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e Biodecontamination of heavy metals from multi-metallic aqueous solutions using Saccharomyces cerevisiae.
o Stability assessment of metal-yeast complex after simulated gastrointestinal condition.

e Usingpretreatment strategies to increase bioremoval efficiency and stability.

o Indicating reversible bonds of heavy metal-yeast complexes.

e The Langmuir isotherm model was the best-predicting biosorption model.

ARTICLE INFO

Keywords:
Decontamination

Heavy metal

Pretreatment
Gastrointestinal conditions
Yeast-metal stability

ABSTRACT

The biosorption of heavy metals by microorganisms has attracted the interest of food researchers as the last
approach to reduce the risk of their absorption in the human body. But the stability of yeast-metal complexes
under simulated gastrointestinal conditions has not been investigated. In this study stability of complex as well as
isotherm and kinetic models of biosorption have been studied. Also, the impact of some pretreatment on yeast
biosorption was studied to check the possible impact of different environmental conditions in food processing.
Data showed a risk of heavy metal release in simulated gastrointestinal conditions. The best biosorption of metals
from aqueous solutions by Saccharomyces (S.) cerevisiae may be achieved after NaOH pretreatment for Mercury
(Hg) 92.7%. While biosorption of Lead (Pb) 37.48%, Arsenic (As) 19.44%, and Cadmium (Cd) 39.9% by untreated
yeast were better. In gastrointestinal conditions, Hg and Cd-yeast complexes were more stable and biosorption of
Cd and Pb increased. Bonds of As and Hg-yeast complexes in digestion conditions were reversible. The metals
biosorption by untreated yeast followed the pseudo-second-order kinetic and the Langmuir isotherm model for
Hg, Pb, and Cd and Freundlich for As. Results showed that biosorption of heavy metals by S. cerevisiae, although
may decrease metal bioavailability in fermented foods, the complex is not enough stable in gastrointestinal
conditions.

1. Introduction

on hematological and neurological systems, and cells' metabolisms
(Mahurpawar, 2015). The acceptable dose of As, Hg, Pb, and Cd in

Heavy metal contamination of water sources and the dangerous ef- drinking water are 10, 6, 10, and 3 pg L™ to the World Health Organi-
fects of these metals on human health are some of the most important zation (WHO) (Water and Organization, 2006).
scientific problems of the last decades (Raikwar et al., 2008). They can There are various strategies for heavy metal removal, including
lead to kidney and liver cancer, reproductive disorders, disruptive effects physical and chemical methods as well as physicochemical and biological
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processes; in which, yeast, bacteria, seaweeds, and plants are used. Bio-
sorbents of biosorption (biological adsorption) include fungi, bacteria,
yeast, and plants (Malik et al., 2019). Saccharomyces (S.) cerevisiae is a
precious biosorbent because of its wide use in fermented foods and drinks
such as beverages, high safety, growth on inexpensive media, perfect
model for kinetic and adsorption isotherm studies, and biomass pro-
duction via simple fermentation methods (Savastru et al., 2019; Wang
and Chen, 2006). Various studies have been carried out on bio removal
using this yeast (Massoud et al., 2019). Results have verified the ability of
S. cerevisiae in biosorption of all metals and heavy metals, even As. The
bioremoval ability of yeast depends on various factors such as initial
yeast biomass, initial heavy metal concentration, pH, ambient tempera-
ture, presence of other heavy metal ions, contact time, and composition
of culture media (Hadiani et al. (2018a, 2018b); Hadiani et al., 2019).
Naturally, S. cerevisiae includes phosphodiester bridges on its cell that
produce negative surface charges. The mechanism of surface binding of
S. cerevisiae is contributed to its surface charges (Zoghi et al., 2014). In
addition, the groups of carboxyl, hydroxyl, amino, and phosphate in the
cell wall of yeast are the principal responsible for heavy metal bio-
removal (Fadel et al., 2017).

