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Abstract

Approximately 30% of patients who have Clostridioides difficile infection (CDI) will suffer at

least one incident of reinfection. While the underlying causes of CDI recurrence are poorly

understood, interactions between C. difficile and commensal gut bacteria are thought to

play an important role. In this study, an in silico pipeline was used to process 16S rRNA

gene amplicon sequence data of 225 stool samples from 93 CDI patients into sample-spe-

cific models of bacterial community metabolism. Clustered metabolite production rates gen-

erated from post-diagnosis samples generated a high Enterobacteriaceae abundance

cluster containing disproportionately large numbers of recurrent samples and patients. This

cluster was predicted to have significantly reduced capabilities for secondary bile acid syn-

thesis but elevated capabilities for aromatic amino acid catabolism. When applied to 16S

sequence data of 40 samples from fecal microbiota transplantation (FMT) patients suffering

from recurrent CDI and their stool donors, the community modeling method generated a

high Enterobacteriaceae abundance cluster with a disproportionate large number of pre-

FMT samples. This cluster also was predicted to exhibit reduced secondary bile acid synthe-

sis and elevated aromatic amino acid catabolism. Collectively, these in silico predictions

suggest that Enterobacteriaceae may create a gut environment favorable for C. difficile

spore germination and/or toxin synthesis.

Author summary

Clostridioides difficile is an opportunistic human pathogen responsible for acute and

sometimes chronic infections of the colon. Elderly individuals who are immunocompro-

mised, frequently hospitalized and antibiotic recipients are particular susceptible to C. dif-
ficile infection (CDI). Approximately 30% of CDI patients will suffer at least one episode

of reinfection, commonly termed recurrence. The objective of the current study was to

utilize computational metabolic modeling to investigate the hypothesis that recurrent

infections are related to the composition of the gut bacterial community within each
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patient. Our modeling results suggest that patients who have high abundances of the bac-

terial family Enterobacteriaceae following antibiotic treatment are more likely to develop

recurrent infections due to a metabolically-disrupted gut environment. Successful treat-

ment of recurrent patients with transplanted fecal matter is computationally predicted to

correct this metabolic disruption, suggesting that interactions between C. difficile and

Enterobacteriaceae are worthy of additional study.

Introduction

The anaerobic bacterium Clostridioides difficile is an opportunistic pathogen responsible for

infections of the human colon [1]. C. difficile infection (CDI) is most common in elderly

patients previously treated with broad spectrum antibiotics that disrupt the healthy gut micro-

biota and produce a dysbiotic environment conducive to C. difficile germination, expansion

and pathogenicity [2,3]. CDI has become particularly common in hospital settings due to the

ability of C. difficile to form spores that adhere to surfaces and resist common disinfectant pro-

tocols. Some C. difficile strains have developed resistance to common antibiotics while also

exhibiting more severe pathogenicity [4]. Studies estimate that 500,000 CDI cases occur in the

U.S. annually [5], resulting in 29,000 deaths and over $4.8 billion in associated costs in acute

care facilities alone [6].

Approximately 10% of healthy adults are asymptomatically colonized with C. difficile [7–9].

Commensal bacterial species in the healthy gut can provide resistance against C. difficile patho-

genic colonization through a variety of metabolic mechanisms, including competition for die-

tary nutrients such as carbohydrates and amino acids [10] and conversion of host-derived

primary bile acids that promote C. difficile spore germination to secondary bile acids that

inhibit germination and growth [11]. Recurrence is a major challenge associated with CDI

treatment, as approximately 30% of patients develop at least one occurrence of reinfection

[12]. The host-microbiota mechanisms underlying recurrence are not well understood, as

microbiota composition alone is a poor predictor of patient recovery versus recurrence [13–

15]. For patients who suffer from repeated episodes of recurrence, fecal microbiota transplan-

tation (FMT) is the last resort treatment. Despite its remarkable success rate approaching 90%

[16], FMT remains controversial [17] as the donor microbiota confer poorly understood func-

tions to the endogenous community [18] and may contain pathogenic strains not recognized

during screening of donor stool [19].

The advent of high-throughput technologies such as 16S rRNA-encoding gene sequencing

has yielded unprecedent insights into the composition of in vivo bacterial communities [20–

22]. Despite numerous 16S-based studies that have attempted to correlate CDI disease state to

gut bacterial composition [13,23–26], we still do not understand why some exposed individu-

als develop CDI while other individuals are asymptomatic [9,27,28] and why some infections

become recurrent while other infections are effectively treated with antibiotics [29–32]. Fur-

thermore, microbial communities being transplanted with FMT are poorly understood both

with regard to their composition and the health-promoting metabolic functions being intro-

duced [33–35]. Uncertainty at this level can decrease therapeutic efficacy and increase the risk

of adverse events [19,36].

Translating composition data derived from 16S gene sequencing into an understanding of

community function is a challenging problem. Gut bacteria often possess overlapping meta-

bolic functions, such as their ability to synthesize secondary bile acids [37–39] and short-chain

fatty acids like butyrate and propionate [40,41]. Furthermore, numerous studies [42–47] have
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demonstrated that microbiota composition is an individual characteristic and usually an inad-

equate measure for assessing healthy versus disease states. These critical gaps in knowledge

exist because bacterial composition data alone is insufficient to characterize the metabolic state

of the diseased gut and nutritional environments that are protective against CDI. The next step

in microbiome research needs to be the translation of composition data into quantitative

information about bacterial community dynamics and function [48–50].

In this study, a recently developed in silico modeling pipeline [51] was applied to the prob-

lem of identifying putative microbiota-based determinants of recurrent CDI. The pipeline was

used to translate 16S-derived taxa abundances from stool samples of CDI and FMT patients

into sample-specific models to quantify the metabolic capabilities of the modeled communi-

ties, which have been shown to correlate with clinical states in other microbiota-based disease

processes [52,53]. The metabolic modeling approach can be viewed as complementary to more

established analysis techniques such as Phylogenetic Investigation of Communities by Recon-

struction of Unobserved States (PICRUSt; [54]) where 16S sequence data are mapped to a set

of reference genomes/metagenomes of a large number of sequenced organisms to estimate the

genomic content of the individual samples. While PICRUSt provides functional gene counts

for each sample, the method does not allow for the prediction of community interactions such

as nutrient competition and metabolite crossfeeding necessary for quantitative analysis of

community metabolism. This study demonstrates the power of genome-scale metabolic

modeling for distinguishing CDI disease states according to the metabolite synthesis capabili-

ties of the individual communities.

Materials and methods

Patient data

Gut microbiota composition data were obtained from two published studies [13,55] in which

patient stool samples were subjected to 16S rRNA gene amplicon library sequencing. The first

study [13] included 225 longitudinal samples from 93 CDI patients ranging in age from 18 to

89 years. Each patient was characterized as either: nonrecurrent if a non-reinfected sample was

collected>14 days after a previous C. difficile positive sample; recurrent if a positive sample

was collected 15–56 days after a previous positive sample; and reinfected if a positive sample

was collected >56 days after a previous positive sample (Table 1). Because patients in both

groups were ultimately reinfected, the recurrent and reinfected patients were lumped together

in this study and termed recurrent. The sample was defined as an index sample if it returned

the first C. difficile positive for that patient, a pre-index sample if it was collected before the

index sample, and post-index sample if it was collected after the index sample. Some patients

(10/51 recurrent and 15/42 nonrecurrent) had received antibiotics before collection of the

index sample, while all patients received a standard 14 day antibiotic treatment following a

positive sample. Therefore, post-index samples collected within 14 days of a positive test

Table 1. Summary of CDI patient data [13] and FMT patient data [55].

CDI patient data FMT patient data

Nonrecurrent Recurrent Total Total

Patients 42 51 93 Patients 14

Pre-index samples 1 5 6 Pre-FMT samples 14

Index sample 42 51 93 Donor samples 10

Post-index samples 37 89 126 Post-FMT samples 26

Total samples 80 145 225 Total samples 40

https://doi.org/10.1371/journal.pcbi.1008782.t001
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overlapped with antibiotic treatment (S1 Table). The second study [55] used for community

modeling included 40 samples from 14 FMT patients and 10 of their stool donors (Table 1).

