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A B S T R A C T   

Due to the high heterogeneity of ovarian cancer (OC), it occupies the main cause of cancer-related 
death among women. As the most aggressive and frequent subtype of OC, high-grade serous 
cancer (HGSC) represents around 70 % of all patients. With the booming progress of single-cell 
RNA sequencing (scRNA-seq), unique and subtle changes among different cell states have been 
identified including novel risk genes and pathways. Here, our present study aims to identify 
differentially correlated core genes between normal and tumor status through HGSC scRNA-seq 
data analysis. R package high-dimension Weighted Gene Co-expression Network Analysis 
(hdWGCNA) was implemented for building gene interaction networks based on HGSC scRNA-seq 
data. DiffCorr was integrated for identifying differentially correlated genes between tumor and 
their adjacent normal counterparts. Software Cytoscape was implemented for constructing and 
visualizing biological networks. Real-time qPCR (RT-qPCR) was utilized to confirm expression 
pattern of new genes. We introduced ScHGSC-IGDC (Identifying Genes with Differential Corre-
lations of HGSC based on scRNA-seq analysis), an in silico framework for identifying core genes in 
the development of HGSC. We detected thirty-four modules in the network. Scores of new genes 
with opposite correlations with others such as NDUFS5, TMSB4X, SERPINE2 and ITPR2 were 
identified. Further survival and literature validation emphasized their great values in the HGSC 
management. Meanwhile, RT-qPCR verified expression pattern of NDUFS5, TMSB4X, SERPINE2 
and ITPR2 in human OC cell lines and tissues. Our research offered novel perspectives on the gene 
modulatory mechanisms from single cell resolution, guiding network based algorithms in cancer 
etiology field. 
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Fig. 1. The schematic diagram of ScHGSC-IGDC.  
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1. Introduction 

Due to the high heterogeneity of ovarian cancer (OC), it stands as the primary contributor to cancer-related mortality among female 
reproductive malignancies [1]. As the most aggressive and frequent subtype of OC, high-grade serous cancer (HGSC) accounts for 
about two thirds of all cases [2]. Usually diagnosed at an advanced stage, HGSC presents with massive ascites and metastases. Although 
great advances have been made in surgery and chemotherapy, HGSC still portends poor survival and prognosis due to relapse and 
treatment resistance [3]. Therefore, elucidating the pathologic mechanisms and identifying new risk genes of HGSC are of great value. 

The principal challenging to study HGSC is its intra-tumor heterogeneity (ITH) distinguishing from other OC types, which is 
characterized by ubiquitous TP53 driver mutations, homologous recombination DNA repair deficiency and extensive somatic copy 
number alterations [2]. To explore the heterogeneity of HGSC and the dynamic changes between normal and tumor tissues, previous 

Fig. 2. Cluster dendrogram of HGSC and normal cells. (A) Relationship between soft power threshold and network properties. Upper panel: 
Relationship between soft power threshold and scale-free topology model fit (left). Relationship between soft power threshold and mean connec-
tivity (right). Lower panel: Relationship between soft power threshold and median (left) and max (right) connectivity, respectively. (B) All the genes 
were clustered in thirty-four modules. One color represented one module. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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studies mostly based on bulk RNA sequencing have incorporated gene expression as well as gene correlation data followed by con-
struction of gene interaction networks [4,5]. However, these studies only permit resolution of tissue-level and are unable to decipher 
ITH. Furthermore, our observations may be mostly redundant gene correlations as they existed in both normal and tumor status, 
increasing difficulties in identifying true causative genes and pathways [6,7]. 

