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    The concept that hematopoietic stem cell 
(HSC) numbers and behavior are regulated by 
physically discrete locations or niches within 
the bone marrow was fi rst hypothesized in de-
tail 30 yr ago ( Schofi eld, 1978 ). In recent years, 
several groups have begun to reveal the iden-
tity of the HSC niche, either through in situ 
identifi cation of populations enriched for HSCs 
in mouse bone marrow or through genetic ap-
proaches ( Nilsson et al., 1997 ;  Calvi et al., 2003 ; 
 Zhang et al., 2003 ;  Arai et al., 2004 ;  Visnjic 
et al., 2004 ;  Kiel et al., 2005 ;  Sugiyama et al., 
2006 ). Although the precise identities of the 
niche cells are still largely unknown and con-
troversial ( Kiel et al., 2007a ;  Haug et al., 2008 ), 
a large amount of data indicate that HSCs are 
retained within the niche through the use of 
specific adhesion molecules and chemokine 
gradients ( Papayannopoulou and Scadden, 2008 ). 

Through these interactions, HSCs can be as-
sured of receiving the appropriate supportive 
signals that allow them to retain their stem 
cell identity. 

 Counterbalanced against these studies, how-
ever, are data suggesting that recipient bone 
marrow can be readily displaced by transplanted 
marrow in an effi  cient and linear dose-dependent 
manner, even in the absence of conditioning 
( Brecher et al., 1982 ;  Saxe et al., 1984 ;  Stewart 
et al., 1993 ;  Wu and Keating, 1993 ;  Rao et al., 
1997 ;  Colvin et al., 2004 ). These studies 
did not directly assess HSC replacement; how-
ever, the data would appear to be more consis-
tent with a model where HSCs do not reside 
locked into fi xed locations in the marrow, 
but instead receive their regulatory signals 
through limiting quantities of freely diff usible 
factors. Although more recent data have shown 
that actual host HSC replacement by purifi ed 
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 Hematopoietic stem cells (HSCs) are thought to reside in discrete niches through stable 

adhesion, yet previous studies have suggested that host HSCs can be replaced by trans-

planted donor HSCs, even in the absence of cytoreductive conditioning. To explain this 

apparent paradox, we calculated, through cell surface phenotyping and transplantation of 

unfractionated blood, that  � 1–5% of the total pool of HSCs enters into the circulation 

each day. Bromodeoxyuridine (BrdU) feeding experiments demonstrated that HSCs in the 

peripheral blood incorporate BrdU at the same rate as do HSCs in the bone marrow, sug-

gesting that egress from the bone marrow to the blood can occur without cell division and 

can leave behind vacant HSC niches. Consistent with this, repetitive daily transplantations 

of small numbers of HSCs administered as new niches became available over the course of 

7 d led to signifi cantly higher levels of engraftment than did large, single-bolus transplan-

tations of the same total number of HSCs. These data provide insight as to how HSC re-

placement can occur despite the residence of endogenous HSCs in niches, and suggest 

therapeutic interventions that capitalize upon physiological HSC egress. 
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setting the intrinsic behavior and replacement properties of 
HSCs rather than that of unfractionated bone marrow, which 
contains several diff erent cell types that have been reported to 
infl uence engraftment and replacement, such as host-reactive 
T cells and stromal cells ( Slavin et al., 1998 ;  Almeida-Porada 
et al., 1999 ;  Lazarus et al., 2005 ). To our knowledge, ours is 
the fi rst such study to examine the physiological kinetics of 
HSC niche emptying and engraftment behavior in the ab-
sence of these variables. 

 RESULTS 

 Numerical and functional quantifi cation of HSCs in blood 

 Several theoretical mechanisms exist that could describe the 
source of HSCs in the blood. The fi rst involves an asymmet-
ric division in which after mitosis, one daughter HSC re-
mains positioned within the supportive niche, while the 
other daughter cell is displaced away ( Fig. 1 A ).  The daughter 
cell that is displaced can then intravasate into the bloodstream. 
Another mechanism involves division-independent egress in 
which an HSC exits its supportive niche in the absence of 
mitosis, thus leaving behind a vacant HSC niche ( Fig. 1 B ). 

 To determine which of these two models most accurately 
describes the source of HSCs in the peripheral blood, we fi rst 
determined whether HSCs in the bloodstream are phenotypi-
cally and functionally similar to HSCs in the bone marrow. 
C-kit +  lineage  �   Sca-1 +  (KLS) CD27 +  IL-7R �   �   CD150 +  CD34  �   
cells could be identifi ed by fl ow cytometry in the blood that 
appeared to be virtually identical to phenotypic HSCs in the 
bone marrow ( Fig. 2 A ).  In agreement with some previous 
studies ( Allman et al., 2003 ), but in contrast to others ( Wiesmann 
et al., 2000 ), we were unable to identify KLS CD34  �   cells in 
the bone marrow that did not express CD27, although it is 

HSCs, rather than simply total marrow replacement, is less 
effi  cient than these earlier studies suggested ( Prockop and 
Petrie, 2004 ;  Bhattacharya et al., 2006 ;  Czechowicz et al., 
2007 ), there is clearly a certain degree of HSC replacement 
that does occur in normal mice, even in the absence of cyto-
reductive conditioning. Thus, there is a need for a model that 
accounts for both the physically discrete bone marrow loca-
tions of HSCs that many studies have suggested, and the re-
placement of HSCs that occurs when transplants are performed 
in the absence of conditioning. 