The 16S rRNA OTU reads available in the two original studies were generally at the genus

and family taxonomic levels. These reads were mapped into taxa abundances for development

of sample-specific community metabolic models. Using the 100 most abundant OTUs across

the samples in each study, taxa abundances were derived as follows: (1) all OTUs belonging to

the same taxonomic group were combined; (2) OTUs belonging to higher taxonomic groups

(i.e. order and above) were eliminated to maintain modeling at the genus and family levels;

and (3) the reduced set of OTUs was normalized such that the abundances of each sample

summed to unity. To quantify the elimination of higher-level taxa, the total reads from step 3

were divided by the total reads of the 100 most abundant OTUs to generate an unnormalized

total abundance for each sample. For the CDI dataset, this procedure resulted in 48 taxa (40

genera, 8 families) that accounted for an average of 97.7% of the top 100 OTU reads across the

225 samples (S1 Table). Due to the non-negligible abundance of the class Gammaproteobac-

teria in the FMT dataset (average abundance of 3.4%), this class was retained to generate 39

taxa (30 genera, 8 families, 1 class) that accounted for an average of 99.3% of the top 100 OTU

reads across the 40 samples (S2 Table).

Community metabolic modeling

The computational modeling workflow involved translating the normalized taxa abundance

data into sample-specific community metabolic models for analysis of metabolite production

capabilities (S1 Fig). Taxa represented in the normalized CDI and FMT samples were modeled

using genome-scale metabolic reconstructions from the Virtual Metabolic Human (VMH)

database [56]. The function createPanModels within the metagenomics pipeline (mgPipe,

[51]) of the MATLAB Constraint-Based Reconstruction and Analysis (COBRA) Toolbox [57]

was used to create higher taxa models from the 818 strain models available in the VMH data-

base. The sample taxa were mapped to these pan-genome models according to their taxonomy

(e.g. Clostridium cluster XI containing C. difficile was mapped to the family Peptostreptococca-
ceae). The function initMgPipe was used to construct a community metabolic model for each

of the 225 CDI and 40 FMT samples. Model construction required specification of taxa abun-

dances for each sample and maximum uptake rates of dietary nutrients, which was specified

according to an average European diet (S3 Table, [53]).

The community models contained an average of 33,773 reactions (minimum 8,302; maxi-

mum 59,923) for the CDI samples and 36,278 reactions (minimum 26,466; maximum 46,179)

for the FMT samples. All models contained the same constraints for the maximum nutrient

uptake rates, while each model had different constraints imposed for the sample taxa abun-

dances. mgPipe performed flux variability analysis (FVA) for each model with respect to each

of the 411 metabolites assumed to be exchanged between the microbiota and the lumen and

fecal compartments. FVA calculations were performed to either maximize the production of

the metabolite or to minimize the uptake of the metabolite subject to the additional constraint

that the community biomass flux remained in the range 0.4–1.0 mmol/day [53]. The FVA

results were used within mgPipe to compute the net maximal production capability (NMPC,

[51]) of each metabolite by each model (S4 Table for CDI; S5 Table for FMT) as a measure of

community metabolic capability. Each NMPC value was calculated as the difference between

two FVA solutions, the first which maximized metabolite secretion into the fecal compartment

and the second which minimized metabolite uptake from the lumen compartment.

While a common problem in genome-scale metabolic modeling is the existence of ATP-

producing futile cycles, this issue has received relatively little attention in the context of
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community metabolic models. To evaluate possible ATP-producing futile cycles and their

impact on calculated NMPCs within mgPipe, a community model consisting of 200 randomly

chosen VMH strains was constructed and constrained to have no nutrient uptakes (i.e. a closed

model). When the ATP demand flux of each community strain was individually maximized,

most strains generated a very small ATP flux (maximum = 0.01 mmol/gDW/h, minimum = 0

mmol/gDW/h, average = 0.0046 mmol/gDW/h). When these ATP-producing futile cycles

were eliminated by changing the input parameter u in the mgPipe function createPersonali-

zedModel from u = 0.01 to u = 0, none of the 200 community strains were capable of generat-

ing a non-zero ATP demand flux. Critically, the value of the input parameter u was found to

have no effect on the metabolite exchange calculations as all NMPCs were zero for both u val-

ues. Therefore, we concluded that the calculated NMPCs presented here could not be affected

by the existence of possible ATP-producing futile cycles.

Data analysis

Patient data consisted of normalized taxa abundances and model data consisted of calculated

net maximal production capabilities (NMPCs), both of which could be connected to associated

metadata on a sample-by-sample basis (S1 and S2 Tables). Both types of data were subjected to

unsupervised machine learning techniques including clustering and principal component

analysis (PCA) to extract putative relationships between partitioned samples/patients and clin-

ical parameters such as recurrence. Rather than apply supervised learning to samples parti-

tioned on their known clinical status (i.e. recurrent, nonrecurrent), unsupervised learning was

performed to determine if samples clustered by taxa abundances or model-generated NMPCs

could predict recurrence. This approach was applied under the hypothesis that clustering

could partially unravel the complex CDI disease etiology and reveal at least one cluster with

statistically high levels of recurrence or nonrecurrence. Clustering was performed using the

MATLAB function kmeans with the squared Euclidean distance metric [58], the k-means++

algorithm for cluster center initialization [59] and 1,000 replicates. When clustering was

applied to normalized taxa abundances of the CDI index samples, the Davies-Bouldin criterion

[60] indicated that three clusters was the optimal number. To facilitate subsequent compari-

sons, three clusters also were used for other CDI datasets including the abundance post-index

samples, the model-predicted index samples and the model-predicted post-index samples.

When applied to taxa abundances of the FMT samples, the Davies-Bouldin criterion consis-

tently indicated that the optimal cluster number was equal to the maximum number of clusters

allowed. Instead, two clusters were used for the 40 FMT samples such that each cluster would

contain a sufficiently large sample number to perform statistical analyses. For each case tested,

the clustering method proved robust in that the same clustered samples were consistently

returned despite the randomness of cluster initialization and the existence of local minima

[61].

PCA was performed directly on normalized taxa abundance and calculated NMPC data

rather than on data preprocessed with sample dissimilarity measures such as the Bray–Curtis

[62] or UniFrac [63] metrics. This approach was deemed sufficient since PCA was used for

preliminary data visualization and not quantitative data analysis. Statistical significance of

associations between categorial variables (e.g. recurrent/nonrecurrent) across samples/patient

groups were assessed using Fisher’s exact test [64]. Correlations between taxa based on their

abundances across samples/patients were calculated using the proportionality coefficient [65],

which accounts for the effects of data normalization. Statistically significant differences

between metabolite NMPCs across samples/patients were assessed using the Wilcoxon rank-

sum test [66]. The resulting p-values were used to calculate the false-positive discovery rate
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(FDR) for each metabolite using the MATLAB function mafdr with the Benjamini-Hochberg

method [67].

Results

Clustered index samples were not associated with recurrence

The CDI dataset [13] included 93 index samples (Table 1), which were defined as samples that

returned the first C. difficile positive for each patient. The 90 index samples remaining after

removal of three samples (2 nonrecurrent, 1 recurrent) containing less than 90% of modeled

taxa were clustered using their model-predicted metabolic capabilities (i.e. NMPCs). Cluster-

ing was performed within MATLAB using the kmeans method with three clusters (see Materi-

als and Methods) and generated a silhouette value of 0.42. The index samples were clustered

into 25 samples with elevated Enterobactericeae and Escherichia, 30 samples with elevated

Enterococcus and Akkermansia, and 35 samples dominated by Bacteroides (Fig 1A). None of

Fig 1. Clustering of 90 index samples using model-predicted metabolic capabilities. (A) Average taxa abundances across the samples in each cluster

for taxa which averaged at least 5% of the total abundance. (B) Number of recurrent, nonrecurrent and total samples in each cluster and all 90 index

samples. None of the clusters contained a disproportionate number of recurrent samples (Fisher’s exact test, p> 0.25). (C) PCA plot of the abundance

data with each recurrent and nonrecurrent sample labeled by its associated cluster number. (D) Intersection between samples clustered based on model-

predicted metabolic capabilities and 16S-derived abundance data. The number in each box represents the number of shared samples between clusters.

https://doi.org/10.1371/journal.pcbi.1008782.g001
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the clusters exhibited a higher proportion of recurrent samples (p> 0.25; Fig 1B), and PCA

showed no distinct structure with respect to recurrent/nonrecurrent samples (Fig 1C).