Arising as a powerful tool for dissecting the ITH, single-cell RNA sequencing (scRNA-seq) offers quantification of transcripts as well 
as diversified information of individual cells. Accumulating evidence has used scRNA-seq to explore the unique and subtle changes 
among different cell states [8–11]. For example, the changes between normal and tumor status, the changes among primary tumors 
and metastases. Meanwhile, subtle changes among different cell states can benefit from identification of differential correlations 
between genes in network structure. Accumulating evidence has indicated the altered regulatory network was associated with multiple 
biological processes such as cellular differentiation and cancer initiation [12,13]. The important regulators with highly variable 
correlated expression patterns may control cell fate decisions like cancer cell formation, which were considered as empirical indicators 
of the upcoming transitions [14]. And a change in correlation from normal tissues to tumor tissues represented the alteration of 
regulatory relationship comprised of regulators and their target genes. As little is known about genes with differential correlations 
from scRNA-seq data, we introduced a unique in silico framework named ScHGSC-IGDC to distinguish core genes during the devel-
opment of HGSC (Fig. 1). First, we extracted scRNA-seq data of HGSC from Gene Expression Omnibus (GSE189955). Then, 
high-dimension Weighted Gene Co-expression Network Analysis (hdWGCNA) as well as DiffCorr were implemented to identify 
differentially correlated genes. Lastly, scores of new genes such as NDUFS5, TMSB4X, SERPINE2 and ITPR2 were recognized, whose 
expression pattern was verified through real-time qPCR (RT-qPCR). Further survival and literature validation exhibited crucial impacts 
of these genes on HGSC progression. 

2. Results 

2.1. Co-expression network construction 

On the single-cell dataset, dimension reduction clustering was performed (Supplementary Fig. S1). And 13,560 genes expressed in 
at least 5 % cells were selected for further analysis. The weighted gene co-expression network was built by 13,560 noncoding and 
coding genes using hdWGCNA method. We set soft-thresholding power twelve in order to match the scale-free topology of network 

Fig. 3. Module genes ranked by eigengene-based connectivity. Displayed were ranked ten core genes of thirty-four modules (“darkgreen”, “red”, 
“grey60”, “brown”, “tan”, “midnightblue”, “turquoise”, “blue”, “cyan”, “yellow”, “magenta”, “paleturquoise”, “pruple”, “pink”, “violet”, “light-
green”, “green”, “darkgrey”, “lightyellow”, “darkmagenta”, “salmon”, “greenyellow”, “orange”, “darkred”, “lightcyan”, “darkorange”, “steelblue”, 
“royalblue”, “black”, “darkolivegreen”, “saddlebrown”, “darkturquoise”, “lavender”, “skyblue”). (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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(Fig. 2A). We detected thirty-four modules in the network displayed by cluster dendrogram (Fig. 2B). Supplementary Table S1 listed 
each member in each module. In addition to grey module comprised of numerous unclassified members, darkolivegreen module 
consisted of 50 genes was minimum, while turquoise module consisted of 1342 genes was maximum. 

We next computed harmonized module eigengenes and module connectivity. Module eigengenes reflected the expression profiles 
of all the modules. We focused on those core genes with high connectivity in each module. As displayed in Fig. 3, ten core genes 
belonging to each module were ranked by eigengene-based connectivity. And their detailed information was listed in Supplementary 
Table S2. We constructed FeaturePlots for each co-expression module, colored according to their uniquely assigned colors (Supple-
mentary Fig. S2). The features were core genes in each module and evaluated by module eigengene expression levels. Core gene 
signature score was also detected using ModuleFeaturePlot function of hdWGCNA package (Fig. 4). ModuleCorrelogram function was 
used for visualization of the correlation among the modules based on their core gene scores (Supplementary Fig. S3). 

In order to validate the robustness of our identification method, we conducted Gene Ontology (GO) enrichment analysis using 340 
core genes in all the thirty-four modules in our dataset as well as another two randomly selected subsets of cells. One included 1492 
tumor cells and 400 normal cells and the other included 1119 tumor cells and 300 normal cells. We conducted hdWGCNA analysis and 
got core genes, respectively. The GO analysis showed that among the top ten enriched GO terms, seven of them were shared by the 
three datasets (Fig. 5A–C). These core genes were mainly enriched in oxidative phosphorylation, aerobic respiration and electron 
transport chain, endowing the significance of these biological activities to HGSC development. 