 Recent studies have shown that pharmacologically in-
duced egress of HSCs using AMD3100, a CXCR4 inhibitor, 
can be used to free niches in recipient animals and allows for 
improved levels of donor HSC engraftment relative to un-
treated recipients ( Chen et al., 2006 ). Because several studies 
have shown that HSCs and/or progenitors also circulate un-
der physiological conditions ( Goodman and Hodgson, 1962 ; 
 McCredie et al., 1971 ;  Wright et al., 2001 ;  Abkowitz et al., 
2003 ;  McKinney-Freeman and Goodell, 2004 ;  Massberg 
et al., 2007 ;  Méndez-Ferrer et al., 2008 ), we hypothesized 
that steady-state egress of HSCs from their niches may also 
allow for engraftment of donor HSCs. In this model, trans-
planted HSCs would not directly displace host HSCs that are 
stably residing within a niche, but would engraft into niches 
that had been vacated through the physiological egress of 
host HSCs. In this study, we provide evidence consistent 
with this model, demonstrating that HSCs can enter into the 
bloodstream in the absence of cellular division, and that re-
petitive HSC transplantations can capitalize on this process of 
HSC niche recycling to generate higher levels of engraftment 
than large single-bolus transplantation of HSCs. Moreover, 
in our study we specifi cally examined in an unconditioned 

  Figure 1.   HSC egress is either division dependent or independent.  HSCs can either undergo an extrinsically asymmetric division, in which one 

daughter cell is positioned away from a supportive niche and can thus intravasate to the blood (A) or can exit the supportive niche in the absence of cel-

lular division (B). In the former model, all HSCs in the blood would be expected to have incorporated BrdU (gray shaded cells) after an appropriate feeding 

period, while the latter model would predict similar low BrdU incorporation rates between bone marrow and blood HSCs.   
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CD34  �   and all remaining KLS CD27 +  IL-7R �   �   (CD34 +  
and/or CD150  �  ) cells from peripheral blood into lethally irra-
diated recipients along with 200,000 competitor bone marrow 
cells from GFP +  wild-type donor mice. Transplantation of as 
few as 8 KLS CD27 +  IL-7R �   �   CD150 +  CD34  �   cells from the 
peripheral blood into lethally irradiated mice led to multilin-
eage reconstitution for at least 16 wk, whereas transplantation 
of as many as 200 of the remaining KLS CD27 +  IL-7R �   �   cells 
(encompassing both CD34 +  and/or CD150  �   cells) from the 
peripheral blood failed to give detectable reconstitution at late 
time points in any recipient ( Fig. 3 A ), similar to previous stud-
ies on bone marrow HSCs ( Osawa et al., 1996 ).  These data 
demonstrate that HSC activity in the peripheral blood is con-
tained within the KLS CD27 +  IL-7R �   �   CD150 +  CD34  �   
population, just as in the bone marrow. To our knowledge, 
this is the fi rst time that peripheral blood HSCs have been pu-
rifi ed to this level, aff ording us the ability to specifi cally study 
their behavior. 

worth noting that CD34  �   HSCs express slightly lower relative 
levels of CD27 than do their CD34 +  MPP counterparts 
( Fig. 2 B ). We believe these discrepancies are related to im-
proved antibody conjugates that yield brighter fl uorescent 
signals. This marker thus aided in the specifi c identifi cation of 
rare HSCs in the blood and distinguishing these HSCs from 
background CD27  �   events ( Fig. 2 B ). Transplantation of CD27  �   
bone marrow did not lead to multilineage reconstitution be-
yond 8 wk, confi rming that all of the HSC activity is contained 
within the CD27 +  fraction ( Fig. S1 A ). 

 Previous studies have shown that functional HSC activity 
is contained within the KLS fraction of peripheral blood 
( Schwarz and Bhandoola, 2004 ). We further confi rmed through 
transplantation assays that only CD27 +  KLS cells within the 
peripheral blood have multilineage reconstitution potential 
(Fig. S1 B). To verify that HSC activity was specifi cally con-
tained within the KLS CD27 +  IL-7R �   �   CD150 +  CD34  �   
fraction, we transplanted both KLS CD27 +  IL-7R �   �   CD150 +  

  Figure 2.   Phenotypic HSCs can be identifi ed and purely isolated from peripheral blood.  (A) Bone marrow and peripheral blood from 12-wk-old 

mice were stained with the combination of markers indicated. The plots from the peripheral blood represent pooled events collected from 25 animals, in 

which  � 50 HSCs were analyzed. Lineage cocktail antibodies were divided into different channels to minimize the chance of contamination of mature 

cells in the HSC gate. (B) CD27 is expressed on HSCs. KLS IL-7r �   �   cells from the bone marrow and blood were examined for CD34 and CD27 expression. 

CD34  �   cells segregated almost exclusively to the CD27 +  population in the bone marrow, and thus the CD27 marker was useful for distinguishing HSCs 

