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In preparation for mitosis, cells undergo extensive reorganization of the cytoskeleton
and nucleus, so that chromosomes can be efficiently segregated into two daughter
cells. Coordination of these cytoskeletal and nuclear events occurs through biochemical
regulatory pathways, orchestrated by Cyclin-CDK activity. However, recent studies
provide evidence that physical forces are also involved in the early steps of spindle
assembly. Here, we will review how the crosstalk of physical forces and biochemical
signals coordinates nuclear and cytoplasmic events during the G2-M transition, to
ensure efficient spindle assembly and faithful chromosome segregation.

Keywords: mitosis, nucleus, cytoskeleton, centrosome, mechanotransduction, chromosome, nuclear lamina

INTRODUCTION

An efficient mitosis is required to maintain genomic stability and ensure correct tissue development
and homeostasis. While nuclear envelope breakdown (NEB) marks the irreversible step of mitotic
commitment, the process starts well before, as chromosomes condense (Antonin and Neumann,
2016) and centrosomes separate (Whitehead et al., 1996). This occurs simultaneously with a
global reorganization of the microtubule and actin cytoskeletons. Accordingly, the interphase
microtubule cytoskeleton disassembles (Mchedlishvili et al., 2018) and overall microtubule
dynamics change (Zhai et al., 1996), which allows the formation of a bipolar spindle (Heald and
Khodjakov, 2015) required for accurate chromosome capture (Figure 1). At the same time, the
interphase actin cytoskeleton is replaced with a mitotic actomyosin network that is connected
with the plasma membrane (Chugh and Paluch, 2018) and drives mitotic rounding (Rosa et al.,
2015). Importantly, timely progression through these steps requires the activity of mitotic kinases
such as CDK1 and PLK1 (Gavet and Pines, 2010b; Ramanathan et al., 2015; Gheghiani et al.,
2017). Simultaneously, within the nucleus, a cascade of events regulated by the same mitotic
kinases initiate chromosome condensation (Abe et al., 2011) and trigger disassembly of the nuclear
pore complex (NPC; Linder et al., 2017) and nuclear lamina (NL; Heald and McKeon, 1990;
Peter et al., 1990).

Here, we will discuss how the interactions between the cytoskeleton and nucleus set the stage
for spindle assembly and how the prophase nucleus acts as more than a passive player to ensure a
successful mitosis.

MITOTIC CELL ROUNDING

Mitotic cell rounding is a feature of a large number of eukaryotic cells that lack a cell wall
(Mitchison, 1992; Gibson et al., 2006; Thery and Bornens, 2008). However, this is not a
universal characteristic, as some metazoan cells such as Ptk1 or newt pneumocytes are still
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FIGURE 1 | Overview of the cytoskeletal and nuclear reorganization that occur during mitotic entry. (A) Representative frames from a movie of a RPE-1 cell
expressing H2B-GFP/tubulin-RFP/SiR-actin during mitotic entry. It is possible to observe the main events that occur during mitotic entry, such as cell rounding,
chromosome condensation, and centrosome separation. After NEB, mitotic rounding continues as the spindle assembles. Time is in min:sec. Scale bar, 10 µm.
Time zero corresponds to NEB. (B) Main events that occur during the G2-M transition. Cyclin B1-CDK1 complexes shuttle between the cytoplasm and the nucleus.
At this stage, the cell is attached to the extracellular matrix through membrane-bound adhesion complexes (1) and the microtubule and actin cytoskeletons are in
their interphase configuration. Inside the nucleus, chromatin is decondensed and the nuclear envelope and nuclear lamina are intact (2). As cells prepare to enter
mitosis, adhesion complexes disassemble, leading to cell membrane retraction and mitotic cortex assembly (3). Together with osmotic swelling (4), this leads to
increased intracellular pressure. At the same time, active cyclin B1-CDK1 complexes accumulate in the nucleus, triggering chromosome condensation, nuclear
lamina depolymerization (5), and nuclear envelope permeabilization. These events trigger changes global changes in the forces during the G2-M transition.