The content of heavy metals disposed into surface and groundwater is
still increasing. Due to its dangerous potential to human life and the
environment, there is a growing requirement for simultaneous moni-
toring of metals, such as Hg, Pb, As, and Cd in water samples (CONAMA,
2005; Mello et al., 2005). In previous reports of our research team, we
studied the potential of yeast for biosorption of metals from food at low
concentrations (ppb) from water and milk (Hadiani et al. (2018a, 2018b);
Hadiani et al., 2019; Massoud et al., 2020, 2021). But there are a few
studies on the ability of S. cerevisiae to remove low concentrations of Hg,
Pb, As, and Cd in multi-metallic solutions and subsequent assessment of
the bond stability of S. cerevisiae and heavy metals (simultaneous pres-
ence of these four metals in liquid phase) in simulated gastrointestinal
conditions. In addition, for the first time, the comparison of various
treatments for the uptake of heavy metals in ppb scales was examined. In
this study, ethanol, caustic, and heat treatments were used to increase
heavy metal biosorption. The current study aimed to assess the ability of
S. cerevisiae for biosorption of As, Pb, Hg, and Cd in ppb scales and to
study bond stability between these metals and S. cerevisiae under simu-
lated gastrointestinal conditions. For finding the best bioremoval of As,
Pb, Hg, and Cd, three treatments (caustic, ethanol, and heat) were
compared, and for the best biosorption of these metals by yeast, three
adsorption models (the Freundlich, Langmuir, and Temkin) were
assessed using experimental data from the treated biomass. In addition,
two kinetic models were used to anticipate the biosorption efficiency of
these metals by the pretreated yeast biomass.

2. Materials and methods
2.1. Preparation of biomass and master culture and colony count

The S. cerevisiae ATCC 9763 was provided by Alzahra University
Culture Collection in form of freeze-dried culture. The strain was cultured
in nutrient broth [glucose, 1 g/50 ml distilled water (DW); yeast extract
and NH4Cl, 0.25 and 1 g/50 ml DW; KHyPO4 and NayHPoy, 0.75 and
1.125 g/50 ml DW]. Yeast cultures were incubated at 27 °C for 16 h at 80
rpm (end of the exponential phase) and stored at 4 °C until use. For each
series of bioremoval, seed cultures of S. cerevisiae were provided daily
after inoculation of 5% (v/v) from the master culture. Then, seed cultures
were agitated at 80 rpm for 16 h at 27 °C. The serial dilution method was
used for the cell counting of seed cultures (Sieuwerts et al., 2008).

2.2. Chemical reagents
Components of the yeast cell cultures and the analytical reagents and

chemicals were purchased from Merck, Darmstadt, Germany. Standard
solutions of As (1000 mg/L in 0.1 M HNOs) were provided by Panreac
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Quimica, Barcelona, Spain. Working standard solutions were prepared in
deodorized water. Glass containers were soaked in 15% v/v HNOs for 24
h and then washed with deodorized water for the removal of elemental
contamination. Then, glass containers were autoclaved for the removal of
microbial contamination.

2.3. Saccharomyces cerevisiae pretreatments

For the heat pretreatment, yeast cells were sterilized at 121 °C for 20
min. Ethanol pretreated yeast cells were prepared by mixing yeast cells
with 700 g/1 ethanol solution at 25 °C for 1 h. The NaOH-treated cells
were prepared by mixing yeast cells with 0.1 M NaOH and then incu-
bating at 37 °C for 1 h. Treated yeast cells were centrifuged (4000 g, 10
min) and washed three times with deionized water. Pretreated yeast cells
were used for As, Pb, Hg, and Cd biosorption (Goksungur et al., 2005).

2.4. Biosorption of heavy metals from aqueous solutions using
Saccharomyces cerevisiae

Aqueous solutions were prepared by mixing 96.5 ml of sterile
deionized water with 950 pL of As solution (10 ppm in 10% HCI), 525 pL
of Cd and Pb (10 ppm in 0.1 M HNO3), and 800 pL of Hg (10 ppm in 2%
HCL) and adjusting the pH to 5 using 0.1 M NaOH and 0.1 M HCI.
Concentrations of heavy metals were chosen based on the optimization of
heavy metal biosorption by Hadiani et al. (2018a, 2018b) Final con-
centrations of the heavy metals in solutions included Cd and Pb, 52.5
pg/L; As, 95 pg/L; and Hg, 80 pg/L (Hadiani et al. (2018a, 2018b);
Hadiani et al.,, 2019). Then, 1 ml of either untreated or pretreated
S. cerevisiae solution (2.5 x 10° CFU/ml) was added to the solution and
incubated at 25 °C for 24 h using a heater stirrer (Heidolph, German)
(Hadiani et al., 2019). After 24 h, samples were added to gastric and
small intestinal juices to estimate the stability of the S. cerevisiae-heavy
metal (As, Pb, Hg, and Cd) bonds in gastrointestinal simulated
conditions.