We also quantified module-trait associations by selecting tumor cells. As a result, two modules steelblue and blue exhibited the 
most significant correlations with HGSC stage (Supplementary Figs. S4A–D). The corresponding correlation coefficients for the two 
modules, steelblue and blue, were 0.60 (P = 2✕10− 15) and − 0.77 (P = 3✕10− 29). Obviously, Gene Significance (GS) and Module 
Membership (MM) analysis demonstrated genes strongly remarkably correlated to HGSC were likewise the most vital components of 
modules correlated to HGSC (Supplementary Fig. 4E). GO analysis of the above two modules showed that blue module genes were 
markedly accumulated in actin filament organization, positive regulation of proteolysis and nucleocytoplasmic transport, while no 
significant GO terms were found in genes of the steelblue module, endowing their potential association with HGSC stage (Supple-
mentary Fig. 4F). 

2.2. Differential correlation identification 

Then, we chose the above 340 core genes in all the thirty-four modules in order to estimate differential correlations. We clustered 
these genes according to their expression patterns in normal or tumor and calculated differential correlations of genes. Afterthat, 
module network was constructed and visualized based on hierarchical cluster analysis (Fig. 6A and B). Finally, correlation analyses 
offered differential correlations between two genes among all the modules (Supplementary Table S3). 

In order to provide specific biological insight for the module network, we investigated the enriched pathways of module network in 
tumor. The results showed that genes of module 1 were significantly accumulated in metabolic process like glycolysis, genes of module 

Fig. 4. Core genes signature. The function ModuleFeaturePlot was used to construct FeaturePlots for each co-expression module colored by each 
module’s uniquely assigned color. The features were core genes in each module and evaluated by gene expression levels. Displayed were core genes 
signature of thirty-four modules (“darkgreen”, “red”, “grey60”, “brown”, “tan”, “midnightblue”, “turquoise”, “blue”, “cyan”, “yellow”, “magenta”, 
“paleturquoise”, “pruple”, “pink”, “violet”, “lightgreen”, “green”, “darkgrey”, “lightyellow”, “darkmagenta”, “salmon”, “greenyellow”, “orange”, 
“darkred”, “lightcyan”, “darkorange”, “steelblue”, “royalblue”, “black”, “darkolivegreen”, “saddlebrown”, “darkturquoise”, “lavender”, “skyblue”). 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. Functional enrichment of core genes. GO analysis showed the top 10 enriched biological processes in our dataset (A) and two randomly 
selected subsets of cells (B and C). The shared processes were underlined in red. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 
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3 in bacterial invasion of epithelial cells, as well as genes of module 6 in immune responses such as natural killer cell mediated 
cytotoxicity and complement and coagulation cascades (Fig. 6B). Recent studies have indicated the role of bacterial and its metabolites 
in formation and metastasis of ovarian cancer [15,16]. Moreover, in response to bacterial infection, immune cells reacted rapidly with 
a series of inflammatory burst, which explained the relationship between module 3 and module 6 [17]. Meanwhile, during the in-
flammatory processes, immune cells underwent a switch to aerobic glycolysis for the production of Warburg effect, implying the 
relationship between module 1 and module 6 [18]. 

Also, DiffCorr algorithm discovered oppositely correlated genes. That means, two genes are negatively correlated in HGSC cells 
while positively correlated in normal cells. The transformed gene pairs were noteworthy, underlining key functions during HGSC 
progression. 143 oppositely correlated gene pairs were obtained in all (Supplementary Table S4). And their interacted networks were 
presented in Fig. 7A and B. Fifteen most differentially correlated gene pairs between HGSC and normal cells were shown in Table 1. We 
also performed functional enrichment of these oppositely correlated genes. The results indicated that they were almost enriched in 
oxidative phosphorylation which was hyperactive in ovarian cancer cells and strongly linked to the proliferation as well as survival of 
cancer stem cells [19]. And oxidative phosphorylation associated genes included COX6C, NDUFC2, CYC1 and UQCRC1. Thus, 
oxidative phosphorylation could play key roles in carcinogenesis and be rendered as a therapeutic target for HGSC course. 