capable of progressing through mitosis without rounding
(Roos, 1973; Hayden et al., 1990; Rieder and Alexander, 1990).
The rounding process is regulated by CDK1 activity
(Jones et al., 2018) and starts in the early stages of mitosis
(Matthews et al., 2012) with the loss of Arp2/3-dependent
lamellipodia (Bovellan et al., 2014) and disassembly of focal
adhesions (FAs; Dao et al., 2009). This loss of FAs leads to the
decrease in cell traction forces observed during G2 (Uroz et al.,
2018; Vianay et al., 2018) and prophase (Nunes et al., 2020) and
allows cell margin retraction (Mitchison, 1992; Maddox and
Burridge, 2003) (Figure 1). In turn, this change in cell shape
enables the formation of a stiff actomyosin cortex (Maddox
and Burridge, 2003; Kunda et al., 2008; Fischer-Friedrich et al.,
2016), through the CDK1-mediated phosphorylation of Myosin
II (Ramanathan et al., 2015) and Ect2, a RhoGEF that activates
the RhoA GTPase (Matthews et al., 2012). In combination with
an increase in hydrostatic pressure (Stewart et al., 2011) and cell
volume (Zlotek-Zlotkiewicz et al., 2015), likely driven by water
influx (Son et al., 2015), these changes provide the necessary
space for mitotic spindle assembly and accurate chromosome

capture (Kunda et al., 2008; Lancaster et al., 2013). Consequently,
a failure in mitotic cell rounding triggered by either blocking
FA disassembly or mechanical compression leads to defects in
spindle assembly and mitotic progression (Lancaster et al., 2013;
Nunes et al., 2020) and increases chromosome missegregation
(Tse et al., 2012; Lancaster et al., 2013; Cattin et al., 2015;
Matthews et al., 2020). The need for cell rounding was further
emphasized with the proposal of an “adhesion-dependent
checkpoint,” which acts through DEPDC1B to inhibit RhoA
activation and allow FA dismantling during the G2-M transition
(Marchesi et al., 2014), required for normal proliferation and
development of zebrafish embryos.

CENTROSOME SEPARATION AND
SPINDLE ASSEMBLY

In animal cells, spindle assembly originates mainly from the
centrosomes. For this reason, many studies have focused
on centrosome behavior during the early stages of mitosis.
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Initial centrosome separation requires the combined action
of microtubule-associated molecular motors such as kinesin-
5 and dynein (for review, see Tanenbaum and Medema,
2010). The plus-end directed kinesin-5 has a homo-tetrameric
structure that can crosslink and slide anti-parallel microtubules
apart (Kashina et al., 1996). This generates pushing forces on
microtubules that lead to centrosome separation (Whitehead
et al., 1996). For this reason, kinesin-5 has been involved in
spindle assembly in nearly all model systems analyzed (Sawin
et al., 1992; Heck et al., 1993; Blangy et al., 1995), with the
exception of C. elegans (Bishop et al., 2005). Dynein, on the
other hand is a microtubule minus-end directed motor (Roberts
et al., 2013). To generate the pulling forces necessary for
centrosome separation, dynein needs to be tethered to sub-
cellular structures such as the nuclear envelope (NE; Splinter
et al., 2010; Bolhy et al., 2011; Nunes et al., 2020) or the
cell cortex (Kotak et al., 2012). The combined activity of
these motors is sufficient to drive centrosome separation, but
it does not explain the biased movement of centrosomes
to the shortest axis of the nucleus (Magidson et al., 2011;
Nunes et al., 2020). Such a bias would require additional cues
(either external or internal) or an asymmetry in the forces
exerted on the centrosomes, to direct centrosome movement.
Notwithstanding, the extent of centrosome separation, as well
as their positioning at the moment of NEB, remain major
contributors to chromosome missegregation events. Failure to
fully separate centrosomes during mitotic entry can contribute
to deviant spindle morphologies (Silkworth et al., 2012; Nam
et al., 2015), increasing the likelihood of generating erroneous
kinetochore-microtubule attachments. Most of these attachments
are sensed by the Spindle Assembly Checkpoint (SAC), which
generates a “wait-anaphase” signal until all chromosomes
are correctly attached (Lara-Gonzalez et al., 2012). However,
merotelic attachments, which occur when one kinetochore is
bound to microtubules emanating from different poles, are
usually invisible to the SAC (Gregan et al., 2011). Consequently,
cells with incompletely separated centrosomes at NEB tend to
have a higher rate of chromosome missegregation (Kaseda et al.,
2012; Silkworth et al., 2012; Nunes et al., 2020).

