) ∩ 0(y)

∣∣ = (A2) (12)

where S represents the similarity matrix and A represents the
adjacency matrix of the graph. CN index is based on local
information similarity index.

Jaccard index
Based on the common neighbors and considering the influence
of the node degree at both ends, the Jaccard (JC) similarity index
(Ran et al., 2015) is proposed. JC not only considers the number
of two nodes’ common neighbors but also considers the number
of all their neighbors. JC is defined as follows:

Sxy =

∣∣0(x) ∩ 0(y)
∣∣∣∣0(x) ∪ 0(y)
∣∣ = (A2)xy∣∣∣∣0(x) ∩ 0(y)

∣∣∣∣ (13)

Resource allocation index
Resource Allocation (RA) (Dianati et al., 2005) index considers
the attribute information of the common neighbors of two nodes.
In the link prediction process, the common neighbor nodes with
higher degrees play a lesser role than those with lower degrees,
and the weight of the common neighbor nodes decreases in the
form of 1/k. An example is presented in Supplementary Figure 3.
RA index (Dianati et al., 2005) is defined as follows:

Sxy =
∑

z∈0(x)∩0(y)

1
Kz

(14)

where Kz is the degree of the common neighbors of nodes vx and
vy. The calculation process of the RA similarity index is shown
in Supplementary Figure 3. Assuming that each node’s resources
are distributed equally to its neighbors, the RA index calculates a
node’s received resources, which is the similarity between nodes
vx and vy .

RESULTS

Comparison of Protein Similarity and the
Actual PPI Network Coincidence Degree
We downloaded the human yeast protein interaction network
from the String database. We then mapped the proteins to the
UniProt database, filtered out those proteins that could not be
found in the UniProt database, and removed duplicate edges.
After filtering, the Yeast dataset consisted of 2,877 proteins with
228,468 interactions, and the Human dataset consisted of 6,882
proteins with 892,054 interactions. Finally, to verify the validity of
our calculated protein similarity network, we compared protein
similarity and the actual PPI network coincidence degree.

This paper only shows the Human dataset experiment results
in Figure 3, and the Yeast dataset results are shown in
Supplementary Figures 4, 5.

We selected the protein similarity networks (τ > 0.4) and
compared them with the PPI dataset downloaded from the
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TABLE 2 | AUCPR value of protein similarity prediction in the Human dataset.

Method The top 5% of the
network

The middle 5% of
the network

The last 5% of
the network

SDNE 0.9105 0.0076 0.0052

Node2vec 0.9115 0.0143 0.0055

DeepWalk 0.8220 0.0127 0.0052

LINE 0.7117 0.0097 0.0052

Bold means the best result in the comparative experiment.

String database to analyze the coincidence degree of the Human
and Yeast protein networks. Furthermore, we compared the
edge coincidence of the protein similarity network based on
different graph embedding methods (as shown in Figure 3). The
calculation was based on Ea∩Eb

Ea (Ea > Eb).
By comparing the GO(DTW) and GOA(cosine) methods,

it can be seen that the Node2vec graph embedding method
performed best in the GO graph. SDNE and LINE methods
performed better in the GOA graph, and there was little
difference between them in the GOA graph and GO graph.
However, Node2vec and DeepWalk performed better in the
GO graph. In general, the performance of protein similarity
calculation based on different graph embedding methods in the
GO graph was better than in the GOA graph. As shown, using
graph embedding methods can be effective in calculating protein
similarity in GO and GOA graphs. We also proved that using the
DTW method to calculate different dimensional protein vector
similarities is feasible.

Comparison of Link Prediction Results
Based on Different Graph Embedding
Methods in GO Graph
The features of GO terms are learned from the GO graph based
on different graph embedding methods, and the similarity among
proteins is calculated. By selecting the top 5%, middle 5%, and the
last 5% of the protein similarity network data, the link prediction
is computed for the filtered protein similarity network, and the
AUC and AUCPR values are calculated (as shown in Figure 4 and
Table 2). This paper only shows the Human dataset experiment
result, and the Yeast dataset result is shown in Supplementary
Figure 6 and Supplementary Table 1.