2.5. Preparation of gastric and small intestinal juices

For the preparation of simulated gastric juices, pepsin was added to a
sterile NaCl solution (0.5%, w/v). The final concentration of pepsin was 3
g/L. Then, pH was adjusted to 2 using 30% HCI. Gastric juices were
prepared daily and sterilized using 0.45-pm membrane filters (Nalge,
Rochester, NY, USA). For the preparation of simulated small intestine
juices; pancreatin (final concentration of 1 g. L) and bile salts (final
concentration of 1.5 g. L’l) were added to sterile NaCl solution (0.5%,
w/v). Then, pH was adjusted to 8.0 using 1 M NaOH. Small intestine
juices were prepared daily and sterilized using 0.45-pm membrane filters
(Nalge, Rochester, NY, USA) (Khorasani and Shojaosadati, 2017).

2.6. Selection of optimum biosorption conditions of Pb, As, Cd, and Hg by
Saccharomyces cerevisiae ATCC 9763

In this study, the pH value was adjusted to 5. The initial concentration
of metals in the solution was considered: Pb (52.5 pg/L), As (95 pg/L), Cd
(52.5 pg/L), and Hg (79.8 pg/L), The temperature was selected at 25 °C,
and initial concentration of yeast was considered approximately 107
CFU/mL Based on studies by Hadiani et al. (2018a, 2018b).

2.7. Bond stability between heavy metals and S. cerevisiae in
gastrointestinal simulated condition

Briefly, 20 ml of each contaminated aqueous solution (25 °C, 24 h,
130 rpm for heavy metal biosorption by S. cerevisiae) were added to 80
mL of simulated gastric juices (37 °C) and vortexed (Vortex-Genie 2,
Scientific Industries, Bohemia, NY, USA) for 10 s. It was incubated at 37
°C for 2 h. After sampling for heavy metal analysis, 100 mL of the
simulated intestinal juice (37 °C) were added to the solution and
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incubated at 37 °C for 2 h. The solution was agitated alternatively. Then,
sampling for heavy metal analysis was repeated (Yin et al., 2018).

2.8. Analysis of heavy metals using inductively coupled plasma-mass
spectroscopy

Inductively coupled plasma-mass spectroscopy (ICP-MS) (Agilent
7500, Agilent Technologies, USA) was used in this study. Plasma pa-
rameters, including nebulizing argon flow, radio frequency (RF) gener-
ator power, plasma gas flow rate, resonance RF frequency, and auxiliary
gas flow rate, were 0.8 L/min, 1200W, 12.2L/min, 24MHz, and 0.8 L/
min respectively. The limit of detection (LOD) of the analyzer for Pb, As,
Cd, and Hg were 1.0, 1.0, 0.5, and 0.5 pg/L, respectively. and the limit of
quantitation (LOQ) for the highlighted chemicals was 3.3, 3.3, 1.7, and
1.7 pg/L, respectively. Three replicate measurements for each sample
were carried out.

2.9. Adsorption kinetic studies

Untreated S. cerevisiae cells (2.5 x 10° CFU/mL) were transferred into
100 mL of deionized water contaminated with Pb (52.5 pg/L), As (95 pg/
L), Cd (52.5 pg/L), and Hg (79.8 ug/L) (pH 5.0) on a rotatory shaker. The
metal ion concentrations of the sample were assessed at eight-time in-
tervals to explain the adsorption kinetics of the S. cerevisiae cells. Pseudo-
first and pseudo-second-order kinetic equations were assessed for heavy
metal (Pb, As, Cd, and Hg) adsorption by untreated C. cerevisiae strains
(Zoghi et al., 2020).