During metaphase, cortical force generators dictate spindle
orientation (Thery et al., 2007; Kotak et al., 2012) by sensing
external cues (Thery et al., 2005; Toyoshima and Nishida, 2007;
Fink et al., 2011). However, during the initial stages of mitosis, as
cells round up and the actomyosin cortex is yet to be assembled,
these cortical force generators are not present (Kiyomitsu and
Cheeseman, 2012; Kotak et al., 2012). Therefore, it is likely
that the cues required for centrosome positioning during early
mitosis are not provided by external signals, but rather derive
from an internal input. One such signal could be provided by
the NE-specific pool of dynein, that is dependent on association
with the RanBP2-BicD2 (Splinter et al., 2010) or Nup133/CENP-
F/NudE-NudEL (Bolhy et al., 2011) pathways, in a CDK1-
dependent manner (Baffet et al., 2015). Accordingly, preventing
dynein loading on the NE results in a failure to separate (van
Heesbeen et al., 2013; De Simone et al., 2016; Boudreau et al.,
2019) and correctly position centrosomes (Splinter et al., 2010;
Bolhy et al., 2011; Nunes et al., 2020). The manner in which

the properties of the prophase nucleus dictate dynein localization
and activity to ensure positioning of centrosomes on the shortest
nuclear axis and avert chromosome missegregation remains
an open question.

THE NUCLEUS AND
NUCLEO-CYTOSKELETAL COUPLING

The cell nucleus is encased by a NE that acts as a barrier between
cytoplasmic and nuclear components. The NE is composed of
and inner (INM) and an outer (ONM) nuclear membrane, NPCs
and a dense NL. The NL consists mainly of A-type and B-type
Lamins, which are type V intermediate filaments that provide
structural support to the nucleus (Dechat et al., 2010). Lamins can
interact with chromatin and with NE membrane proteins, such
as Emerin, LAP2, or nuclear soluble factors such as barrier-to-
autointegration factor (BAF) (Ungricht and Kutay, 2017).

The nucleus is continuously under the influence of external
forces. When physical forces are applied to the cell, they
are decoded into biochemical signals in a process known as
mechanotransduction. This process starts at the cell membrane,
where adhesion complexes sense external cues (Sun et al., 2016).
The cytoskeleton then relays these signals to the nucleus through
the linker of nucleoskeleton and cytoskeleton (LINC) complex
(Lombardi and Lammerding, 2011), which triggers a nuclear
mechanical response that depends on the NL (Stephens et al.,
2017), chromatin condensation (Schreiner et al., 2015; Stephens
et al., 2017) and nucleo-cytoskeletal coupling (Lombardi and
Lammerding, 2011). This ultimately leads to changes in nuclear
structure and organization (Lammerding, 2011; Maurer and
Lammerding, 2019) and regulates cell cycle progression (Uroz
et al., 2018; Vitiello et al., 2019).