Similar analyses were applied to the normalized taxa abundances of the 90 index samples to

determine if community composition would be more strongly associated with recurrence than

predicted metabolic capabilities. The index samples were partitioned with three clusters (sil-

houette value = 0.49) into 20 samples with elevated Enterobactericeae and Enterococcus, 33

samples dominated by Bacteroides, and 37 samples with elevated Escherichia and Akkermansia
(S2A Fig). While the Enterobactericeae/Enterococcus cluster exhibited a higher proportion of

recurrent samples than the other two clusters and the entire index dataset (S2B Fig), none of

these differences were significant (Fisher’s exact test, p> 0.5). When the index samples were

analyzed with PCA, the abundance data exhibited structure with respect to the three clusters

but not with respect to recurrent/nonrecurrent samples (S2C Fig). The taxa abundances and

predicted metabolic capabilities generated different clusters, demonstrating that the commu-

nity model inputs and outputs provided distinct information (Fig 1D). Therefore, the index

samples, which were collected prior to standard CDI antibiotic treatment, were deemed to

have no statistical association with recurrence.

Post-index samples clustered by metabolic capability were associated with

recurrence

The 119 post-index samples remaining after removal of seven samples (1 nonrecurrent, 6

recurrent) containing less than 90% of modeled taxa were clustered by their taxa abundances.

The three clusters (silhouette value = 0.45) contained 15 samples dominated by Enterobacteri-
ceae with low abundances of Bacteroides, Enterococcus and Escherichia, 18 samples dominated

by Enterococcus with low abundances of Bacteroides, Escherichia and Enterobactericeae, and 86

samples more diversely distributed (inverse Simpson index of 12.4 versus 2.2 and 1.9, respec-

tively, for the other two clusters) and not dominated by a single taxa (S3A Fig). The high Enter-
obactericeae abundance cluster contained a disproportionate large number of recurrent

samples (14/15) compared to the high Enterococcus cluster (9/18; Fisher’s exact test, p = 0.009;

S3B Fig). In terms of classification capability, the high Enterobactericeae abundance cluster

offered high precision with positive predictive value (PPV) = 0.93 but poor sensitivity with

true positive rate (TPR) = 0.17. In other words, a sample contained in this cluster was very

likely to be recurrent (14/15) but many recurrent samples (69/83) were not contained in this

cluster. The recurrent samples in the high Enterobactericeae abundance cluster were clearly

distinguishable in a PCA plot of the post-index abundance data (S3C Fig).

NMPCs calculated for the 119 post-index samples were clustered to explore the hypothesis

that metabolic outputs of the community models would be more strongly associated with

recurrence than was possible with community compositions alone. These model-predicted

metabolic capabilities were partitioned with three clusters (silhouette value = 0.34) into 28

samples with elevated Enterobactericeae and Escherichia, 28 samples with elevated Enterococcus
and Lactobacillus, and 63 samples with elevated Bacteroides and more diversely distributed

(inverse Simpson index of 11.6 versus 4.3 and 3.2, respectively, for the other two clusters; Fig

2A). The high Enterobactericeae cluster contained a disproportionate number of recurrent

samples (25/28) compared to the high Enterococcus abundance cluster (14/28; p = 0.003) and

the entire post-index dataset (83/119; p = 0.035; Fig 2B). Compared to the classification capa-

bility of the high Enterobactericeae cluster derived directly from abundance data, the model-

derived cluster had slightly lower precision PPV = 0.89 but higher sensitivity TPR = 0.30.

The number of recurrent samples contained in the model-derived, high Enterobactericeae
abundance cluster relative to the total number of recurrent post-index samples (25/83)
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compared to those in the abundance-based, high Enterobactericeae cluster (14/83) was not

quite statistically disproportionate (p = 0.066). However, metabolic modeling did generate a

larger cluster compared to direct use of abundance data (25 samples from 19 recurrent patients

versus 14 samples from 10 recurrent patients), allowing more recurrent samples/patients for

subsequent statistical analyses. The high recurrence Enterobactericeae cluster was distinguish-

able in the upper left quadrant of a PCA plot of the model-predicted metabolic capabilities due

to the unique properties of these clustered samples (Fig 2C), an issue explored below in detail.

Despite having 118 identified PCA components (less than the 411 possible components due to

matrix conditioning) compared to the abundance data with 48 possible components, the

model output data was more efficiently compressed with a small number of principal compo-

nents (e.g. 58.2% versus 48.0% variance captured for two components; Fig 2D). This result

Fig 2. Clustering of 119 post-index samples using model-predicted metabolic capabilities. (A) Average taxa abundances across the

samples in each cluster for taxa which averaged at least 5% of the total abundance. (B) Number of recurrent, nonrecurrent and total samples

in each cluster and all 119 post-index samples. Cluster 2 contained a disproportionate number of recurrent samples (25/28) compared to the

cluster 1 (14/28; p = 0.003) and the entire post-index dataset (83/119; p = 0.035). (C) PCA plot of model-predicted metabolic capabilities

with each recurrent and nonrecurrent sample labeled by its associated cluster number. (D) Variance explained by PCA of 16S-derived

abundance data and model-predicted metabolic capabilities. The total number of components for each dataset shown in the legend was

determined by the MATLAB function pca.

https://doi.org/10.1371/journal.pcbi.1008782.g002
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suggested that the model-calculated NMPCs represented a more efficient set of data features

than the 16S-derived abundances. Comparison of the three clusters generated with taxa abun-

dances and with those generated with NMPCs generated a Rand value of 0.72, showing that

two sets of CDI sample clusters were similar but also had numerous samples clustered differ-

ently. Collectively, these analyses demonstrated the potential benefits of model-predicted met-

abolic capabilities to quantify functions of bacterial communities rather than relying on

community compositions alone.

The number of clusters was varied to further explore partitioning of the 119 model-pre-

dicted post-index samples. Interestingly, two clusters also produced a relatively small group

with elevated Enterobactericeae and Escherichia (34 samples) as well as generating a second,

larger group with elevated Enterococcus, Bacteroides and Lactobacillus (85 samples; S4A Fig).

As the number of clusters was increased, the Enterobactericeae/Escherichia group split into two

separate clusters and the Enterococcus/Bacteroides/Lactobacillus group split into three separate

clusters (S4B–S4E Fig). The high Enterobactericeae abundance clusters retained their property

of disproportionately high recurrence compared to the Enterococcus-elevated clusters for all

cases (p< 0.04; S4F Fig), suggesting a possible role for Enterobactericeae in CDI recurrence

during antibiotic treatment.

Clustered post-index samples were predicted to exhibit distinct bile acid

and aromatic amino acid metabolism

NMPCs calculated for the 119 post-index samples with respect to each of the 411 exchanged

metabolites were statistically analyzed to assess metabolic differences between model-derived

clusters. The Wilcoxon rank sum test was applied to the NMPCs across all samples in two cho-

sen clusters on a metabolite-by-metabolite basis. To reduce the number of reported metabo-

lites, statistically different metabolite NMPCs (FDR < 0.05) also were required to have an

average NMPC > 50 mmol/day in at least one cluster and an average NMPC that differed

between the clusters by at least 100%. The high Enterobactericeae abundance cluster (HEb, 28

samples) and the high Bacteroides abundance cluster (HBo, 63 samples) had 47 differentially

produced metabolites (S5 Fig, S6 Table), including 7 metabolites associated with AAA degra-

dation elevated in the HEb cluster. A comparison of the HEb cluster and the high Enterococcus
abundance cluster (HEc, 28 samples) generated 44 differentially produced metabolites (S6 Fig,

S6 Table), including 19 metabolites associated with aromatic amino acid (AAA), bile acid (BA)

and butanoate metabolism. Interestingly, 11 secondary BA metabolites were elevated in the

HEc cluster compared to the HBo cluster, accounting for 25% of the differentially produced

metabolites (S7 Fig, S6 Table).