We can see that as the similarity of network nodes decreases,
the value of AUC decreases. In the top 5% of the protein
similarity network, the proteins are more similar, but for AUCPR
values, we can see that the performance of the Node2vec method
is the best in all the top, middle, and the last 5% of the
protein similarity networks. The Node2vec method introduces
BFS and DFS into the generation process of the random walk
sequence by introducing two parameters p and q. BFS focuses
on the adjacent nodes and characterizes a relatively local graph
representation; that is, the BFS can explore the local structural
properties of the graph, while the DFS can explore the global
similarity in context. We found that the AUC value of protein
similarity calculated by the graph embedding method decreased
gradually with the decrease in the value of the screening protein
similarity. Furthermore, it is shown that the edge connection of

the protein similarity network calculated by the graph embedding
method is reliable.

We also found that the Node2vec graph embedding
method performed well in calculating the Yeast protein
similarity network (as shown in Supplementary Figure 6 and
Supplementary Table 1). Therefore, the GO term vectors fused
the local and global information of nodes in the GO graph and
contain more information, so the GO(DTW) method performs
better in computing protein similarity.

Comparison of Link Prediction Results
Based on Different Graph Embedding
Methods in the GOA Graph
To reflect the influence of the structure information of the GO
annotation on proteins, the features of proteins are learned from
the GOA graph based on different graph embedding methods,
and the similarity among proteins is calculated (as shown in
Figure 5 and Table 3). This paper only shows the Human dataset
experiment result, and the Yeast dataset result is presented in
Supplementary Figure 7 and Supplementary Table 2.

We screened the top, middle, and last 5% of the protein similar
networks and performed the link prediction experiments to
observe the values of AUC and AUCPR under different methods.
The AUC and AUCPR values decreased gradually with the
decrease in the percentage selected. Therefore, it can be seen that
the performance of the Node2vec method in the GOA(cosine)
method is also better than other graph embedding methods. For
the Yeast protein similarity network, we also performed the same
experiment and obtained the same experimental conclusions
as described above. We found that SDNE graph embedding
methods also showed excellent performance in the Yeast dataset
(as shown in Supplementary Table 2). This is because the SDNE
method also defines first-order and second-order similarities.
Therefore, calculating the protein similarity network based on
these vectors achieved excellent results in the prediction task.

Comparison of Link Prediction Results of
Protein Similarity Calculated by
IC-Based Method and Based on Graph
Embedding Methods
We studied the application of different graph embedding
methods to calculate protein similarity in GO and GOA graphs.
We screened the top 5% of the protein similarity networks for
link prediction analysis (as shown in Table 4). Furthermore,
we performed an experiment that calculated the density of the
protein similarity network based on graph embedding and IC-
based methods (as shown in Table 5). This paper only presents
the Human dataset experiment results, and the Yeast dataset
result is presented in Supplementary Tables 3, 4.

The link prediction results from these methods are compared
as follows. From Table 4, it can be seen that the similarity
calculation of proteins based on different graph embedding
methods is superior to that of the IC-based methods. We also
performed the above experiment for Yeast datasets, and the same
conclusion was obtained (as shown in Supplementary Table 3).
It can be seen that the SDNE and Node2vec graph embedding
methods show good performance in the GO graph. Analyzing the
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FIGURE 5 | Comparison of prediction results of Human protein similarity networks.

density of the top 5% of the human protein similarity networks,
it can be seen that the density of the protein similarity network
calculated by the graph embedding method is higher than that
calculated by IC-based methods. Therefore, it is shown that the
protein similarity network calculated by the IC-based method
is sparse, and the similarity of proteins is not as high as that
calculated by the graph embedding method. Thus, in the IC-
based method, the AUCPR value obtained in link prediction is
lower. We also verified this conclusion on the Yeast dataset (as
shown in Supplementary Table 4).

TABLE 3 | AUCPR value of Human protein similarity prediction.

Method The top 5% of the
network

The middle 5% of
the network

The last 5% of
the network

SDNE 0.6578 0.0100 0.0052

Node2vec 0.8758 0.0105 0.0069

DeepWalk 0.8719 0.0094 0.0053

LINE 0.8189 0.0095 0.0053

Bold means the best result in the comparative experiment.

TABLE 4 | AUCPR and AUC values of Human protein similarity prediction (the top
5% of the similarity network).

Method AUC AUCPR

SDNE (cosine/DTW) 0.9699/0.9739 0.9015/0.9105

Node2vec (cosine/DTW) 0.9714/0.983 0.8758/0.9115

DeepWalk (cosine/DTW) 0.9925/0.9752 0.8719/0.8220

LINE (cosine/DTW) 0.9839/0.9716 0.8189/0.7117

Rel. 0.9067 0.1519

Jiang and Conrath 0.8409 0.0669

Bold means the best result in the comparative experiment.