2.10. Isotherm model studies

Five samples with various numbers of untreated S. cerevisiae cells (2.5
x 10° CFU/mL) were contacted with five various initial concentrations of
heavy metals (Pb, As, Hg and Cd) (pH 5) for 24 h. Langmuir, Freundlich,
Temkin and isotherm models were used to study biosorption isotherms.
Parameters of isotherm models were achieved similarly as previously
described (Chen et al., 2015). Regression coefficient values (R?) and the
sum of error squares (ERRSQ) were calculated to describe the best
isotherm, demonstrating biosorption of the heavy metals by untreated
S. cerevisiae. All experiments were carried out in triplicates.

2.11. Statistical analysis

All experiments were carried out in triplicates and data were shown
as mean + standard deviation (X +SD). Data processing was carried out
using Statistical Package for the Social Sciences (SPSS) Software v.22.0
(SPSS Institute, Chicago, IL, USA). One-way Analysis of Variance
(ANOVA) was used to estimate p-values and confidence levels. In general,
p-values less than 0.05 were considered significant.

3. Results and discussion

3.1. Effects of pretreatments (heat, NaOH, and ethanol) of S. cerevisiae
ATCC 9763 on the removal of Pb, As, Cd, and Hg after 24 h of exposure

Scanning electron microscopy and Fourier transform infrared spec-
trometry techniques show that biosorption of metal ions is physical and
occurs at the surface of the yeast (Zinicovscaia et al., 2020). For exam-
ining the effects of pretreatments on this surface adsorption different
treatments were examined. Previous reports showed effects (positive or
negative) of pretreatments on toxins (Zoghi et al., 2020) and heavy metal
biosorption (Goksungur et al., 2005). In this study, the major aim was to
find the best condition (with or without treatment) for decontamination
of Hg, Pb, As, and Cd in multi-metal aqueous solutions by S. cerevisiae.
Results showed that the best biosorption achieved at 25 °C, pH 5, 24 h of
exposure, and inoculum size of 2.5 x 10° CFU/mL accompanied by
NaOH pretreatment for Hg (92.7%) and untreated yeast for Pb (37.48%),
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AS (19.44%) and Cd (39.9%). All in all, in the present study untreated
cell yeast, were abler to biosorption of simultaneous presence of Cd, As,
and Pb compared to pretreated cells; but Hg had better uptake with
NaOH pretreated cells. Higher bioremoval rates of Hg by NaOH-treated
yeast cells compared to untreated ones were similar to a previous study
by Goksungur et al. (2005). Cell walls of yeast play important roles in
biosorption and treatment by NaOH (caustic treatment) might degrade
cell walls of yeast by removing their protein groups. Consequently, the
destruction of the cell membranes of yeast exposes intracellular compo-
nents and enhances the efficiency of biosorption by creating further
surface binding sites and causing further easier bonds between the yeast
cells and the metal ions (Goksungur et al., 2005; Khosravi-Darani et al.,
2020; Wang and Chen, 2006).

In contrast, in the study by Ghorbani et al. (2008) ethanol pretreated
yeasts were able to bioremoval of Cd two times greater than untreated
cell yeast. That reason might be described by the addition in the acces-
sibility of heavy metals to the binding sites on the surface of yeast. In
addition, following the study by Ghorbani et al. (2008) in the present
study bioremoval of Hg by ethanol-treated cell yeast (92.7%) was greater
than untreated cell yeast (84.33%). This can be explained by increasing
the accessibility of the binding sites of yeast for bioremoval of Hg
(Ghorbani et al., 2008). The mechanism of heat treatment for the
enhancement of biosorption is like ethanol treatment by increasing the
disposal of additional functional groups implicated in the bioremoval of
metals (Soares and Soares, 2012).

According to the existence of these four metals simultaneously in an
aqueous solution, all in all, untreated cells of yeast show the best po-
tential for uptake of these metals at the same time, and usage of pre-
treatments in the uptake of these four metals at the same time is not
advised. This can be explained by the selective and sometimes compet-
itive abilities of S. cerevisiae in bioremoval of the simultaneous presence
of Hg, Pb, As, and Cd in aqueous solutions.

Table 1 shows heavy metal uptake by untreated and treated cell
yeasts and compares the potential of treated and untreated cell yeast in
bioremoval of these metals.