Due to their differential utilization across the three clusters, the BA and AAA pathways

were examined more carefully by collecting metabolites belonging to these pathways that were

allowed to be exchanged according to the metabolic models. The HEb cluster was predicted to

have the highest production capabilities for the two unconjugated primary BAs (Fig 3A), which

have been reported to either promote (cholate) or inhibit (chenodeoxyholate, C02528) C. diffi-
cile germination [68,69]. By contrast, the HBo cluster generated the highest production of most

secondary BAs, which are known to be generally protective against CDI [2,70,71]. Interestingly,

the HEc cluster had much lower production capabilities for secondary BAs. The HEb cluster

was predicted to generate higher production of metabolites involved in AAA catabolism but not

significantly higher production of the AAAs themselves (Fig 3B, S6 Table). Although positively

correlated with the normalized Enterobacteriaceae abundance, the total synthesis rate of AAA

catabolites was predicted to be a complex metabolic function of the community composition as

samples with relatively low Enterobacteriaceae abundance could generate substantially higher
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AAA catabolite synthesis rates than samples with relatively high Enterobacteriaceae abundance.

This AAA degradation ability was decreased in the HBo cluster and substantially lower in the

HEc cluster, with the notable exceptions of the tyrosine degradation product tyramine (tyr) and

the tryptophan-derived metabolite tryptamine (trypta). Interestingly, the AAA precursor chor-

ismate (chor) was significantly elevated in the HBo cluster, yet the production capabilities of the

AAA themselves were reduced in this cluster. Since the HEb cluster contained a disproportion-

ately large number of recurrent samples compared to the other two clusters, these predictions

suggest a possible role for AAA metabolism in recurrent CDI.

Transient presence in the high Enterobactericeae abundance cluster was

sufficient for elevated patient recurrence

The HEb cluster contained a disproportionately large number of recurrent samples (25/28).

To investigate the transient bacterial communities of the 22 patients from which these samples

Fig 3. Net maximal production rates of bile acid and aromatic amino acid metabolites in the high Enterobacteriaceae, high Bacteroides and high

Enterococcus abundance clusters generated from 119 model-predicted post-index samples. (A) Bile acid metabolites in which the average production

rate was non-zero in at least one cluster. (B) Aromatic amino acid metabolites in which the average production rate was non-zero in at least one cluster.

Error bars represent standard error of the mean. Metabolites abbreviations are taken from the VMH database (www.vmh.life). Full metabolite names,

their associated metabolic pathways and numeric values for their average production rates in each cluster are given in S6 Table.

https://doi.org/10.1371/journal.pcbi.1008782.g003
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were collected, all post-index samples from these patients were grouped to generate an

enlarged dataset of 55 samples. Similarly, all post-index samples from the 46 patients in the

HBo cluster and the 21 patients in the HEc cluster were grouped to generates datasets contain-

ing 87 and 47 samples, respectively. The 66 total patients represented by these samples were

allowed to reside in multiple datasets referred to as the HEb, HBo and HEc groups. The HEb

group contained a disproportionately large number of recurrent patients (19/22) compared to

the HEc group (12/21; p = 0.045) and all grouped patients (41/66; p = 0.038; Fig 4A). Within

the HEb group, Enterobacteriaceae was most negatively correlated with Escherichia and Bacter-
oides (proportionality coefficient ρ = -0.18 for both pairs; Fig 4B). In addition to health-pro-

moting Bacteroides [72], Enterobacteriaceae was negatively correlated with other taxa

Fig 4. Analysis of patient samples in the high Enterobacteriaceae abundance (HEb) group. All post-index samples from the 22 patients with

at least one sample in the high Enterobacteriaceae (HEb) abundance cluster were grouped to generate the enlarged HEb group of 55 samples. (A)

The number of recurrent, nonrecurrent and total patients in the HEb group compared to those in the HBo and HEc groups. All post-index

samples of the 46 patients represented in the HBo cluster and the 21 patients represented in the HEc cluster were grouped to produce the 87 and

47 samples, respectively, in the HBo and HEc groups. The 66 total patients represented by these samples were allowed to reside in multiple

groups. (B) Correlation between Enterobacteriaceae and other taxa in the HEb group calculated from the 55 post-index samples as measured by

the proportionality coefficient ρ. The 7 taxa with the largest |ρ| values are shown. (C) Transient progression of samples from the 22 patients in

the HEB group with samples denoted as 1 if contained in the HEb cluster, 2 if contained in the HBo cluster, 3 if contained in the HEc cluster and

4 if not clustered due to low abundance of modeled taxa (see Methods). (D) Average taxa abundances for an expanded HEb group that also

contained pre-index and index samples to generate a dataset of 78 samples. These samples were partitioned into 35 samples prior to patients

entering the HEb cluster, 28 samples during patient presence in the HEb cluster and 15 samples after patients left the HEb cluster.

https://doi.org/10.1371/journal.pcbi.1008782.g004
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including Lachnospiraceae [73], Lactobacillus [74] Akkermansia [75] and Alistipes [74]

reported to be protective against CDI.

Taxa abundances from the HEb group showed considerable dissimilarity between samples

from an individual patient (Yue and Clayton dissimilarity index θ = 0.35 across the 22 patients;

S8 Fig), with the only consistent feature among the 22 patients being at least one sample con-

tained in the HEb cluster (Fig 4C). The first 3 patients (113, 114, 255) were nonrecurrent

despite having a sample in the HEb cluster. Of the remaining 19 recurrent patients, 10 patients

also had a sample in the HBo cluster and 4 patients also had a sample in the HEc cluster. More-

over, 7 of the 19 recurrent patients had final samples contained in either the HBo or HEc clus-

ter. Given the irregular sampling frequency reported in the original clinical study [13], this

analysis suggested that transient presence in the HEb cluster was sufficient for a patient to

have an elevated risk of recurrence.

To investigate if the bacterial community within an individual patient showed distinct

trends once the HEb cluster was entered, the HEb group was expanded to contain index sam-

ples and partitioned into 35 samples prior to patients entering the HEb cluster, 28 samples dur-

ing patient presence in the HEb cluster and 15 samples after patients left the HEb cluster. For

each patient, the Yue and Clayton dissimilarity index θ was calculated using taxa abundances

in the last sample before entering the HEb cluster, the first sample in the cluster and the first

sample after leaving the cluster (if such a sample existed). Samples showed more dissimilarity

when leaving the cluster (θ = 0.11; Fig 4C) than when entering the cluster (θ = 0.27) compared

to samples in the cluster. Interestingly, samples entering and leaving the clusters were the most

similar (θ = 0.35), suggesting partial community restoration following transient presence in

the cluster. Within the HEb group, the only significant taxa abundance changes upon entering

the HEb cluster were a large drop in Bacteroides (Wilcoxon rank sum test, FDR< 0.003) and

the expected large increase in Enterobacteriaceae (FDR = 0.01). The abundances of these taxa

subsequently returned to near pre-HEb values upon leaving the cluster. Collectively, these

analyses suggested a possible role for Bacteroides in opposing recurrent infection.

Transient presence in the HEb cluster was not associated with a concurrent or future

increase in the abundance of Peptostreptococcaceae (Fig 4D), the family containing C. difficile.
In fact, Enterobacteriaceae and Peptostreptococcaceae abundances were only weakly correlated

within the entire HEb group (ρ = -0.01). Therefore, transient presence in the HEb cluster was

hypothesized to temporarily create a metabolic environment that promoted CDI recurrence

through an increase in C. difficile toxicity rather than C. difficile growth. To explore this

hypothesis, the metabolite production capabilities of the HEb, HBo and HEc groups were

compared. The metabolic signature of the partitioned HEb group (S9 Fig) was similar to that

predicted when the HEb and HEc clusters were compared (S6 Fig, S6 Table) and included ele-

vated synthesis of metabolites known to both induce (e.g. butyrate) and suppress (e.g. cysteine)

the toxicity of C. difficile [76,77].