2.3. Functional analysis of differentially correlated core genes 

Eventually, we centered on four novel genes which have not been previously reported in HGSC and acted as dominant regulators for 
building most links with others. As one of the members of NADH ubiquinone oxidoreductase subunit family, NDUFS5 mainly par-
ticipates in maintaining cell proliferation and differentiation and regulates signal transducers and activators of transcription 3 (STAT3) 
[20,21]. Prior research has recognized its function as a tumor suppressor in glioma, consistent with our survival analysis that lower 
expression levels of NDUFS5 predicting poor outcome of HGSC patients (Fig. 8A, Supplementary Fig. S5A) and lower expression levels 
observed in HGSC patients and cell lines compared with normal (Fig. 9A, Supplementary Fig. S6A). Previous study has implicated the 
prognostic value of STAT3 in HGSC patients under platinum-based chemotherapy [22]. Meanwhile, dysregulation of STAT3 has been 
indicated to be correlated to proliferation and metastasis of OC [23]. Given the great importance of STAT3 in the progression of HGSC, 
it can be inferred that NDUFS5 modulates biological processes of HGSC cells by interacting with STAT3 signalling pathway and may be 
effective therapeutic target of HGSC prevention or treatment. Furthermore, the altered association between NDUFS5 and THY1 should 
not be ignored. THY1 is a glycosylphosphatidylinositol anchored protein and recently has been authenticated as an OC stem cell 
marker [24]. Increased expression of THY1 has been reported to predict poor prognosis and be related to self-renewal in epithelial 
ovarian cancer (EOC), which conferred THY1 as an oncogene [25]. Thus, NDUFS5 and THY1 were endowed with opposite functions 
and they were negatively correlated in normal cells. However, this correlation changed to be positive in tumor cells, indicating 
substantial changes of regulatory networks upon cancer occurrence. 

As a widely distributed and multifunctional peptide, thymosin-β4 (Tβ4), the gene product of TMSB4X, plays pivotal roles in various 
physiological and pathological processes, especially angiogenesis and inflammation [26]. Prior studies have indicated the differential 
expression pattern of Tβ4 in a broad variety of cancers [27]. A recent scRNA-seq analysis has demonstrated the elevated levels of 
TMSB4X in papillary thyroid cancer cells compared with non-malignant cells [28]. Moreover, the aberrant expression of Tβ4 has been 

Fig. 6. Module networks. Representation of normal (A) and tumor (B) module networks from GSE189955. Each edge represented module corre-
lation. Each node represented a module. The enriched pathways of module 1, 3 and 6 in tumor were labeled. 
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correlated with advanced disease in thyroid cancer [29]. Another research on murine mammary gland cells has underlined the 
importance of TGFβ/Tβ4 signaling pathway in epithelial-mesenchymal transition, metastasis and cancer progression [30]. However, 
our survival analysis showed low expression of TMSB4X implicated high risk (Fig. 8B, Supplementary Fig. S5B), implying its distinct 
molecular mechanisms in HGSC. And downregulation of TMSB4X in HGSC patients and cell line was also observed in our experiments 
(Fig. 9B, Supplementary Fig. S6B). Notably, PRDX5, one isoform of antioxidant enzymes Peroxiredoxins, was negatively correlated 
with TMSB4X in normal cells whose association altered in tumor cells. PRDX5 has been observed to be frequently involved in regu-
lating reductant-oxidant-sensitive cellular processes [31]. Prior studies have shown elevated expression of PRDX5 indicated poorer 
overall survival, conferring PRDX5 a negative survival predictor in OC [32]. In other words, our study expanded the function of 
TMSB4X as well as its interacted networks in cancer biology which needed further investigations. 