from background events in the blood. All stains were repeated in eight independent experiments.   
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showed clear lymphoid lineage chimerism, only 4/34 recipi-
ents showed detectable donor granulocyte reconstitution at 
16 wk after transplant ( Fig. S2 A ), likely indicating the persis-
tence and/or homeostatic proliferation of mature donor lym-
phocytes, but relatively infrequent HSC activity. Assuming 
single-cell reconstitution frequency ranges of 20–100% 
( Osawa et al., 1996 ;  Wagers et al., 2002 ;  Matsuzaki et al., 
2004 ;  Ema et al., 2005 ;  Camargo et al., 2006 ), these data sug-
gest that there are not >1–5 circulating HSCs in the periph-
eral blood of 10–12-wk-old animals at any given point. 
Consistent with this, we were only able to sort, on average, 
2 HSCs per adult animal from the entirety of the peripheral 
blood ( Fig. 2 A ). These numbers are lower than our previous 
estimates for reasons that are not entirely clear ( Wright et al., 
2001 ). The diff erence does not appear to be caused by the 
use of younger animals in our previous studies, as peripheral 
blood from 4-wk-old mice reconstituted granulocytes at an 
identical effi  ciency (2/14 recipients), as did peripheral blood 
from 12-wk-old mice (2/14 recipients; Fig. S2 B). Recent 
studies have found that diverse stimuli, such as circadian 
rhythms, can infl uence the frequency of HSCs in the blood 
( Méndez-Ferrer et al., 2008 ). Although this particular stimu-
lus is unlikely to account for all of the diff erence between our 
current study and the previous work, it is clear that environ-
mental factors, many of which likely remain to be discov-
ered, can infl uence the numbers of HSCs in the blood. It is 
entirely possible that some of these environmental factors 
were diff erent between the current study and our previous 

 When 8 KLS CD27 +  IL-7R �   �   CD150 +  CD34  �   (PB 
HSCs) were transplanted alongside 200,000 competitor bone 
marrow cells into lethally irradiated recipients, the mean 
granulocyte chimerism arising from the peripheral blood 
HSCs was  � 23% ( Fig. 3 A ). This is similar to the expected 
chimerism value of 28% if these HSCs were functionally 
identical to the 20 estimated bone marrow HSCs that were 
cotransplanted within the competitor bone marrow, assum-
ing a bone marrow HSC frequency of 0.01% ( Bryder et al., 
2006 ). However, the lymphoid chimerism derived from the 
peripheral blood HSCs was slightly lower, perhaps because of 
the persistence and homeostatic proliferation of mature lym-
phocytes included in the competitor bone marrow ( Ron and 
Sprent, 1985 ;  Förster and Rajewsky, 1990 ;  Ernst et al., 1999 ; 
 Goldrath and Bevan, 1999 ). Clonal in vitro assays in which 
20 single peripheral blood HSCs and 20 single bone marrow 
HSCs isolated from 10 mice were analyzed for colony forma-
tion demonstrated that the plating effi  ciency and lineage po-
tential of peripheral blood HSCs are similar to those of bone 
marrow HSCs ( Fig. 3 B ). Collectively, these data demon-
strate that peripheral blood HSCs are phenotypically and func-
tionally similar to bone marrow HSCs. 

 To reexamine the frequency of functional HSCs within 
the blood of adult mice, we transplanted 200 μl of whole pe-
ripheral blood ( � 10% of the total blood volume of a mouse) 
from unmanipulated animals into lethally irradiated recipients 
alongside 200,000 competitor bone marrow cells. These ex-
periments showed that whereas almost all recipients (30/34) 

  Figure 3.   Functional HSCs can be found in the peripheral blood under physiological conditions.  (A) Transplantable peripheral blood HSCs are 

contained within the CD34  �   fraction of CD27 +  KLS cells. Either 8 KLS CD27 + CD150 + IL-7r �   �  CD34  �   or 200 of the remaining KLS CD27 + IL-7r �   �   cells were 

transplanted into lethally irradiated recipients along with 200,000 competitor bone marrow cells and chimerism in various blood lineages was determined 

16 wk after transplant. Means ± SEM are shown ( n  = 5 for each group; experiment was repeated 3 times). (B) Clonal lineage potential of bone marrow 

and peripheral blood HSCs is similar. Single bone marrow or peripheral blood HSCs were cultured in the presence of SCF, Flt3L, IL-3, M-CSF, GM-CSF, TPO, 

and EPO for 12 d, and the lineage composition of the colonies was determined through cytospins and May-Giemsa stains. 20 wells were analyzed for 

both peripheral blood and bone marrow HSCs. Two independent experiments were performed.   
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HSCs at all time points ( Fig. 4 ). Thus, given the purity of these 
peripheral blood HSCs as shown by the clonal assays and in 
vivo reconstitutions ( Fig. 3 ), it is clear from both experiments 
that not all peripheral blood HSCs incorporated BrdU, 
strengthening the interpretation that HSC intravasation need 
not necessarily be accompanied by cellular division. 

 Recent studies have shown that HSCs can circulate not 
only through the peripheral blood, but also through the 
lymph and other organs ( Massberg et al., 2007 ). Thus, it re-
mained possible that the HSCs in the blood that had not di-
vided were cells that had in fact undergone egress from the 
bone marrow in a division-dependent manner before the la-
beling period, and had been circulating continuously for the 
duration of the BrdU feeding. To determine the maximum 
duration that HSCs can circulate and yet still retain their 
phenotypic identity, 10,000 single-sorted HSCs were trans-
planted into unconditioned wild-type animals and bone 
marrow HSC chimerism was measured between 1–7 d after 
transplant. Strikingly, no increase was observed in HSC chi-
merism between 1 and 3 d after transplantation, indicating 
that HSC homing to the marrow occurs rapidly after intrave-
nous transplantation ( Fig. 5 , top), consistent with previous 
studies on partially purifi ed HSCs ( Nilsson et al., 1997 ,  Plett 
et al., 2002 ).  At both 1 and 3 d after transplant, most donor 
cells retained their phenotypic HSC identity ( Fig. 5 , bottom). 
A twofold increase in HSC chimerism did occur between 
3 and 5 d after transplant ( Fig. 5 , top), but this was also ac-
companied by a reduction in the percentage of donor cells 
that retained their HSC surface phenotype, indicating diff er-
entiation ( Fig. 5 , bottom;  Fig. S3 ). These data suggest that 
some transplanted HSCs must begin to divide and diff erenti-
ate by 5 d. Thus, the observed jump in HSC chimerism be-
tween 3 and 5 d may be partially caused by local proliferation 
rather than additional HSC homing from peripheral sites. 
Regardless, no further increases were observed between 
5 and 7 d after transplant ( Fig. 5 , top), and the HSC chimerism 
values at these time points were similar to the values at 16 wk 
after transplant when similar numbers of HSCs were infused 
in a single bolus ( Fig. 6 A , top).  These data imply that few 
HSCs identifi ed in the peripheral blood could have been cir-
culating continuously for the duration of the BrdU labeling 
experiment in  Fig. 4 . The total number of HSCs found per 
spleen remained between 20 and 50 cells throughout the 
course of the experiment with no statistically signifi cant dif-
ferences observed, and we were unable to detect more than 
1 donor HSC in the blood in any recipient at any time point 
(unpublished data). Collectively, these data confi rm that 
HSCs can exit their supportive niches without dividing un-
der physiological conditions. 