As mentioned above, a series of well-coordinated events
ensure timely mitotic entry, starting with chromosome
condensation (Antonin and Neumann, 2016) and cytoskeletal
reorganization (Ramkumar and Baum, 2016; Champion et al.,
2017), and culminating in nuclear permeabilization (Beaudouin
et al., 2002; Salina et al., 2002). In higher eukaryotes, nuclear
permeabilization starts with the removal of nucleoporins from
NPCs (Dultz et al., 2008; Katsani et al., 2008), which triggers a
loss of the nucleo-cytoplasmic boundary. The process continues
with the contribution of dynein-driven, microtubule-dependent
pulling forces, which generate holes in the nucleus and assist
in membrane clearing from chromosomes (Beaudouin et al.,
2002; Salina et al., 2002; Muhlhausser and Kutay, 2007). Finally,
the NL depolymerizes, due to Lamin phosphorylation and
consequent nucleoplasmic release (Heald and McKeon, 1990;
Peter et al., 1990; Georgatos et al., 1997). These steps are essential
to allow the interaction of microtubules with kinetochores on
mitotic chromosomes. In interphase, the mechanical response
of the nucleus is dictated by the chromatin condensation
state (Stephens et al., 2017), the levels of Lamin A (Buxboim
et al., 2017) and the interaction of heterochromatin with the
nuclear membrane (Schreiner et al., 2015). Remarkably, as
cells transition from G2 to mitosis, all the above components
are extensively modified. Phosphorylation of Lamin A by
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CDK1 (Heald and McKeon, 1990; Peter et al., 1990), triggers
its disassembly from the NL and consequent release into
the nucleoplasm (Georgatos et al., 1997). Although direct
measurements of nuclear stiffness at this stage have not been
made, it is possible to assume that NL depolymerization
significantly changes the mechanical response of the nucleus,
facilitating NEB. Accordingly, MEFs with Lamin A/C deficiency
show impaired nuclear stiffness and mechanics (Lammerding
et al., 2004, 2006). This is in line with observations in human
cells, showing that loss of Lamin A renders nuclei softer
(Pajerowski et al., 2007) and prone to rupture (Earle et al.,
2020). Taken together, these observations implicate the NL in
the mechanical stability of the nucleus and highlight the need for
its depolymerization during prophase (Georgatos et al., 1997),
to facilitate microtubule-dependent nuclear permeabilization
(Beaudouin et al., 2002; Salina et al., 2002). At the same time,
mitotic chromosomes condense, altering their structure and
stiffness (Stephens et al., 2017; Sun et al., 2018; Biggs et al.,
2019). Evidence from metaphase chromosomes isolated from
HeLa cells showed this process to be largely dependent on
condensins (Sun et al., 2018), although histone post-translational
modifications also play an important role (Biggs et al., 2019).
Finally, the actin cytoskeleton, which is connected to the
nucleus through the LINC complex (Versaevel et al., 2014),
is remodeled to assemble a mitotic cortex (Ramkumar and
Baum, 2016). This remodeling might modify the connections
between the cytoskeleton and the nucleus, contributing to
changes in nuclear mechanics. Accordingly, disrupting the
actin cytoskeleton in NIH3T3 cells was sufficient to modify the
compressive forces exerted on the nucleus and induce changes
in chromatin organization (Li et al., 2014). Taken together,
these studies suggest that the mechanical properties of the
nucleus change during the G2-M transition and warrant further
investigation on the functional relevance of nuclear mechanics
for mitotic fidelity.

While measurements of the mechanical properties of the
nucleus during the G2-M transition are still missing, there
is already significant evidence to support a role for the
nucleus and nucleus-associated components in other steps of
mitosis, namely in determining chromosome segregation fidelity.
One key component in nuclear mechanotransduction is the
aforementioned LINC complex (Figure 2). This complex consists
of SUN (Sad1, UNC84) proteins in the INM and KASH
(Klarsicht, ANC-1, and Syne Homology)-containing proteins in
the ONM (Starr and Fridolfsson, 2010). Importantly, studies in
MEFs using a microneedle assay to apply controlled cytoskeletal
strains, in combination with dominant-negative forms of SUN
and KASH proteins, showed that an intact LINC complex is
essential for force transmission to the nucleus (Lombardi et al.,
2011). Similarly, in cultured human cells, depletion of both
SUN1 and SUN2 delayed NE disassembly (Figure 2), similarly
to what is observed after microtubule depolymerization with
nocodazole (Turgay et al., 2014). Consequently, centrosome
separation is disrupted (Stiff et al., 2020) and mitotic progression
affected (Turgay et al., 2014). Moreover, an intact LINC complex
is essential during early mitosis for decreasing chromosome
scattering (Booth et al., 2019), likely facilitating their capture and