FMT patient samples clustered by metabolic capability were associated

with sample type

Taxa abundance data derived from 40 stool samples representing 14 recurrent CDI patients

undergoing FMT and from 10 of their donors [55] were modeled to investigate the community

metabolic changes taking place upon FMT treatment. Model-predicted metabolic capabilities

were partitioned with two clusters (silhouette value = 0.60) to generate one small cluster with

elevated Cronobacter, Enterobacteriaceae and Gammaproteobacteria (averaged 67.9% across

the 11 samples) and a second larger cluster with elevated Bacteroides and Lachnospiraceae
(averaged 43.6% across the 29 samples; Fig 5A). Since Cronobacter belongs to the family
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Enterobacteriaceae and these two taxa averaged 56.4% across the 11 samples, the small cluster

was considered to be dominated by Enterobacteriaceae. Consistent with these results, Crono-
bacter was most positively correlated with Enterobacteriaceae (proportionality coefficient ρ =

+0.12) but negatively correlated with Bacteroides (ρ = -0.29) and several other taxa (e.g. Lach-
nospiraceae; Fig 5B) often reported to be CDI protective [73,74]. Similarly, Bacteroides was

negatively correlated with Enterobacteriaceae (ρ = -0.21), Gammaproteobacteria and Clostri-
diaceae (S10B Fig), taxa which have been reported to be elevated in CDI [73,74,78].

When PCA was performed on the model-predicted metabolic capabilities, the Enterobacter-
iaceae-dominated cluster was clearly distinguishable and appeared to have an overrepresenta-

tion of pre-FMT patient samples (Fig 5C). In fact, this cluster contained a disproportionately

large number of pre-FMT samples (10/11) compared to both the Bacteroides-elevated cluster

(4/29; p< 0.0001) and the entire sample set (14/40; p = 0.0014; Fig 5D). Additionally, the

Fig 5. Clustering of 40 FMT samples using model-predicted metabolic capabilities. (A) Average taxa abundances across the samples in each

cluster for taxa which averaged at least 5% in at least one cluster. (B) Correlations between Cronobacter and other taxa calculated from all 40

samples as measured by the proportionality coefficient ρ. The eight taxa with the largest |ρ| values are shown. (C) PCA plot of the model-

predicted metabolic capabilities with each pre-FMT, donor and post-FMT sample labeled by its associated cluster number. (D) Number of pre-

FMT, donor and post-FMT samples in each cluster and all 40 samples. Cluster 2 contained a disproportionately large number of pre-FMT

samples (10/11) compared to the cluster 1 (4/29; p< 0.0001) and the entire FMT dataset (14/40; p = 0.0014).

https://doi.org/10.1371/journal.pcbi.1008782.g005
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Enterobacteriaceae-dominated cluster had a disproportionately small number of donor sam-

ples (0/11) and post-FMT patient samples (1/11) compared to the Bacteroides-elevated cluster

(p = 0.038 and 0.027, respectively). The findings that the high Enterobacteriaceae (HEb) abun-

dance cluster studied earlier contained a disproportionately large number of recurrent CDI

samples (see Fig 2) and the high Enterobacteriaceae abundance cluster found here contained a

disproportionately large number of pre-FMT samples provided additional support for the

hypothesis that elevated Enterobacteriaceae is associated with recurrent CDI.

When similar analyses were applied directly to the abundance data, the dataset was parti-

tioned into two clusters (silhouette value = 0.48) with one cluster having elevated Cronobacter
and Enterobacteriaceae (averaged 35.9% across the 20 samples) and a second cluster having

elevated Bacteroides and Lachnospiraceae (averaged 55.5% across the 20 samples; S10A–S10C

Fig). Comparison of the two clusters generated with taxa abundances and with those generated

with NMPCs generated a Rand value of 0.64, showing that two sets of FMT sample clusters

were similar but also had samples clustered differently. The Enterobacteriaceae-elevated cluster

generated with abundance data contained all the pre-FMT samples (14/20), representing large

statistical differences with the Bacteroides-elevated cluster (0/20; p< 10−5) and the entire data-

set (14/40; p = 0.0014; S10D Fig). By contrast, the Bacteroides-elevated cluster contained a dis-

proportionally large number of donor samples (9/20) compared to the Enterobacteriaceae-
elevated cluster (1/20). These results were consistent with those obtained from the model-pre-

dicted metabolic capabilities and collectively identified the pre-FMT samples as composition-

ally and functionally distinct from the donor and post-FMT samples.

High Enterobactericeae abundance FMT cluster exhibited distinct bile acid

and aromatic amino acid metabolism

Predicted NMPCs of 411 exchanged metabolites were statistically analyzed to assess metabolic

differences between the 40 samples clustered based on model-predicted metabolic capabilities.

A comparison of the high Enterobactericeae abundance cluster (HEb-FMT, 11 samples) and

the high Bacteroides abundance cluster (HBo-FMT, 29 samples) generated 58 differentially

produced metabolites (S11 Fig). Only 22 of these 58 metabolites were identified as being differ-

entially produced between the HEb and HBo clusters defined from model processing of CDI

post-index samples (S5 Fig, S6 Table). Interestingly, 10 secondary BA metabolites and 4 AAA

catabolic products were among the 36 newly identified metabolites. Therefore, BA and AAA

metabolism in the HEb-FMT and HBo-FMT clusters were examined more carefully by com-

paring an array of secreted metabolites belonging to these pathways. The HEb-FMT cluster

had decreased production of 15 BA metabolites (Fig 6A), including significantly reduced syn-

thesis of 10 secondary BAs generally correlated with recurrent CDI [68,79,80]. By contrast, the

HEb-FMT cluster had enhanced AAA metabolism as evidenced by elevated production of all 3

AAAs and 15 AAA catabolic products, including significantly increased synthesis of 8 degra-

dation products (Fig 6B). Given that the HEb-FMT cluster was overrepresented in pre-FMT

samples and underrepresented in donor and post-FMT samples, these predictions provided

additional support for the hypothesis that community BA and AAA metabolism may be

involved in CDI recurrence and FMT treatment.

When the same analysis procedure was applied to NMPCs clustered according to 16S-

derived abundance data, 46 metabolites differentially produced between the Enterobactericeae-
elevated and Bacteroides-elevated clusters were identified (S12 Fig). Overproduction of AAA

catabolic products in the Enterobactericeae-elevated cluster continued to be pronounced, but

differences in secondary BAs between the two clusters were no longer evident. The inability of

the clustered abundance data to generate differential predictions of BA metabolism was
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attributed to the Enterobactericeae-elevated cluster containing 1 donor and 5 post-FMT sam-

ples in addition to all 14 pre-FMT samples. Therefore, clustering the samples according to

model-predicted metabolic capabilities appeared to offer advantages for understanding com-

munity metabolic changes resulting from FMT.

Discussion

An in silico pipeline was used to translate 16S-derived abundance data into sample-specific

community models for investigating the metabolic determinants of recurrent CDI. The models

Fig 6. Net maximal production rates of bile acid and aromatic amino acid metabolites in the high

Enterobacteriaceae and high Bacteroides abundance clusters generated from 40 model-predicted FMT samples.

(A) Bile acid metabolites in which the average production rate was non-zero in at least one cluster. (B) Aromatic

amino acid metabolites in which the average production rate was non-zero in at least one cluster. Error bars represent

standard error of the mean. Metabolite abbreviations are taken from the VMH database (www.vmh.life). Full

metabolite names, their associated metabolic pathways and numeric values for their average production rates in each

cluster are given in S7 Table.

https://doi.org/10.1371/journal.pcbi.1008782.g006
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generated sample-by-sample predictions of metabolite production rates that were used both to

cluster samples according to their functional metabolic capabilities and to provide mechanistic

insights into clusters exhibiting high recurrence. Community model predictions were depen-

dent both on the taxonomic groups represented in the 16S data and the fidelity of individual

taxa metabolic models. The CDI [13] and FMT [55] datasets used in this study captured taxo-

nomic differences primary at the genus and family levels and therefore precluded modeling

metabolism at the strain and species levels [53]. Despite this limitation, the pan-genome meta-

bolic models used for community modeling allowed substantial differentiation of samples

according to their functional capabilities.