 Niche vacancy under homeostatic conditions 

 Division-independent HSC egress would be predicted to 
leave behind a small number of available niches for donor 
HSC transplantation, even in the absence of conditioning 
( Fig. 1 B ). Moreover, because physiological HSC migration 
is thought to be a continuous process ( Wright et al., 2001 ), 

work ( Wright et al., 2001 ). Regardless, these current revised 
estimates are more consistent with data presented by other 
studies and with the observation that cross-engraftment of 
the bone marrow HSC compartment in parabiotic partners 
does not reach 50%, even after long periods of conjoinment 
( Wright et al., 2001 ;  Abkowitz et al., 2003 ;  McKinney-
Freeman and Goodell, 2004 ;  Nygren et al., 2004 ). Given that 
there are 1,440 min per day and assuming an intravascular 
residence time of 5 min ( Wright et al., 2001 ), we now esti-
mate that 300–1,500 HSCs (and likely many more multipo-
tent and oligopotent progenitors), representing up to 1–5% 
of the total pool, can briefl y enter into the circulation each 
day in adult mice. 

 Division-independent egress of HSCs 

 If circulating HSCs egress from the bone marrow in a division-
dependent manner ( Fig. 1 A ), after an appropriate period of 
BrdU feeding, this model of HSC egress would predict 
that all peripheral blood HSCs would have incorporated 
BrdU, whereas only a fraction of the bone marrow HSCs 
would have incorporated BrdU. More specifi cally, HSCs 
destined for peripheral blood would incorporate BrdU at 
more rapid rates than would the total pool of bone marrow 
HSCs. In contrast, the division-independent model ( Fig. 1 B ) 
would predict that after an appropriate labeling period, not all 
blood HSCs would have incorporated BrdU, and instead, the 
extent of BrdU incorporation would be similar to that of 
bone marrow HSCs. To test these models, 20 mice were fed 
BrdU in their drinking water for 3 d, and the levels of BrdU 
incorporation in pooled peripheral blood and bone marrow 
HSCs were quantifi ed. Only  � 9% of both blood and bone 
marrow HSCs had incorporated BrdU, suggesting that cellu-
lar division is not a requirement for HSC egress into the 
bloodstream ( Fig. 4 , experiment 1).  Even after a longer BrdU 
feeding period of 6 d in which HSCs from 20 mice were 
pooled and analyzed, only 18% of peripheral blood and bone 
marrow HSCs had incorporated BrdU ( Fig. 4 , experiment 1). 
These experiments were repeated with similar results. After 9 
and 12 d of BrdU feeding, the frequency of BrdU +  HSCs 
found in the peripheral blood had still not exceeded that 
in the bone marrow ( Fig. 4 , experiments 2 and 3). Interest-
ingly, the percentage of HSCs in the bone marrow that 
had incorporated BrdU did not change between 9 and 12 d 
of feeding, which is consistent with the proposal that distinct 
proliferative and relatively nonproliferative HSC populations 
exist ( Nygren and Bryder, 2008 ;  Wilson et al., 2008 ). It is 
possible that the actual levels of proliferation may be even less 
than these values indicate, as BrdU itself has been suggested 
to induce the proliferation of HSCs ( Nygren and Bryder, 
2008 ;  Wilson et al., 2008 ). Our levels of BrdU incorporation 
in bone marrow HSCs are likely lower than that reported by 
two recent studies because of the lower dose of BrdU admin-
istered in this study ( Kiel et al., 2007b ;  Wilson et al., 2008 ). 
This lower BrdU dose was still suffi  cient for distinguishing 
diff erences in proliferative rates, as highly proliferative my-
eloid progenitors had incorporated more BrdU than had 
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and/or create additional niches ( El-Badri et al., 1998 ;  Slavin 
et al., 1998 ;  Almeida-Porada et al., 1999 ), it is diffi  cult to as-
sess the intrinsic ability of donor HSCs to replace host HSCs 
in the absence of conditioning through unfractionated mar-
row transplants. To defi ne the interval of HSC niche satura-
tion, wild-type CD45.1 × CD45.2 animals were transplanted 
with a large single bolus of either 12,700 single-sorted ( Fig. 6 A , 
top) or 11,070 double-sorted HSCs ( Fig. 6 A , bottom) or the 
same total number of HSCs administered over the course of 
7 daily injections. The animals receiving the single bolus of 

division-independent egress would be predicted to lead to 
only a fi nite period of niche saturation after transplantation of 
an excess of donor HSCs. Previous studies have shown that 
repetitive injections of unfractionated bone marrow lead to 
more hematopoietic replacement than single-bolus injections 
of unfractionated marrow ( Quesenberry et al., 1994 ;  Colvin 
et al., 2004 ), although whether these fi ndings apply to HSC 
replacement is currently unknown. Indeed, as HSCs com-
prise <0.01% of all bone marrow cells, and because trans-
planted accessory cells can potentially clear endogenous HSCs 