congression (Booth et al., 2019; Stiff et al., 2020). Importantly,
the LINC complex also directly associates with dynein on the
NE to control nuclear migration (Malone et al., 2003; Zhang
et al., 2009; Fridolfsson and Starr, 2010; Yu et al., 2011) and
meiotic chromosome movement (Chikashige et al., 2006; Sato
et al., 2009). Given that an intact LINC complex is required
for force transmission to the nucleus (Lombardi et al., 2011)
and NE dynein is essential for centrosome positioning (Nunes
et al., 2020), it is possible that LINC-mediated mechanical
forces could play an important part in determining correct
centrosome positioning by ensuring timely dynein loading.
Accordingly, depletion of SUN1 and SUN2 is sufficient to
abolish NE dynein localization (Turgay et al., 2014; Nunes
et al., 2019). Whether this is directly due to a defect in nuclear
mechanotransduction triggered by loss of the LINC complex
remains unknown (Figure 2).

Other nuclear components have also been implicated in
spindle assembly and chromosome segregation. Blocking the
removal of NE membranes at mitotic onset leads to defects in
spindle assembly and chromosome segregation (Turgay et al.,
2014; Champion et al., 2019). Similar defects in membranes
removal could also be triggered by expression of a mutant
version of Lamin A that is observed in progeria patients
(Dechat et al., 2007). However, Lamin A, together with BAF
and LAP2α, is also directly involved in spindle assembly and
orientation by targeting dynein to the cell cortex (Qi et al.,
2015). Moreover, chromosome distribution is altered in LMNA
mutant fibroblasts (Meaburn et al., 2007). Such alterations
could directly affect chromosome distribution during early
mitosis, disrupting the disk-like prometaphase chromosome
organization, essential for spindle assembly (Magidson et al.,
2011). Taken together, these defects could explain why Lamin
A/C deficiency leads to aneuploidy and chromosomal instability
(Dechat et al., 2007; Capo-chichi et al., 2011; Capo-Chichi
et al., 2016; Smith et al., 2018). Interestingly, mitotic problems
are not exclusive to Lamin A. In C. elegans, it was shown
that reduced levels of MAN1 and Emerin, INM proteins
which interact with Lamins and the LINC complex (Piccus
and Brayson, 2020), trigger “anaphase-bridged chromatin” (Liu
et al., 2003), a phenotype also observed in a mouse model
of laminopathy (Pratt et al., 2011), and in human cells with
reduced Lamin A levels (Cao et al., 2007). Moreover, loss of
Lamin B2 in human cells was also shown to trigger chromosomal
instability, by interfering with the spatial organization of
chromosomes (Ranade et al., 2017) and affecting spindle
assembly (Kuga et al., 2014).

Although these reports are compelling, there are alternative
hypotheses to explain how alterations in Lamins could indirectly
trigger mitotic defects. Chromatin is thought to associate
with the NL through specific sequences known as lamina-
associated domains (LADs) (van Steensel and Belmont, 2017)
that are considered to be transcriptionally repressive regions
(Guelen et al., 2008) and help organize chromosomes within
the nuclear volume (Mewborn et al., 2010). Notably, Lamin A
phosphorylation on Ser22, essential for NL depolymerization
during mitotic entry (Heald and McKeon, 1990), was recently
shown to act as a transcriptional regulator (Ikegami et al., 2020),
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FIGURE 2 | The LINC complex in early spindle assembly and chromosome segregation. The LINC complex consists of SUN1/2 trimers on the inner nuclear
membrane (INM) and KASH proteins on the outer nuclear membrane (ONM). In somatic cells, different KASH proteins differentially bind to specific motors (e.g.,
dynein) or to distinct cytoskeletal components. These complexes are able to sense forces relayed by the cytoskeleton and transmit them to the nuclear interior.
During the G2-M transition, SUN proteins are required to remove NE membranes from chromatin and position centrosomes. In addition, an intact LINC complex is
necessary for correct centrosome separation. Whether this is due to LINC complex-dependent loading of dynein on the NE or to nuclear mechanotransduction
remains unclear.

which could explain why LMNA mutants show altered gene
expression patterns (Mewborn et al., 2010). Whether the mitotic
defects triggered by Lamin A loss could be due to changes in its
transcriptional program remains to be determined.