Taxa abundance data and model-predicted metabolic capabilities were clustered to deter-

mine if the resulting clusters exhibited statistically significant differences between the number

of recurrent CDI samples. No significant differences were observed when only index samples

were tested, suggesting that community composition prior to CDI treatment may provide lim-

ited information about recurrence. By contrast, both abundance data and model-predicted

metabolic capabilities derived from post-index samples identified high Enterobacteriaceae, low

Bacteroides abundance clusters as having disproportionately large numbers of recurrent sam-

ples. Numerous studies have identified Enterobacteriaceae as positively associated and Bacter-
oides as negatively associated with primary CDI [72–74] and to a lesser extent with subsequent

reinfection [81,82]. As in these experimental studies, the community models were able to

establish a statistical relationship between high Enterobacteriaceae-containing samples and

patient recurrence but could not definitively conclude if high Enterobacteriaceae was the cause

or the result of recurrent CDI.

The analyses presented here suggest CDI recurrence is more dependent on community

response to antibiotic therapy than on the community composition entering therapy. Indeed,

first-line antibiotics for CDI treatment including metronidazole and vancomycin are known

to collaterally target Bacteroides [83,84] while having little efficacy against Enterobacteriaceae
[85–87]. Unfortunately, the metadata available for these samples only reported if the patient

received antibiotic therapy prior to CDI diagnosis. Since next generation antibiotics such as

fidaxomicin used for recurrent CDI are more specific for C. difficile and are known to spare

Bacteroides [88,89], knowledge of which antibiotics were used to treat recurrent and nonrecur-

rent patients represented would enable additional analysis.

As compared to direct use of abundance data, an advantage of utilizing predicted metabo-

lite production rates for sample clustering was that the high Enterobacteriaceae abundance

(HEb) cluster contained more samples (28 vs. 15) representing more patients (22 vs. 11). The

model-based cluster included samples with a high combination of Enterobacteriaceae and

Escherichia, which have similar metabolic capabilities since Escherichia is a genus within Enter-
obacteriaceae. The capability to collapse samples with different compositions but similar meta-

bolic features is useful when dealing with 16S-derived abundance data at several taxonomic

levels, a common situation in human microbiome research.

Another benefit of quantifying metabolic capabilities through modeling was the ability to

predict differentially synthesized metabolites across sample groups. When compared to a

more taxonomically diverse cluster with elevated Bacteroides (HBo cluster) and no statistical

difference in recurrence, the HEb cluster was predicted to have significantly reduced capabili-

ties for secondary bile acid (BA) synthesis. These predictions were generally consistent with

the established role of BA metabolism in recurrent CDI, as elevated primary BA and reduced

secondary BA levels are known to be a disease signature [68,79,80]. The specific effects of indi-

vidual BA metabolites are more nuanced, as the primary BA cholate induces induce germina-

tion of C. difficile spores, the primary BA chenodeoxycholate suppresses both germination and

vegetative growth and the secondary BA deoxycholate induces germination but suppresses

PLOS COMPUTATIONAL BIOLOGY Metabolic model of Clostridioides difficile Infection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008782 February 22, 2021 16 / 27

https://doi.org/10.1371/journal.pcbi.1008782


growth [73,90]. To achieve prediction at this level of granularity, the metabolic models would

need to be constructed with 16S-derived abundance data at lower taxonomic levels or from

whole genome metagenomic sequencing [91] since individual species and strains are known

to have distinct BA metabolism [53].

Despite having no statistical difference in recurrence, a third cluster elevated in Enterococ-
cus and to a lesser extent Lactobacillus (HEc cluster) had significantly reduced capabilities for

secondary BA synthesis compared to both the HEb and HBo clusters. These predictions

underscore the fact that recurrent CDI is a complex disease and not likely to be completely

explained by a single factor such as community BA metabolism [55,74]. Interestingly, model-

based analysis revealed aromatic amino acid (AAA) metabolism as a second putative mecha-

nism underlying elevated recurrence in the HEb cluster. More specifically, this cluster was pre-

dicted to have significantly increased synthesis of numerous AAA degradation products

compared to the two lower recurrence clusters. Enterobacteriaceae is thought to be largely

responsible for AAA catabolism in the gut [41,92], and AAA synthesis has been implicated as a

metabolic function protective against CDI [93]. C. difficile isolates have been shown to have

highly variable AAA metabolisms [94], opening the possibility that Enterobacteriaceae interac-

tions with C. difficile are isolate dependent. However, the 22 patients represented in the HEb

cluster were reported to have been infected with at least nine different C. difficile ribotypes

[13]. While evidence directly linking AAA metabolism and CDI is currently lacking, the

modeling work presented here suggests that this putative connection could be a fruitful area

for future experimental studies.

All samples from each patient with at least one sample in the HEb cluster were collected to

allow longitudinal analysis of individual patients. This HEb group had a disproportionately

large number of recurrent patients (19/22) compared to the larger patient population. HEb

group patients exhibited compositionally variable communities that routinely switched

between clusters, suggesting that transient presence in the HEb cluster could be sufficient for

CDI recurrence. Since Enterobacteriaceae and C. difficile abundances had a very weak negative

correlation within the HEb group, Enterobacteriaceae did not seem to support C. difficile vege-

tative growth but may have induced spore germination and/or enhanced toxicity of vegetative

cells. As discussed above, the BA metabolite profile predicted for the HEb cluster was consis-

tent with enhanced germination. C. difficile toxicity is thought to be regulated by a number of

metabolites [76,77,95]. Two of the most potent regulators are toxicity-inducing butyrate and

toxicity-suppressing cysteine, both of which were predicted to be elevated in the HEb cluster

so as to have opposing effects. An intriguing but speculative possibility is that AAA degrada-

tion products from Enterobacteriaceae induced C. difficile toxicity.

To test consistency of model predictions derived from the CDI dataset, the in silico model-

ing pipeline was applied to 40 16S samples obtained from 14 FMT patients and 10 of their

stool donors [55]. Clustering of model-predicted metabolic capabilities generated a cluster

with a disproportionately large number of pre-FMT samples, suggesting distinct metabolic

function compared to donor and post-FMT communities as has been reported [79,96,97].

This cluster had elevated Cronobacter and Enterobacteriaceae with very low Bacteroides abun-

dances. Because Cronobacter is a member of Enterobacteriaceae, this cluster was identified as

high Enterobacteriaceae abundance and was compositionally similar to the high recurrence

HEb cluster found in the CDI dataset. A second cluster comprised mainly of donor and post-

FMT samples was elevated in Bacteroides and Lachnospiraceae and compositionally similar to

the HBo cluster identified from CDI samples. Consistent with these results, Cronobacter was

found to be strongly positively correlated with Enterobacteriaceae and strongly negatively cor-

related with Bacteroides across the FMT dataset. These predictions agreed with findings that

FMT tends to decrease the abundances of Enterobacteriaceae and other Proteobacteria
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[55,82,98] while increasing the abundances of Bacteroides and other health-promoting taxa

such as Lachnospiraceae, Blautia and Alistipes [35,99,100].

The HEb cluster identified from FMT samples (HEb-FMT) was predicted to have reduced

capabilities for synthesis of both primary and secondary BAs, while the HEb cluster derived

from CDI samples (HEb-CDI) exhibited only reduced secondary BA synthesis. Unlike the

pan-genome model of the family Enterobacteriaceae, the Cronobacter genus model lacked BA

metabolic pathways because the necessary deconjugation and transformation genes have not

been identified in Cronobacter sakazakii, the only member of this genus contained in the

VMH database. The predicted difference in primary BA synthesis capabilities between Entero-
bacteriaceae in the CDI samples and Cronobacter/Enterobacteriaceae in the FMT samples

demonstrate possible limitations of metabolic modeling at higher taxonomic levels and the

potential value of more resolved sequence data. Despite these differences, the HEb-FMT clus-

ter still exhibited reduced secondary BA levels observed in recurrent CDI [68,79,80] and

resolved through FMT [79,80,101]. The HEb-FMT cluster also was predicted to have the capa-

bility for elevated AAA degradation including increased synthesis of the catabolic products

phenylpyruvic acid, tyramine and tryptamine derived from phenylalanine, tryrosine and tryp-

tophan, respectively. Because they also were elevated in the HEb-CDI cluster compared to

high Bacteroides abundance (HBo-CDI) cluster, these three metabolites might make interest-

ing experimental targets for their ability to induce germination and/or enhance toxicity of C.

difficile clinical isolates.