  Figure 4.   HSCs can egress into the peripheral blood without dividing.  Mice were fed BrdU in the drinking water for 3 or 6 d (experiment 1), 9 d 

(experiment 2), or 12 d (experiment 3), and the percentage of peripheral blood HSCs that had incorporated BrdU was quantifi ed. Control mice were not 

fed BrdU, but bone marrow HSCs were isolated as from experimental groups. HSCs were identifi ed as described in  Fig. 3 A , and myeloid progenitors (MP) 

were identifi ed as lineage  �   c-kit +  Sca-1  �   cells. Peripheral blood was pooled from 20 mice for each experiment, and 2 independent experiments were per-

formed for each time point.   
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granulocyte chimerism at the time of sacrifi ce underestimated 
the absolute HSC chimerism in individual mice, and did not 
show a linear relationship with HSC chimerism when exam-
ined in all recipients ( Fig. 6 B ). Interestingly, when we trans-
planted CD45.1 × CD45.2 mice with 6.5 × 10 7  unfractionated 
marrow cells from a CD45.1 donor, granulocyte chimerism 
after transplantation overestimated bone marrow HSC chi-
merism, but not overall KLS chimerism, demonstrating the 
unique and specifi c diffi  culty of replacing HSCs with trans-
planted cells ( Fig. 6 C ;  Czechowicz et al., 2007 ). Thus, in this 
experimental system of unconditioned wild-type recipients, it 
appears that the most reliable method to measure bone mar-
row HSC chimerism is to quantify donor HSCs directly using 
stringent proper HSC markers. The biological basis for this 
diff erence between HSC chimerism and mature cell output is 
currently unclear, but has been observed before in other sys-
tems ( Wu and Keating, 1993 ;  Rossi et al., 2007 ). It is possible 
that the absences of certain cellular lineages and/or eff ects 
induced by diff erent experimental manipulations can aff ect 
the extent to which HSC chimerism correlates with mature 
cell chimerism. Thus, diff erent experimental conditions require 
independent verifi cations of these correlations. These diff er-
ences may explain the discordance between our conclusions 
regarding transplanted HSC dose-dependent decreases in 
transplantation effi  ciencies ( Fig. 7 A ) and other studies that 
inferred effi  cient HSC replacement based upon linear dose-
dependent replacement of total marrow ( Bhattacharya et al., 
2006 ;  Czechowicz et al., 2007 ;  Brecher et al., 1982 ;  Stewart 
et al., 1993 ;  Saxe et al., 1984 ;  Wu and Keating, 1993 ;  Colvin 
et al., 2004 ). Alternatively, it is possible that unfractionated 
marrow contains cells that can empty HSC niches through 
immunological clearance or through mobilization ( Slavin 
et al., 1998 ). Finally, it is also possible that HSCs transplanted 
in the context of unfractionated marrow survive for longer 
durations than do purifi ed HSCs ( Benveniste et al., 2003 ), 
thus allowing these cells to engraft into empty niches as they 
become available over a longer period of time. 

 The existence of fi nite numbers of empty niches predicts 
that the likelihood of engraftment for any given cell within 
the transplant should decrease as the number of cells trans-
planted in a single bolus increases. Previous studies using un-
fractionated marrow transplants have given mixed answers to 
this prediction, with some studies suggesting an absolute lin-
ear dose-dependent replacement of host hematopoietic cells 
( Brecher et al., 1982 ), others demonstrating no dose-dependent 
increases in chimerism in certain mouse strains ( Saxe et al., 
1984 ), others fi nding no detectable engraftment in the ab-
sence of conditioning ( Gambel et al., 1984 ), and still others 
fi nding dose-dependent curves intermediate to these fi ndings 
( Rao et al., 1997 ). To experimentally determine this dose-
dependent effi  ciency of engraftment specifi cally for HSCs in 
the absence of immune barriers, we transplanted various 
numbers of purifi ed CD45.2 HSCs into unconditioned wild-
type CD45.1 × CD45.2 animals. At 4 wk after transplant, 
animals were sacrifi ced and bone marrow HSC chimerism 
was determined directly as in  Fig. 6 . The efficiency of 

HSCs were injected six additional times daily (three times 
before HSC transplantation and three times afterward) with 
saline to control for mobilizing eff ects of the injections them-
selves. The group of mice that received daily HSC injections 
showed  � 2–2.5-fold increases in bone marrow HSC chime-
rism, representing value ranges of 5–10%, over the group that 
received a single bolus of HSCs, which displayed HSC chi-
merism values of 2–5%, when sacrifi ced 16 wk after trans-
plant ( Fig. 6 A ). These data demonstrate that niche saturation 
after transplantation is transient. 