As an extracellular serine proteinase inhibitor, Serpin peptidase inhibitor, clade E, member 2 (SERPINE2) participates in the 
progression of several malignancies [33]. Recent research has underscored the oncogenic significance of SERPINE2 across a wide range 
of cancer types [33,34]. For instance, SERPINE2 can act as a poor biomarker and prompted cancer metastasis. SERPINE2 can also 
modulate DNA damage response and radio-resistance. Conversely, tumor suppressive effects of SERPINE2 have been found in glioma 
and prostate cancer [35,36], suggesting its dual function in carcinogenesis. Here, the Kaplan-Meier analysis demonstrated preferable 
survival in the lower expression group (Fig. 8C, Supplementary Fig. S5C), emphasizing cancer accelerating influences of SERPINE2 on 
HGSC. Moreover, RT-qPCR confirmed significant elevated levels of SERPINE2 in HGSC cell lines and patients (Fig. 9C). Regarding the 
interaction networks of SERPINE2, it was positively correlated with mitochondrial nuclear retrograde regulator 1 (MNRR1, also named 
CHCHD2) in normal cells which reversed in tumor cells. CHCHD2 has been considered as a driver of OC progression whose deletion led 
to tumor growth delay and improved survival in OC mouse models [37]. Therefore, we elucidated the central position of SERPINE2 in 
the regulatory network of HGSC, clarifying its molecular mechanisms partly. 

The endoplasmic reticulum (ER) inositol 1,4,5-trisphosphate receptor, type 2 (ITPR2) contributes to calcium ion transmembrane 
transportation as well as exerts vital roles in regulating cell cycle and proliferation [38]. Multiple evidence has indicated that ITPR2 
controlled cellular senescence and aging through collaboration with mitochondria and ER [38–40]. Given the importance of ITPR2 in 
regulating different pathophysiological processes, its aberration is associated with the cancer occurrence. ITPR2 has been recognized 
as a novel biomarker as well as clinical target for leukemia [41]. Genome-wide association studies (GWAS) has shown great associ-
ations of germline genetic variations in ITPR2 with clear cell renal cell cancer among Chinese people [42]. Nevertheless, scant 
literature is found with regard to the function of ITPR2 on OC or HGSC. Compared with high group, the low ITPR2 expression group 
had significantly longer survival time (Fig. 8D, Supplementary Fig. S5D), consistent with the carcinogenic property of ITPR2 in 
previously reported cancers. And ITPR2 showed significant higher expression levels in HGSC compared with normal cell lines and 
tissues (Fig. 9D, Supplementary Fig. S6C). Meanwhile, several genes interacting with ITPR2 were also identified from our regulatory 
network including phosphoglycerate kinase 1 (PGK1) and mitochondrial β-F1-ATPase (ATP5B). PGK1 is a key factor in coordinating 
cellular energy production and upregulated in multiple cancers [43]. Recent research has also recognized PKG1 as a target for 
anti-glycolytic therapy of OC [44,45]. Similarly, as a metabolic marker, high expression of ATP5B has been revealed to predict poor 
overall survival of HGSC [46]. All as oncogenes, ITPR2 was positively correlated with PGK1 and ATP5B in normal cells whose aberrant 
association occurred in tumor cells, contributing to understanding the etiology of HGSC. 

Fig. 7. Differential co-expressed gene network of normal (A) and tumor (B) modules from GSE189955. One node represented one gene. One 
edge represented correlation between two genes, among which blue meant negative correlation and red positive correlation. The stronger corre-
lation coefficient was represented by the thicker edge. NDUFS5, THY1, TMSB4X, PRDX5, SERPINE2, CHCHD2, ITPR2, ATP5B, and PGK1 gene pairs 
were marked by asterisks. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Fifteen most differentially correlated gene pairs transformed oppositely from modules between HGSC and normal cells.  

Molecule X Molecule Y r1 (Normal) r2 (Tumor) lfdra (difference) 

SERPINE2 TFF3 − 0.747055516 0.920468266 0 
IFI44L IFITM1 − 0.7139838 0.713499528 0 
IFITM1 MX1 − 0.572945762 0.767236876 0 
CSNK2B HLA-C − 0.563572757 0.795383642 0 
COL1A2 SERPINE2 − 0.539857251 0.784304513 0 
ALDOA ITPR2 0.525296438 − 0.77355076 0 
GLRX TMSB4X 0.553493633 − 0.935714716 0 
FTH1 TFF3 0.62875303 − 0.731098244 0 
CFL1 SELM 0.660930843 − 0.670434993 0 
GLRX RPS23 − 0.672680312 0.648752588 1.68E-13 
NDUFS5 UQCRC1 − 0.710706839 0.587593374 4.66E-13 
COX6C CYC1 − 0.511134907 0.749010427 1.44E-12 
GHITM S100A8 0.530322574 − 0.725233437 3.62E-12 
ITPR2 PGK1 0.644676077 − 0.630798971 3.62E-12 
FTH1 MAL − 0.542917233 0.704141786 9.41E-12  