Despite the ability of the proposed in silico workflow to identify high Enterobacteriaceae-
containing communities as disproportionally recurrent and pre-FMT, model-based clustering

did not result in idealized partitioning of patient samples. For example, the HEb-CDI cluster

contained 3 nonrecurrent patients along with 19 recurrent patients, and the HEb-FMT cluster

contained 1 post-FMT sample along with 10 pre-FMT samples. Similarly, the HEb clusters

contained only subsets of all recurrent patients (22/66) and all pre-FMT samples (10/14). One

possible explanation was that the likelihood of recurrence was dependent on the duration the

transient community had an HEb cluster-like composition, as Enterobacteriaceae would

require sufficient time to establish favorable metabolic conditions for C. difficile germination

and/or pathogenicity. While intriguing, such speculation was impossible to test with the avail-

able dataset due to infrequent and irregular sampling. Perhaps the most plausible explanation

for the clustering results is that recurrent CDI has a very complex disease etiology that depends

on host-microbiota-environment interactions, both metabolic and non-metabolic. Therefore,

the inability to perfectly classify patient recurrence based only on model-predicted metabolic

capabilities was not surprising. However, the hypotheses that high Enterobacteriaceae-contain-

ing communities are more prone to recurrence and that recurrence may be partially attribut-

able to the combination of disrupted BA and AAA metabolism seems worthy of further

investigation through the type of integrated 16S sequencing and community modeling frame-

work utilized in this study.
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S1 Fig. Schematic representation of the community metabolic modeling work flow. (A)

Normalized taxa abundances were calculated from 16S rRNA data for CDI patient stool sam-

ples [13]. (B) Sample-specific community metabolic models were derived from the normalized

taxa abundances using the Metagenomics Modeling Pipeline (mgPipe; [51]) within the

MATLAB Constraint-Based Reconstruction and Analysis (COBRA) Toolbox. (C) mgPipe

computed the net maximal production rate (NMPC) of every exchanged metabolite for each

sample model. (D) The NMPC simulation data was subjected to machine learning and statisti-

cal tests to extract information on CDI recurrence.

(JPG)

S2 Fig. Clustering of 90 index samples using 16S-derived abundance data. (A) Average taxa

abundances across the samples in each cluster for taxa which averaged at least 5% of the total

abundance. (B) Number of recurrent, nonrecurrent and total samples in each cluster and all 90

index samples. None of the clusters contained a disproportionate number of recurrent samples

(Fisher’s exact test, p> 0.5). (C) PCA plot of the abundance data with each recurrent and non-

recurrent sample labeled by its associated cluster number.

(TIF)

S3 Fig. Clustering of 119 post-index samples using 16S-derived abundance data. (A) Aver-

age taxa abundances across the samples in each cluster for taxa which averaged at least 5% of

the total abundance. (B) Number of recurrent, nonrecurrent and total samples in each cluster

and all 119 post-index samples. Cluster 2 contained a disproportionately large number of

recurrent samples (14/15) compared to the cluster 1 (9/18; Fisher’s exact test, p = 0.009). (C)

PCA plot of the abundance data with each recurrent and nonrecurrent sample labeled by its

associated cluster number.

(TIF)

S4 Fig. Clustering of 119 post-index samples with 2 to 6 total clusters using model-pre-

dicted metabolic capabilities. Average taxa abundances across the samples in each cluster for

the 5 most abundant taxa across all samples: (A) 2 clusters; (B) 3 clusters; (C) 4 clusters; (D) 5

clusters; and (E) 6 clusters. (F) Fraction of recurrent samples in each cluster for 2 to 6 total

clusters. The following clusters had a disproportionately large number of recurrent samples

based on Fisher’s exact test: 2 total clusters, cluster 1 versus cluster 2 (p = 0.007); 3 total clus-

ters, cluster 2 versus cluster 1 (p = 0.003); 4 total clusters, cluster 2 versus cluster 1 (p = 0.007);
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5 total clusters, cluster 3 versus cluster 1 (p = 0.012); 6 total clusters, cluster 3 versus cluster 6

(p = 0.019), cluster 2 versus cluster 6 (p = 0.039).

(TIF)

S5 Fig. Differentially produced metabolites in the high Enterobacteriaceae and high Bacter-
oides abundance clusters generated from 119 model-predicted post-index samples. Signifi-

cant differences in metabolite production rates were determined by applying the Wilcoxon

rank sum test (FDR< 0.05) to each metabolite across all samples in the two clusters. In addi-

tion to being statistically different, each metabolites shown had an average production

rate> 50 mmol/day in at least one cluster and average production rates that differed between

the clusters by at least 100%. Metabolite abbreviations are taken from the VMH database

(www.vmh.life). Full metabolite names, their associated metabolic pathways and numeric val-

ues for their average production rates in each cluster are given in S6 Table.

(TIF)

S6 Fig. Differentially produced metabolites in the high Enterobacteriaceae and high

Enterococcus abundance clusters generated from 119 model-predicted post-index samples.

Significant differences in metabolite production rates were determined by applying the Wil-

coxon rank sum test (FDR< 0.05) to each metabolite across all samples in the two clusters. In

addition to being statistically different, each metabolites shown had an average production

rate> 50 mmol/day in at least one cluster and average production rates that differed between

the clusters by at least 100%. Metabolite abbreviations are taken from the VMH database

(www.vmh.life). Full metabolite names, their associated metabolic pathways and numeric val-

ues for their average production rates in each cluster are given in S6 Table.

(TIF)

S7 Fig. Differentially produced metabolites in the high Bacteroides and high Enterococcus
abundance clusters generated from 119 model-predicted post-index samples. Significant

differences in metabolite production rates were determined by applying the Wilcoxon rank

sum test (FDR < 0.05) to each metabolite across all samples in the two clusters. In addition to

being statistically different, each metabolites shown had an average production rate> 50

mmol/day in at least one cluster and average production rates that differed between the clus-

ters by at least 100%. Metabolites abbreviations are taken from the VMH database (www.vmh.

life). Full metabolite names, their associated metabolic pathways and numeric values for their

average production rates in each cluster are given in S6 Table.

(TIF)

S8 Fig. Abundances of the top 7 taxa for all post-index samples of the 22 patients in the

high Enterobacteriaceae abundance (HEb) group. All post-index samples from the 22

patients with at least one sample in the high Enterobacteriaceae abundance (HEb) cluster were

grouped to generate the HEb group of 55 samples. The samples are denoted as XXX-Y where

XXX is the patient ID and Y is the post-index sample number of that patient.

(TIF)

S9 Fig. Differentially produced metabolites of the 22 patients in the expanded high Entero-
bacteriaceae abundance (HEb) group. The HEb group was expanded to contain pre-index

and index samples to generate a dataset of 78 samples. These samples were partitioned into 35

samples prior to patients entering the HEb cluster, 28 samples during patient presence in the

HEb cluster and 15 samples after patients left the HEb cluster. Significant differences in metab-

olite production rates were determined by applying the Wilcoxon rank sum test (FDR < 0.05)

to each metabolite across all samples in the two groups compared (e.g. pre-HEb vs. HEb, pre-

PLOS COMPUTATIONAL BIOLOGY Metabolic model of Clostridioides difficile Infection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008782 February 22, 2021 20 / 27

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008782.s012
http://www.vmh.life/
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008782.s013
http://www.vmh.life/
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008782.s014
http://www.vmh.life/
http://www.vmh.life/
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008782.s015
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008782.s016
https://doi.org/10.1371/journal.pcbi.1008782


HEb vs. post-HEb, pre-HEb vs. post-HEb). In addition to being statistically different between

at least two sample groups, each metabolites shown had an average production rate> 50

mmol/day in at least one group and average production rates that differed between the two

groups by at least 100%. Metabolites abbreviations are taken from the VMH database (www.

vmh.life). Full metabolite names and their associated metabolic pathways are given in S6

Table.

(TIF)

S10 Fig. Clustering of 40 FMT samples using 16S-derived abundance data. (A) Average

taxa abundances across the samples in each cluster for taxa which averaged at least 5% in at

least one cluster. (B) Correlations between Bacteroides and other taxa calculated from all sam-

ples as measured by the proportionality coefficient ρ. The 9 taxa with the largest |ρ| values are

shown. (C) PCA plot of the abundance data with each pre-FMT, donor and post-FMT sample

labeled by its associated cluster number. (D) Number of pre-FMT, donor and post-FMT sam-

ples in each cluster and all 40 FMT samples. Cluster 2 contained a disproportionately large

number of pre-FMT samples (14/20) compared to the cluster 1 (0/20; p < 0.00001) and the

entire FMT dataset (14/40; p = 0.0014).