3.2. Stability assessment of yeast-metal complexes under simulated
gastrointestinal conditions

Bond stability of biosorbent and absorbed in gastrointestinal condi-
tion has an important role in examining the efficiency of biosorption. In
recent years, there are several studies about the assessment of bond
stability between biosorbent and absorbed (Ribeiro et al., 2021; Zoghi
et al., 2020).

Liquid-phase concentrations of Hg, Pb, As, and Cd after 24 h of
exposure to untreated, heat, NaOH, and ethanol pretreated S. cerevisiae
ATCC 9763 are demonstrated in Figure 1 a (Hg), b (Pb), c¢ (As), and
d (Cd). All samples (except As) showed strong biosorption of heavy
metals within 24 h. Samples exposed to simulated gastrointestinal con-
ditions for 24 h are illustrated in Figure 1. Also, the stability of the metal-
yeast complexes to these conditions was assessed. NaOH pretreated yeast
cells showed the best ability of Hg biosorption (Figure 1a). After exposure
to simulated stomach conditions, low levels of Hg were released from the
culture of untreated yeasts. In complexes of pretreated yeast-metal after
exposure to simulated stomach conditions, large quantities of Pb were
released from the complex of yeast-Pb (Figure 1b). In NaOH and ethanol
pretreated yeasts, bonds between As and yeasts could be released
(Figure 1c). Furthermore, Cd in untreated and treated yeast cells could be
released and bonds between Cd and yeasts could be released under
simulated stomach conditions (Figure 1d). Therefore, it could be
concluded that the adsorption of these metals was reversible. A similar
result was reported by Bao Le (Le and Yang, 2019). for Cd bioaccessibility
of Cd- Pediococcus pentosaceus suspension after simulated gastrointestinal
conditions. Cd bioaccessibility after the simulated gastrointestinal con-
dition was 44.7-46.8 %. According to this study, the bonds between Cd
and Pediococcus pentosaceus were reversible.
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The current results showed that S. cerevisiae included the best ability
of Hg bioremoval, compared to other heavy metals. However, bonds of
this complex (Hg-yeast) were reversible under simulated gastrointestinal
conditions. Moreover, As had the lowest biosorption rate and the yeast
did not have a good ability of As bioremoval. Under this condition and
the simultaneous presence of these four metals in the liquid phase, bio-
sorption of Pb and Cd increased under simulated gastrointestinal con-
ditions. According to this study, physical and chemical adsorptions of
metals by S. cerevisiae might occur simultaneously. Furthermore, binding
reversibility suggested non-covalent electrostatic bonds (e.g., Van der
Waals and hydrogen bonds).

According to our results, untreated cell yeasts showed more potential
for biosorption of Hg, Pb, As, and Cd in a multi-metallic aqueous solution.
So, untreated cell yeasts were selected for more studies.

3.3. Kinetic model studies

Heavy metal biosorption by S. cerevisiae naturally depends on the
exposure time. The metal kinetic model is one of the most important tools
for the assessment of sorption mechanisms. Kinetic models describe the
quantity and mechanism of adsorbed Hg, Pb, As, and Cd by S. cerevisiae
cell layers at various times (Tuzen et al., 2020). The pseudo-first-order
equation is shown as Eq. (1) (Al-Hazmi, 2010):
In(q. — q;) =Inq. — Kyt Eq. (1)
Where, K; is the first-order kinetic rate constant, g (pg/L): Amounts of
adsorbed metals at equilibrium times (h), and q; (pg/L): Amounts of the
adsorbed metals at a given time (t). The linear pseudo-second-order
equation is shown as Eq. (2) (Anene et al., 2016):

t 1 t

= +—
@ K2 g

Eq. (2)