a Local FDR. 
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3. Discussion 

Most HGSC patients suffered from cancer relapse and treatment resistance due to ITH, which could not be addressed by bulk RNA 
sequencing and gene correlation analysis. To clarify the heterogeneity of HGSC and altered regulatory network during carcinogenesis, 
we used scRNA-seq data and investigated differentially correlated core genes between normal and tumor status for the first time. 
Scores of novel genes including NDUFS5, TMSB4X, SERPINE2 and ITPR2 were identified. And their differentially correlated genes 
THY1, PRDX5, CHCHD2 and PGK1 were firstly proposed for their causative roles during HGSC progression. Further RT-qPCR 
confirmed the expression patterns of NDUFS5, TMSB4X, SERPINE2 and ITPR2 and more in-depth experimental research was 
required to validate their biological function in the pathogenesis of HGSC. Additionally, our computational strategy can be expanded 
to other cell types with more subtle differences such as different developmental stages as well as different cancer types. 

In addition to alterations among genome and transcriptome, tumor development also involved vast epigenetic changes which 
needed to be comprehensively analyzed, so our study could benefit from integrating multi-omics sequencing data including epigenetic 
modifications and metabolites data in the future. 

4. Materials and methods 

4.1. HGSC scRNA-seq dataset 

The scRNA-seq dataset of HGSC (GSE189955) was downloaded from Gene Expression Omnibus including 10 HGSC samples, 4 non- 
serous OC samples and 6 normal fallopian tubes [47]. Following standardization, 1940 primary tumor cells (refer to as tumor) and 520 

Fig. 8. The Kaplan-Meier plot of NDUFS5, TMSB4X, SERPINE2 and ITPR2 from TCGA datasets. The low expression of NDUFS5 (A) and 
TMSB4X (B) indicated high risk, while the high expression of SERPINE2 (C) and ITPR2 (D) indicated high risk. Different group cutoffs were used to 
obtain the optimal statistical result. 
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epithelial cells from fallopian tubes (refer to as normal) were selected for further gene expression analysis. 

4.2. Analysis of single-cell co-expression network 

R package hdWGCNA was performed to screen core gene and detect co-expression of gene pair, which is optimized from WGCNA 
and applied for scRNA-seq data. First, we need to set up Seurat object from single-cell RNA count matrix including performing RunPCA 
for dimensionality reduction and RunHarmony for batch correction with default parameters. Genes expressed in at least 5 % of all cells 
were selected (fraction = 0.05). Next, we constructed metacells based on k-nearest neighbor (KNN) algorithm to reduce expression 
matrix sparsity with the function MetacellsByGroups (k = 25). Thirdly, to construct gene co-expression network, we run WGCNA after 
selecting the soft-thresholding power (soft_power = 12). Briefly, the network is undirected and weighted in which nodes are genes and 
edges are correlation coefficients between genes. Through elevating the absolute correlation values to a soft-thresholding power, the 
network construction underlines strong correlations at the expense of weak correlations. The selection criterion of the soft- 
thresholding power is making the connections conform to the distribution of scale-free network. Sequentially, we performed the 
following functions with default parameters: ConstructNetwork, ModuleEigengenes, and ModuleConnectivity. The overall premise 
and procedure of WGCNA was detailedly described in Ref. [48]. Lastly, genes and network modules were identified. 

4.3. GO and KEGG analysis 

R package clusterProfiler was utilized for functional analysis of core genes among all the modules. And a hypergeometric distri-
bution test was employed to examine enriched terms. False discovery rate (FDR) method was employed to adjust P values with a cutoff 
less than 0.05 [49]. 