(TIF)

S11 Fig. Differentially produced metabolites in the high Enterobacteriaceae (high pre-FMT)

and high Bacteroides abundance (low pre-FMT) clusters generated from 40 model-pre-

dicted FMT samples. Significant differences in metabolite production rates were determined

by applying the Wilcoxon rank sum test (FDR< 0.05) to each metabolite across all samples in

the two clusters. In addition to being statistically different, each metabolites shown had an aver-

age production rate> 50 mmol/day in at least one cluster and average production rates that dif-

fered between the clusters by at least 100%. Metabolites abbreviations are taken from the VMH

database (www.vmh.life). Full metabolite names, their associated metabolic pathways and

numeric values for their average production rates in each cluster are given in S7 Table.

(TIF)

S12 Fig. Differentially produced metabolites in the high Enterobacteriaceae (high pre-

FMT) and high Bacteroides (low pre-FMT) abundance clusters generated from 40 FMT

samples. Significant differences in metabolite production rates were determined by applying

the Wilcoxon rank sum test (FDR< 0.05) to each metabolite across all samples in the two clus-

ters. In addition to being statistically different, each metabolites shown had an average produc-

tion rate> 50 mmol/day in at least one cluster and average production rates that differed

between the clusters by at least 100%. Metabolites abbreviations are taken from the VMH data-

base (www.vmh.life). Full metabolite names and their associated metabolic pathways are given

in S6 and S7 Tables.

(TIF)
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2. Pérez-Cobas AE, Moya A, Gosalbes MJ, Latorre A. Colonization resistance of the gut microbiota

against Clostridium difficile. Antibiotics. 2015; 4(3):337–57. https://doi.org/10.3390/antibiotics4030337

PMID: 27025628

3. Theriot CM, Young VB. Interactions between the gastrointestinal microbiome and Clostridium difficile.

Annu Rev Microbiol. 2015; 69:445–61. https://doi.org/10.1146/annurev-micro-091014-104115 PMID:

26488281

4. Jarrad AM, Karoli T, Blaskovich MA, Lyras D, Cooper MA. Clostridium difficile drug pipeline: chal-

lenges in discovery and development of new agents. J Med Chem. 2015; 58(13):5164–85. https://doi.

org/10.1021/jm5016846 PMID: 25760275

5. Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, et al. Burden of Clostridium diffi-

cile infection in the United States. New Engl J Med. 2015; 372(9):825–34. https://doi.org/10.1056/

NEJMoa1408913 PMID: 25714160

6. Dubberke ER, Olsen MA. Burden of Clostridium difficile on the healthcare system. Clin Infect Dis.

2012; 55(suppl_2):S88–S92. https://doi.org/10.1093/cid/cis335 PMID: 22752870

7. Ozaki E, Kato H, Kita H, Karasawa T, Maegawa T, Koino Y, et al. Clostridium difficile colonization in

healthy adults: transient colonization and correlation with enterococcal colonization. J Med Microbiol.

2004; 53(2):167–72. https://doi.org/10.1099/jmm.0.05376-0 PMID: 14729940

8. Poutanen SM, Simor AE. Clostridium difficile-associated diarrhea in adults. Cmaj. 2004; 171(1):51–8.

https://doi.org/10.1503/cmaj.1031189 PMID: 15238498

9. Furuya-Kanamori L, Marquess J, Yakob L, Riley TV, Paterson DL, Foster NF, et al. Asymptomatic

Clostridium difficile colonization: epidemiology and clinical implications. BMC Infect Dis. 2015; 15

(1):516. https://doi.org/10.1186/s12879-015-1258-4 PMID: 26573915

10. Chang JY, Antonopoulos DA, Kalra A, Tonelli A, Khalife WT, Schmidt TM, et al. Decreased diversity of

the fecal microbiome in recurrent Clostridium difficile—associated diarrhea. The Journal of infectious

diseases. 2008; 197(3):435–8. https://doi.org/10.1086/525047 PMID: 18199029

11. Sorg JA, Sonenshein AL. Inhibiting the initiation of Clostridium difficile spore germination using ana-

logs of chenodeoxycholic acid, a bile acid. J Bacteriol. 2010; 192(19):4983–90. https://doi.org/10.

1128/JB.00610-10 PMID: 20675492

12. Dubberke E. Clostridium difficile infection: the scope of the problem. Journal of hospital medicine.

2012; 7(S3):S1–S4.

PLOS COMPUTATIONAL BIOLOGY Metabolic model of Clostridioides difficile Infection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008782 February 22, 2021 22 / 27

https://doi.org/10.1038/ajg.2013.4
http://www.ncbi.nlm.nih.gov/pubmed/23439232
https://doi.org/10.3390/antibiotics4030337
http://www.ncbi.nlm.nih.gov/pubmed/27025628
https://doi.org/10.1146/annurev-micro-091014-104115
http://www.ncbi.nlm.nih.gov/pubmed/26488281
https://doi.org/10.1021/jm5016846
https://doi.org/10.1021/jm5016846
http://www.ncbi.nlm.nih.gov/pubmed/25760275
https://doi.org/10.1056/NEJMoa1408913
https://doi.org/10.1056/NEJMoa1408913
http://www.ncbi.nlm.nih.gov/pubmed/25714160
https://doi.org/10.1093/cid/cis335
http://www.ncbi.nlm.nih.gov/pubmed/22752870
https://doi.org/10.1099/jmm.0.05376-0
http://www.ncbi.nlm.nih.gov/pubmed/14729940
https://doi.org/10.1503/cmaj.1031189
http://www.ncbi.nlm.nih.gov/pubmed/15238498
https://doi.org/10.1186/s12879-015-1258-4
http://www.ncbi.nlm.nih.gov/pubmed/26573915
https://doi.org/10.1086/525047
http://www.ncbi.nlm.nih.gov/pubmed/18199029
https://doi.org/10.1128/JB.00610-10
https://doi.org/10.1128/JB.00610-10
http://www.ncbi.nlm.nih.gov/pubmed/20675492
https://doi.org/10.1371/journal.pcbi.1008782


13. Seekatz AM, Rao K, Santhosh K, Young VB. Dynamics of the fecal microbiome in patients with recur-

rent and nonrecurrent Clostridium difficile infection. Genome medicine. 2016; 8(1):47. https://doi.org/

10.1186/s13073-016-0298-8 PMID: 27121861

14. Schubert AM, Rogers MA, Ring C, Mogle J, Petrosino JP, Young VB, et al. Microbiome data distin-

guish patients with Clostridium difficile infection and non-C. difficile-associated diarrhea from healthy

controls. MBio. 2014; 5(3):e01021–14. https://doi.org/10.1128/mBio.01021-14 PMID: 24803517

15. Antharam VC, Li EC, Ishmael A, Sharma A, Mai V, Rand KH, et al. Intestinal dysbiosis and depletion

of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. J Clin Microbiol.

2013; 51(9):2884–92. https://doi.org/10.1128/JCM.00845-13 PMID: 23804381

16. Austin M, Mellow M, Tierney WM. Fecal microbiota transplantation in the treatment of Clostridium diffi-

cile infections. The American journal of medicine. 2014; 127(6):479–83. https://doi.org/10.1016/j.

amjmed.2014.02.017 PMID: 24582877

17. Tan X, Johnson S. Fecal microbiota transplantation (FMT) for C. difficile infection, just say ‘No’. Anaer-

obe. 2019:102092. https://doi.org/10.1016/j.anaerobe.2019.102092 PMID: 31472233

18. Chang C-S, Kao C-Y. Current understanding of the gut microbiota shaping mechanisms. J Biomed

Sci. 2019; 26(1):1–11. https://doi.org/10.1186/s12929-018-0495-4 PMID: 30602371

19. Wang S, Xu M, Wang W, Cao X, Piao M, Khan S, et al. Systematic review: adverse events of fecal

microbiota transplantation. PloS one. 2016; 11(8):e0161174. https://doi.org/10.1371/journal.pone.

0161174 PMID: 27529553
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