Based on different graph embedding methods, the features
of the GO terms were learned into the vector representations
through fusing the topology of the GO graph. Thus, we could
capture the global information based on the graph embedding
method, and its learned vectors could calculate the similarity
between proteins by the DTW distance similarity. As can be seen
from the results of the link prediction, the GO(DTW) method
performed better than GOA(cosine), and most of the protein
similarity networks calculated by the GO(DTW) method are
denser than those calculated by the GOA(cosine) method.

TABLE 5 | Comparison of Human protein similarity network density between
different methods.

Method Nodes Edges Density

SDNE (cosine/DTW) 4,797/2,024 1,183,801/713,961 0.1/0.3

Node2vec (cosine/DTW) 6,882/2,807 2,841,303/1,183,762 0.12/0.3

DeepWalk (cosine/DTW) 6,882/3,079 1,183,876/1,183,707 0.05/0.2

LINE (cosine/DTW) 5,586/1,660 1,183,815/206,650 0.07/0.15

Rel 5,902 870,987 0.05

Jiang and Conrath 5,883 870,986 0.05

Bold means the best result in the comparative experiment.

TABLE 6 | Prediction results under different similarity indexes (the top 5% of the
Human protein similarity network).

Similarity index CN JC RA

SDNE (cosine/DTW) 0.9694/0.981 0.9739/0.9843 0.9818/0.9886

Node2vec (cosine/DTW) 0.9598/0.9809 0.9714/0.9843 0.9856/0.9886

DeepWalk (cosine/DTW) 0.9772/0.981 0.9856/0.9842 0.9885/0.9884

LINE (cosine/DTW) 0.9703/0.9716 0.9716/0.9825 0.9874/0.9853

Bold means the best result in the comparative experiment.
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Similarity Indexes’ Results
We performed three different link prediction similarity index
experiments on the top 5% of the protein similarity network and
found that based on different similarity indexes, the difference
in the AUC value is small, which indicates that the calculated
protein similarity network structure has improved (as shown
in Table 6). This paper only presents the Human dataset
experiment result, and the Yeast dataset result is presented in
Supplementary Table 5.

Among the three different similarity evaluation indexes, we
found that the AUC value of the RA similarity index based on link
prediction is slightly higher than the other two similarity indexes.
Furthermore, the results showed that the top 5% of the protein
similarity network had higher AUC values in different similarity
indexes of link prediction, indicating that the graph embedding
method effectively calculated protein similarity. We obtained the
same conclusion in the experiment with the Yeast dataset (as
shown in Supplementary Table 5).

DISCUSSION

Gene Ontology is one of the many biological ontology languages.
Its emergence and development reduce the confusion of
biological concepts and terms, provide a three-layer (BP, MF, and
CC) structure of system definition, and describe the functions
of proteins. Therefore, it is important to understand protein
function based on GO terms to describe protein similarity.

In this paper, by fusing the GO terms’ topology information,
we learned the features of GO terms and proteins into vector
representations in GO and GOA graph based on different
graph embedding methods. Then, the similarity of proteins
was calculated based on these vectors using DTW and cosine
similarity. Finally, protein similarity networks were screened by
selecting different percentages, and a link prediction experiment
was used to evaluate the prediction accuracy of different
networks. The experimental results indicate that the graph
embedding method is better than the IC-based method in
protein similarity calculation. Among the two graph embedding
methods, the performance of the GO(DTW) method is better
than that of the GOA(cosine) method. This is because the
GO terms and proteins are treated equally in the GOA
graph, and some information may be ignored when learning
protein low-dimensional embedding. Therefore, the coincidence
degree between the protein similarity network calculated by the
GOA(cosine) method and the actual PPI data is not as high as

that calculated by the GO(DTW) method. There are potential
limitations to our method. First, we transformed directed graphs
into undirected graphs, which might result in a loss of structural
information. We also treated the GO terms and the proteins
equally in the GOA graph, which may ignore some information.
Therefore, in our future study, we plan to learn the protein
representations in the graph by combining the information in
the directed graph and by considering representation learning of
heterogeneous graphs that contain GO terms and proteins.
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