4.4. Evaluation of differential correlations 

We implemented R package DiffCorr for identifying and visualizing differential correlations and details were described in Ref. [50]. 
This package was mainly comprised of three steps: calculation of differential correlations, identification of eigen-molecules and scaling 
and clustering. Firstly, we transformed correlation coefficients for each condition, rA and rB into ZA and ZB, respectively. And the 
Fisher’s transformation of rA/rB was: Z = 1

2 log 1+r
1− r (1). Differences of two correlations could be calculated as: Z = ZA − ZB̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
nA − 3+

1
nB − 3

√ (2), where 

nA and nB represented sample size for each gene pair under each condition. (1-correlation coefficient) was referred to distance measure 
according to the cutree function. And then local false discovery rate (lfdr) was utilized to control true estimates as well as identify 
remarkable differential correlations. Secondly, we calculated eigen-molecule or “eigengene” according to first principal component of 
a module derived from hierarchical cluster analysis. Besides pair-wise differential correlations among genes, module correlations were 
also evaluated by eigen-molecule modules. For module network visualization, two functions get.eigen.molecule and get.eigen.molecule. 
graph were implemented. Thirdly, we integrated diverse pretreatment methods with downstream correlation analysis under function 
comp.2.cc.fdr. Eventually, we got pair-wise differential correlations between genes as well as differential correlations between 

Fig. 9. The expression levels of NDUFS5 (A), TMSB4X (B), SERPINE2 (C) and ITPR2 (D) in HGSC cell lines and tissues tested by RT-qPCR. OC cell 
lines: Kuramochi, Ovsaho, Ovcar4, Ovcar8 and Tyknu. Human ovarian epithelial cell line: IOSE80. Data were means ± S.E.M. *P < 0.05, **P < 0.01, 
***P < 0.001. Experiments were duplicated at least three times. 
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modules. 

4.5. Visualization analysis 

Visualization of differential co-expressed network comprised of oppositely correlated genes was realized using software Cytoscape 
(3.9.0) [51]. 

4.6. Survival analysis of differentially correlated core genes 

We conducted survival analysis of core genes using GEPIA from TCGA datasets. We also employed GEO datasets (GSE26193, 
GSE26712, GSE30161 and GSE3149) as validation groups for the survival analysis of these genes using Kaplan-Meier Plotter. P < 0.05 
was referred as remarkable difference [52]. 

4.7. Cell lines and cell culture 

The OC cell lines (Kuramochi, Ovsaho, Ovcar4, Ovcar8 and Tyknu) and normal human ovarian epithelial cell line IOSE80 were 
purchased from Cell Bank of Chinese Academy of Sciences (Shanghai, China). Medium RPMI-1640 (Thermo, USA) adding 10 % fetal 
bovine serum (FBS) was used to culture cells. All cell media contained penicillin (100U/mL) and streptomycin (100U/mL) at 37 ◦C in a 
5 % CO2 incubator. 

4.8. Tissue specimens and HGSC patients 

Fifteen pairs of adjacent normal and HGSC tumor tissues were gathered from the Third Affiliated Hospital of Soochow University 
from September 2022 to May 2023. Tissues were stored at − 80 ◦C. Our research was permitted by Research Ethics Committee of the 
Third Affiliated Hospital of Soochow University, consistent with the Declaration of Helsinki. Written informed consent was obtained 
from all the patients. 

4.9. RT-qPCR 

TRIzol reagent (Thermo, USA) was utilized to isolate total RNA. We utilized a ReverTra Ace qPCR RT Kit (Toyobo, Osaka, Japan) to 
synthesize the first strand cDNA. For RT-qPCR, we employed the Fast SYBR Green Master Mix (Applied Biosystems Inc., CA, USA). Our 
loading control was GAPDH. The expression levels of genes were evaluated by the relative quantification 2-ΔΔCT method. 

4.10. Expression analysis of core genes 

We employed GSE223426 as a validation dataset for mRNA expression analysis of core genes generated by GEO2R [53]. 

4.11. Statistical analysis 

Student’s t-test was employed to distinguish differential expressed genes. Adjusted P values less than 0.05, computed by Benjamini- 
Hochberg method, represented remarkable difference [54]. Fisher’s z-test was employed to assess differentially correlated gene pairs. 
Less than 0.05 lfdr was referred as remarkable difference. 
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