 Unlike in unconditioned immunodefi cient recipients 
( Bhattacharya et al., 2006 ;  Czechowicz et al., 2007 ), granu-
locyte chimerism correlated poorly with HSC chimerism in 
this wild-type setting, as has been previously observed in 
other studies ( Wu and Keating, 1993 ). Peripheral blood 

  Figure 5.   HSCs home to the bone marrow rapidly after transplan-

tation.  10,000 purifi ed CD45.1 HSCs were transplanted into uncondi-

tioned CD45.1 × CD45.2 wild-type recipients, and donor bone marrow 

HSC chimerism (top) and the percentage of donor cells that retained HSC 

phenotypes (bottom) were determined at the indicated time points ( n  = 

4–5 mice for each time point). Mean chimerism values ± SEM and 

p-values from the Students’ unpaired two tailed  t  test are shown. 

Two independent experiments were performed.   
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empty HSC niches were being reset within the duration be-
tween the injections. In contrast, if niche availability were 
reset after longer periods of time, HSCs transplanted during 
later injections would encounter fewer available niches than 
those transplanted at the fi rst injection, thereby reducing the 
overall effi  ciency of engraftment. Because the HSC engraft-
ment from daily injections was more than twofold greater 
than that achieved by the single-bolus transplant ( Fig. 6 A ), 
we estimate that HSC niche availability must be reset within 
at least 24 h. Thus, we, for the fi rst time, have specifi cally 
assessed the number of available HSC niches in normal 
wild-type animals and the rate of their emptying under 
steady-state conditions. 

engraftment of the lowest transplanted dose (250 HSCs) was 
approximately twofold higher than the effi  ciency of the 
15,000 HSC dose ( Fig. 7 A ).  Importantly, the effi  ciency of 
transplantation never approached zero, even at the highest 
transplanted HSC doses. These data are consistent with the 
concept that HSC niches are continuously being emptied and 
refi lled, making complete saturation diffi  cult to achieve. 

 Given that the effi  ciency of engraftment of low numbers 
of transplanted HSCs is approximately twofold higher than 
the effi  ciency of high doses of transplanted HSCs ( Fig. 7 A ), 
we estimated that multiple injections of low doses of HSCs 
would lead to twofold higher levels of HSC engraftment than 
single-bolus transplants (as in  Fig. 6 A ) only if the number of 

  Figure 6.   Niche availability is reset within 1 d in wild-type mice.  (A) Daily transplantation yields higher levels of engraftment than single-bolus 

transplants. Wild-type CD45.1 × CD45.2 mice were transplanted with a sum total of 12,700 single-sorted bone marrow HSCs (experiment 1) or with 

11,060 double-sorted bone marrow HSCs (experiment 2) given as a single bolus or over the course of 7 daily injections. At 16 wk after transplant, bone 

marrow was harvested and donor HSC (KLS CD150 +  CD34  �  ) chimerism was measured. Mean values ± SEM are shown.  n  = 10 for each group; repeat 

transplant experiments were performed three independent times, two of these are shown. (B) Peripheral blood granulocyte chimerism correlates poorly 

with donor HSC chimerism in unconditioned wild-type recipients. Granulocyte chimerism was correlated with HSC chimerism in each individual mouse 

16 wk after transplantation. R 2  value from linear regression is shown. Repeat transplant experiments were performed 3 independent times, 2 of these are 

shown. (C) Mature cell chimerism correlates poorly with HSC chimerism after whole bone marrow transplantation. 6.5 × 10 7  unfractionated nucleated 

bone marrow cells from wild-type female CD45.2 mice were transplanted into unirradiated wild-type female CD45.1 × CD45.2 F1 recipients ( n  = 5); 

2 independent experiments were performed. Total peripheral blood, BM HSC (defi ned as KLS CD135  �  CD34  �  ), BM total KLS, and granulocyte, B cell, T cell, 

natural killer cell (NK), and dendritic cell (DC) chimerism in the peripheral blood was measured 16 wk after transplantation.   
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 To verify that our surface phenotypic characterization ac-
curately identifi ed functional donor HSCs, we transplanted 
12–14 single-sorted phenotypic donor HSCs from unirradi-
ated primary transplanted recipients into lethally irradiated 
secondary recipients. At 16 wk after secondary transplant, 
multilineage engraftment derived from these reisolated donor 
HSCs was observed in 5/7 recipients ( Fig. 7 B ). These data 
confi rm that we are accurately quantifying donor HSC chi-
merism in the primary unirradiated transplanted recipients. 

 Apoptosis does not play a role in HSC niche clearance 

 Aside from the division-independent egress of HSCs, apop-
tosis of HSCs might also lead to the emptying of appropriate 
niches. To test this hypothesis,  � 2,500 single-sorted Bcl2-
transgenic CD45.2 HSCs were transplanted into uncondi-
tioned CD45.1 × CD45.2 Bcl2-transgenic mice, which 
show increased numbers of HSCs through the prevention of 
apoptosis ( Domen and Weissman, 2000 ), or into wild-type 
CD45.1 × CD45.2 animals. Bone marrow HSC chimerism 
levels were similar between the 2 groups of recipients at 16 wk 
after transplantation ( Fig. 8 ).  These data suggest that host HSC 
apoptosis is not a major mechanism of niche clearance within 
the timeframe that transplanted HSCs engraft. 