Where, Kj is the second-order kinetic rate constant, qe (1g/L): Amounts of
the adsorbed metals at equilibrium times (h) and q; (pg/L): Amounts of
adsorbed metals at a given time (t). Time profiles of Pb, As, Hg, and Cd
adsorption by untreated S. cerevisiae ATCC 9763 in aqueous solutions are
shown in Figure 2a. Figure 2b illustrates R2 (correlation coefficient
values) from the linear regression analysis. Kinetic model studies were
compared to pseudo-first-order (not shown) and pseudo-second-order
(Figure 2b). The Pb, Hg, As, and Cd biosorption kinetic models were
fitted to pseudo-second-order and their correlation coefficients for
pseudo-second-order were 0.9775, 0.9991, 0.9422, and 0.9897, respec-
tively. Similar results were reported by Ghorbani et al. (2008) for bio-
removal of Cd by S. cerevisiae that was controlled by pseudo-second-order
kinetic mechanisms. In another study, the pseudo-second-order kinetic
mechanism was best described by the bioremoval of lead by S. cerevisiae
(Ghaedi et al., 2010). In addition, the best fit of the kinetics of bio-
sorption of Cd, Pb, and, Cu by S. cerevisiae was the pseudo-second-order
(Dutta et al., 2016). About biosorption of As by S. cerevisiae, the best
kinetic mechanism was reported pseudo-second-order equation (Wu
et al., 2012). Kinetic models play important roles in evaluating the initial

Table 1. Hg, Pb, As, and Cd uptake% by untreated and pretreated yeast.

% Metal uptake Untreated Ethanol treated Heat-treated NaOH treated
Hg 84.33° 90.60>° 67.41°2 92.70%4

Pb 37.48%4 7.20%8 29.65% 11.58%°

AS 19.4414 0.90%2 3.90A¢ 1.834°

cd 39.90% 18.80% 26.90°¢ 19.30%

The initial concentration of Hg, Pb, As and Cd were 77.94, 52.03, 87.20, and
48.01 pg/L, respectively. Results are mean values of triplicate determinations
and small and capital letters show statistical differences for data in rows and
columns, respectively (p < 0.05).
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qualities and efficiency of adsorbents, the time required for biosorption
of metals, and the identification of the kind of mechanisms involved in
bioremediation system (Febrianto et al., 2009; Kumar and Sivanesan,
2006; Savic¢ and Vasi ¢, 2006). Furthermore, Kinetic studies are done to
obtain information on the nature of processes occurring in biosorption of
metals by yeast. This fitted biosorption to pseud-second order suggested
that biosorption of heavy metals by yeast is through physico-chemical
interactions. Also, this kinetic model is based on chemical biosorption
(Chwastowski and Staron, 2022). The pseudo-second kinetic model
revealed chemical biosorption mechanisms (Aratjo et al., 2013).

3.4. Biosorption isotherms of the heavy metals

The equilibrium data might be used to design appropriate adsorption
systems for large-scale uses. In equilibrium conditions (approximate
untreated yeast cells of 107 CFU/mL, pH 5, 24 h of exposure, 25 °C) at
various initial concentrations of Pb, As, Hg, and Cd, particular associa-
tions between liquid and solid phases could be qualified generally using
three various isotherm models of Langmuir, Freundlich, and Temkin
(Freundlich, 1906; Langmuir, 1918; Tempkin and Pyzhev, 1940). In
heavy metal biosorption studies, characteristics of S. cerevisiae, including
structure, functional groups, and surface area, included important roles
in metal biosorption (Ertugay and Bayhan, 2010). The Langmuir form
could be described using Eq. (3):

Q. = Quax[K1C. / (1 +K;C] Eq. (3)

Where Q. (pg/mg) is the amount of metals in adsorbing equilibrium, C.
(pg/L) is the equilibrium concentration of the metals in aqueous solu-
tions, Quax (pg/mg) is the maximum amount of the adsorbed metals at
high C. (pg/L) and K;, (L/pg) is the Langmuir adsorption constant. The
Freundlich form could be reported via the following Eq. (4):
Q. =Ky x C}/" Eq. (4)
Where Kg is the Freundlich constant, ng is the experimental parameter
(relating to bioremediation intensity), C. (pg/L) is the equilibrium con-
centration of metals in aqueous solutions, and Q, (pg/L) is the amount of
metals in adsorbing equilibrium. The Temkin form could be described
using Eq. (5):