MECHANICAL FORCES IN CELL CYCLE
PROGRESSION

The link between mechanical forces and the cell cycle has long
been recognized (Chen et al., 1997; Huang et al., 1998). In
capillary endothelial cells, tractional forces are sufficient to trigger
the G1-S transition by increasing Cyclin D1 levels and down-
regulating the cell cycle inhibitor p27Kip (Huang et al., 1998).
This likely occurs by force-mediated nuclear deformation that
triggers the activation of transcription factors such as TEAD
and AP1, leading to the induction of genes that promote the
G1-S transition (Aureille et al., 2019). In agreement with these
observations, recent data obtained in MDCK monolayers showed
that both tension and mechanical energy are good predictors of
G1 duration (Uroz et al., 2018).

Other stages of the cell cycle are also mechanically regulated.
In fact, the organization pattern of actomyosin forces sets the
duration of the S and G2 phases, by modulating centriole
duplication and Plk4 recruitment (Vitiello et al., 2019). In

addition, there is evidence from MDCK monolayers and isolated
cells, for a decrease in cell traction forces during G2 and early
mitosis (Uroz et al., 2018; Vianay et al., 2018; Nunes et al.,
2020), which occurs in tandem with the disassembly of FAs
(Dao et al., 2009) and an increased expression of DEPDC1B
(Marchesi et al., 2014). How these events are coordinated is
still unclear. It is possible that, during the G2-M transition,
a FA-generated mechanical signal is relayed from the cell
membrane to the nucleus, triggering DEPDC1B expression,
which would then act as a RhoA inhibitor to regulate adhesion
dynamics (Marchesi et al., 2014). This, together with increased
CDK1 activity (Jones et al., 2018), would set the timing for
FA disassembly and mitotic entry (Gavet and Pines, 2010a,b;
Marchesi et al., 2014).

CONCLUSION

Efficient assembly of a mitotic spindle requires accurate
coordination between cytoplasmic and nuclear events. This is
achieved, at least partly, by the activity and localization of
the Cyclin B1-CDK1 complex (Gavet and Pines, 2010a,b). In
the cytoplasm, CDK1 enables centrosome separation (Smith
et al., 2011) and induces global changes in microtubule
dynamics by directly phosphorylating microtubule-associated
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proteins (MAPs) and modifying their microtubule binding
capacity (Lamb et al., 1990; Verde et al., 1990; Verde et al., 1992).
On the other hand, inside the nucleus, CDK1 contributes to
NPC disassembly (Linder et al., 2017) and NL depolymerization
(Heald and McKeon, 1990; Peter et al., 1990). These biochemical
events trigger a global cellular reorganization that allows the
assembly of an actomyosin cortex and a microtubule-based
mitotic spindle.

In addition to the biochemical pathways controlling mitotic
entry, it has long been proposed that mechanical forces also
regulate the cell cycle (Huang et al., 1998; Lancaster et al.,
2013; Uroz et al., 2018; Vianay et al., 2018; Aureille et al.,
2019). High cellular tension triggers a transition from G1 to
S phase (Huang et al., 1998; Uroz et al., 2018; Aureille et al.,
2019) and also regulates the length of the S-G2 phases of the
cell cycle (Vitiello et al., 2019). In part, this could be due to
tension-generated NE deformation that is sufficient to trigger
mechanically-activated transcriptional programs (Aureille et al.,
2019) and affect cell proliferation (Versaevel et al., 2012). As
cells progress toward mitosis, tension decreases (Uroz et al.,
2018; Vianay et al., 2018; Nunes et al., 2020), likely reflecting
adhesion complex disassembly (Dao et al., 2009), mediated
by increased levels of Cyclin B1 (Gavet and Pines, 2010b;
Jones et al., 2018). Overall, these observations highlight the
interactions between physical forces and the cell cycle machinery
and raise the interesting possibility that mechanical forces
could directly influence the biochemical signals that control
mitotic entry, contributing to the fidelity of chromosome
segregation. As new tools emerge that allow us to probe the
physical properties of cells, we will gain further insight on
how the spatiotemporal dynamics of nuclear mechanics and

nucleus-cytoskeleton coupling contribute to spindle assembly
efficiency and chromosome segregation fidelity.
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