 DISCUSSION 

 The ability of transplanted HSCs to home to the bone mar-
row and reconstitute the recipient’s blood supply is the basis 
for the routine use of bone marrow transplants to correct 
both inherited and acquired hematopoietic disorders. The 
success of these treatments is contingent upon the replace-
ment of the malfunctioning endogenous HSCs with normal 
donor HSCs. The need for ablating host HSCs before trans-
plantation to achieve high levels of donor HSC engraftment 

  Figure 7.   Functional HSC engraftment effi ciency decreases with transplanted cell dose.  A. Engraftment effi ciency decreases with transplanted 

cell dose. Various numbers of purifi ed CD45.1 HSCs were transplanted into unconditioned CD45.1 × CD45.2 mice, and bone marrow HSC chimerism was 

determined 4 wk after transplant. Effi ciency was calculated using the measured chimerism and with the approximation that 12–16-wk-old mice have 

25,000 endogenous HSCs as follows: Effi ciency = (% chimerism × cell dose)/(25,000) Mean values ± SEM are shown.  n  = 5 for each condition; two inde-

pendent experiments were performed. B. Donor HSCs can be secondarily transplanted. 12–14 single-sorted donor CD45.2 HSCs from unconditioned 

transplanted wild-type CD45.1 × CD45.2 mice were reisolated at 16 wk after primary transplant and secondarily transplanted into lethally irradiated 

CD45.1 mice along with 200,000 GFP +  unfractionated bone marrow cells. The total percent chimerism for each lineage derived from CD45.2 HSCs is 

shown at 16 wk after transplant. Mean chimerism ± SEM is shown ( n  = 7). Two independent experiments were performed.   

has been a hotly debated issue over the years, with several 
groups claiming effi  cient HSC replacement in the absence of 
prior cytoreductive conditioning of the host ( Brecher et al., 
1982 ;  Saxe et al., 1984 ;  Stewart et al., 1993 ;  Wu and Keating, 
1993 ;  Rao et al., 1997 ;  Colvin et al., 2004 ), whereas experi-
mental and clinical studies from our group and others found 
little evidence for extensive HSC replacement in uncondi-
tioned recipients ( Gambel et al., 1984 ;  Müller et al., 2000 ; 
 van Os et al., 2001 ;  Prockop and Petrie, 2004 ;  Xu et al., 
2004 ;  Bhattacharya et al., 2006 ;  Cavazzana-Calvo et al., 
2007 ;  Czechowicz et al., 2007 ). Our studies specifi cally ex-
amined the behavior of purifi ed HSCs and HSC replacement 
rather than that of unfractionated marrow; thus, we believe 
our results are more reliable than previous and often confl ict-
ing estimates based on whole-marrow transplants ( Brecher 
et al., 1982 ;  Saxe et al., 1984 ;  Gambel et al., 1984 ;  Stewart 
et al., 1993 ;  Wu and Keating, 1993 ;  Quesenberry et al., 1994 ; 
 Rao et al., 1997 ;  Stewart et al., 1998 ;  Colvin et al., 2004 ). 
This is particularly important because clinical unfractionated 
bone marrow transplants are associated with high rates of 
acute graft versus host disease, and as such most transplants 
are performed with HSC-enriched populations. 

 Although the exact amount of HSC replacement that 
occurs in the absence of conditioning is still controversial, it is 
clear that a certain fraction of transplanted HSCs do engraft 
in unconditioned recipients, a fi nding that appears to be in-
consistent with the assumptions that the number of HSC 
niches is equivalent to the number of HSCs ( Moore et al., 
1997 ) and that HSCs remain fi xed into place within these 
physically discrete niches ( Schofi eld, 1978 ). In this study, we 
provide evidence for a model that is consistent with both the 
existence of physically discrete HSC niches and HSC replace-
ment by transplanted cells in the absence of conditioning. 
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expected to generate a process by which HSC niches are con-
tinuously being emptied, refi lled, and recycled. Consistent 
with such a mechanism, we demonstrate that transplantation of 
an excess of donor HSCs reveals these transiently vacant niches 
and leads to the replacement of a certain fraction of host HSCs. 
Collectively, our data suggest that engraftment of transplanted 
HSCs is limited by the number of empty niches that arise while 
the transplanted cells survive. We thus propose a two-phase 
model of donor HSC engraftment: in the fi rst phase, the niches 
that are already available at the time of transplant are effi  ciently 
engrafted by a portion of the transplanted HSCs through non-
stochastic chemotaxis and adhesion. In the second phase, the 
remaining transplanted HSCs survey for unoccupied niches 
until they diff erentiate or die; the likelihood of encountering a 
niche that becomes vacated by host HSC egress is dependent 
on the number of cells transplanted and the subsequent con-
centration of donor HSCs in the recipient animal. 

 Although HSCs are known to migrate between HSC-
supportive niches at diff erent sites during embryonic develop-
ment ( Moore and Metcalf, 1970 ;  Johnson and Moore, 1975 ; 
 Gekas et al., 2005 ;  Samokhvalov et al., 2007 ), we do not 
know or test here what fraction of endogenously migrating 
HSC in the adult are destined to reenter HSC niches; some 
could be fated for non self-renewing multipotent progenitor 
(MPP) niches, or even specialized niches, perhaps for the pro-
duction of selected lineages such as megakaryocytes and 
erythrocytes. Indeed, the ability of circulating HSCs to reen-
ter appropriate bone marrow HSC niches under homeostatic 
conditions has been suggested to be low by several studies 
( Abkowitz et al., 2003 ;  McKinney-Freeman and Goodell, 
2004 ). Therefore it is still a question whether MPP niches are 
physically proximal to HSC niches or positioned at entry sites 
from the vasculature that ends in sinusoids. 