Q. =pla+pmnC, (E1) ; p= RT/KT Eq.(5)
Where, Kt (J/mol) is the Temkin constant, o (L/g) is another Temkin
constant (R = 8.314 J/mol.K), T (K) is the absolute temperature, C. (1g/
L) is the equilibrium concentration of metals in aqueous solutions and Q.
(pg/L) is the amount of metals in adsorbing equilibrium. Hg, Pb, As, and
Cd biosorption isotherms are illustrated in Figure 3 a, b, and c. Three
adsorption isotherms of Langmuir (a), Freundlich (b) and Temkin (c)
were used in data. Steady adsorption equilibrium was created when
concentrations of the adsorbed heavy metals (Q.) were similar to the
concentrations of desorbed metals and equilibrium value (C.) was fixed.
The equilibrium adsorption isotherms included important roles in
designing adsorption processes. Figure 3 shows a regression analysis of
the isotherms. Coefficients of correlation for Pb were calculated as
0.9779, 0.881, and 0.8965 respectively belonging to Langmuir, Freund-
lich, and Temkin isotherms. In the regression analysis of isotherms, co-
efficients of correlation for Hg were reported as 0.9719, 0.8796, and
0.9247 associated with Langmuir, Freundlich, and Temkin isotherms,
respectively. The coefficients of correlation of As were 0.9388, 0.9618,
and 0.8034 linked to Langmuir, Freundlich, and Temkin isotherms,
respectively. In the regression analysis of isotherms, coefficients of cor-
relation for Cd were 0.941, 0.8671, and 0.8387, which were associated
with Langmuir, Freundlich, and Temkin isotherms, respectively. The
bioremediation process of Hg, Pb, and Cd further matched with the
Langmuir isotherm model. same results were reported by Massoud et al.
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9763 in aqueous solution. qt (pg/mg) and qe (pg/mg) were quantities of the adsorbed Heavy metals per milligram yeast cells at a given time (t) and equilibrium time

(h), respectively.

(2020, 2021) for biosorption of Hg and Cd by S. cerevisiae were fitted to
the Langmuir model (Massoud et al., 2020, 2021). Moreover, As matched
with Freundlich model. The Langmuir model shows that the biosorption
process was homogeneous, uniform and monolayer. In this isotherm
model, suppressing chemical interactions were detected between the
adsorbing molecules. In contrast, the Freundlich model shows that bio-
sorption process was heterogeneous, non-uniform, and multi-layer and
was not ideal (Chen et al., 2019). In the Freundlich isotherm model,
chemical interactions were seen between the adsorbed molecules (Raoov
et al., 2013).

4. Conclusions

In this study, the biosorption of heavy metals (pH 5, 24 h exposure
time, yeast concentration approx. 10’ CFU/mL and concentration of Cd
and Pb, 52.5 pg/L; As, 95 pg/L; and Hg, 80 pg/L) by treated and un-
treated yeast cells was assessed. The results showed that the best-
performing yeast for Pb, Cd, and As bioremoval was untreated and for

Hg bioremoval was NaOH-treated cell yeasts. Furthermore, the yeast-
metal complex under the simulated gastrointestinal condition was
reversible. It can be concluded that metal binding to S. cerevisiae signif-
icantly depends on the metal and yeast cell wall structure. Untreated cell
yeast had the best ability for biosorption of metals in multi-metallic
aqueous solution. So, it was selected for the examination of kinetic and
isotherms studies. Pb, As, Hg and Cd biosorption processes of untreated
yeast cells followed the pseudo-second-order kinetic model. Among
Langmuir, Freundlich, and Temkin adsorption isotherm models, the first
shows high performance to predict the bio-removal efficiency of Pb, Cd,
and Hg by untreated yeast cells. Freundlich isotherm model would be
reliable to offer precise predictions of As biosorption.

Before this study, biosorption of metals and toxins by yeast has been
considered a safe method in different fermented foods such as wine and
fermented drinks (dough, kefir, kumis, etc). The data of this research
showed the reversibility of metal-yeast bonds in gastrointestinal condi-
tions. Such observation indicates that biosorption by yeast cannot be
considered a safe approach for heavy metal bioremoval from food.
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Figure 3. Plots for Langmuir, Freundlich, and Temkin adsorption isotherm curves of heavy metals adsorption by untreated S. Cerevisice ATCC 9763 cells in
contaminated aqueous solution are shown. Qe (ug/mg): quantity of heavy metals per mg yeast cells in adsorbing equilibrium, Ce (pg/L): equilibrium concentration of

heavy metals in aqueous solution).

Further studies are needed to investigate the stability of the metal-yeast
complex in various beverages and examine the reason reversibility and
irreversibility of complex binding.
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