 Although apoptosis of endogenous HSCs does not appear 
to be a major mechanism by which niches are emptied, it is 
important to note that our data do not exclude other potential 
mechanisms by which niches might be emptied under physi-
ological conditions. For example, the number of HSCs ex-
pands dramatically with age, with 5–10 fold increases in HSC 
numbers in 24-mo-old animals vs. 12-wk-old animals 
( Harrison et al., 1989 ;  Morrison et al., 1996 ;  de Haan and Van 
Zant, 1999 ;  Sudo et al., 2000 ;  Rossi et al., 2005 ). It is possible 
that the number of HSC niches also expands and precedes the 
HSC expansion slightly, leading to transient periods of niche 
vacancy. This process would be predicted to generate an 
 � 0.2% increase in the number of niches every day. These 
numbers are insuffi  cient to explain the levels of engraftment 
achieved in unconditioned animals, but such processes may 
contribute to HSC replacement after transplantation. Formal 
testing of this hypothesis will require the precise identifi cation 
of the cellular components of the niche. Additional processes 
such as bone remodeling may also play a role in the creation 
of new niches and/or HSC egress under steady-state condi-
tions ( Kollet et al., 2006 ). 

 Our data suggest that in clinical HSC transplantation set-
tings where cytoreductive conditioning is not applied, such 

In this model, the division-independent egress of HSCs leaves 
behind a certain fraction of empty niches that can be fi lled by 
transplanted HSCs, thus leading to the functional replace-
ment of a small fraction of endogenous HSCs. 

 Genetic defi ciencies in genes such as Egr1 and certain 
mobilizing regimens such as cyclophosphamide + G-CSF ap-
pear to trigger a large amount of proliferation of bone mar-
row HSCs, along with the egress of HSCs into the blood, 
spleen, and liver ( Morrison et al., 1997 ;  Min et al., 2008 ), 
perhaps by causing an excess of HSCs relative to the number 
of available niches available in the marrow. These mobilizing 
regimens have been shown to not be eff ective as transplanta-
tion conditioning regimens ( Robinson et al., 2000 ). On the 
other hand, the CXCR4 antagonist AMD3100, interleukin-8, 
and blocking antibodies or antagonistic small molecules 
against VLA-4 all cause HSC release into the bloodstream in 
the apparent absence of cellular division, suggesting settings 
in which there is no absolute requirement for proliferation 
before HSC egress ( Laterveer et al., 1995 ;  Craddock et al., 
1997 ;  Broxmeyer et al., 2005 ;  Chen et al., 2006 ;  Ramirez 
et al., 2009 ). These types of mobilizing agents have been 
shown to be eff ective as transplantation conditioners ( Chen 
et al., 2006 ). Consistent with these latter fi ndings, our results 
using BrdU incorporation indicate that under steady-state 
conditions, HSCs need not proliferate to egress into circula-
tion from their supportive niches. This process allows a cer-
tain degree of HSC replacement to occur after transplantation, 
even in the absence of cytoreduction. 

 Given that the physiological circulation of HSCs is con-
tinuous, the division-independent egress of HSCs would be 

  Figure 8.   Apoptosis is not a major mechanism of HSC niche clear-

ance.  2,500 single-sorted bone marrow HSCs ( � 45% purity) from H-2 k -

Bcl-2 transgenic CD45.2 mice were transplanted into unconditioned 

H-2 k -Bcl-2 transgenic CD45.1 × CD45.2 mice ( n  = 4) or wild-type CD45.1 × 

CD45.2 mice ( n  = 3). Mean donor bone marrow HSC chimerism ± SEM 

was quantifi ed 16 wk after transplantation. Two independent experiments 

were performed.   
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(eBioscience), IL-3 (Peprotech), GM-CSF (Peprotech), erythropoietin 

(EPO; R&D Systems), and 10% fetal bovine serum (HyClone). Wells were 

harvested after 12 d, cytospins were prepared and stained with May-Giemsa, 

and colonies were visually scored for lineage output. 

 BrdU analysis.   C57BL/6 mice were maintained on 0.8 mg/ml BrdU in 

their drinking water for 3-12 d. The bottles containing BrdU water were 

protected from light and changed daily. To obtain peripheral blood, the 

mice were perfused with PBS containing 10 mM EDTA and erythrocytes 

were removed using Histopaque gradients as before. The bone marrow was 

harvested from the mice by crushing bones and removing debris on density 

gradient using Histopaque 1119 (Sigma-Aldrich). Cells from peripheral 

blood and bone marrow were stained with antibodies as described in the 

Antibodies section of Materials and methods. The cells were fi xed and per-

meabilized using the Fix and Perm kit (Invitrogen). The cells were subjected 

to DNaseI treatment for 45 min at room temperature, and BrdU incorpora-

tion was visualized using Anti-BrdU antibody conjugated to FITC. 

 Engraftment analysis.   Blood was obtained from the tail vein of trans-

planted mice at various time points, and erythrocytes were sedimented using 

2% dextran in PBS at 37°C for 30 min, and supernatants were subsequently 

lysed using ACK lysis buff er (150 mM NH 4 Cl, 1 mM KHCO 3 , and 0.1 mM 

EDTA) for 5 min. Cells were stained with antibodies described in the Anti-

bodies section of Materials and methods and analyzed on the BD FACSAria. 

Donor granulocyte chimerism was determined by analyzing the percentage 

of Ter119 - CD3 - B220 - Gr-1 high side scatter high  cells that were also donor + . 

 Online supplemental material.   Fig. S1 shows HSC activities in CD27 +  

and CD27  �   fractions of bone marrow and blood. Fig. S2 shows frequency of 

reconstitution and multilineage chimerism after unfractionated blood trans-

plantation into irradiated recipients. Fig. S3 shows representative surface 

phenotypes of donor cells at various times after transplantation of HSCs into 

unirradiated recipients. Online supplemental material is available at http://

www.jem.org/cgi/content/full/jem.20090778/DC1. 
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