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Background. Mounting evidence has confirmed that peroxisome proliferator-activated receptors (PPARs) played a crucial role in
the development and progression of bladder cancer (BLCA). The purpose of this study is to comprehensively investigate the
function and prognostic value of PPAR-targeted genes in BLCA. Methods. The RNA sequencing data and clinical information
of BLCA patients were acquired from The Cancer Genome Atlas (TCGA). The differentially expressed PPAR-targeted genes
were investigated. Cox analysis and least absolute shrinkage and selection operator (LASSO) analysis were performed for
screening prognostic PPAR-targeted genes and constructing the prognostic PPAR signature and then validated by GSE13507
cohort and GSE32894 cohort. A nomogram was constructed to predict the outcomes of BLCA patients in combination with
PPAR signature and clinical factors. Gene set enrichment analysis (GSEA) and immune cell infiltration were implemented to
explore the molecular characteristics of the signature. The Genomics of Drug Sensitivity in Cancer (GDSC) database was used
to predict the chemotherapy responses of the prognostic signature. The candidate small molecule drugs targeting PPAR-
targeted genes were screened by the CMAP database. Results. We constructed and validated the prognostic signature
comprising of 4 PPAR-targeted genes (CPT1B, CALR, AHNAK, and FADS2), which was an independent prognostic
biomarker in BLCA patients. A nomogram based on the signature and clinical factors was established in the TCGA set, and
the calibration plots displayed the excellent predictive capacity. GSEA analysis indicated that PPAR signature was implicated in
multiple oncogenic signaling pathways and correlated with tumor immune cell infiltration. Patients in the high-risk groups
showed greater sensitivity to chemotherapy than those in the low-risk groups. Moreover, 11 candidate small molecule drugs
were identified for the treatment of BLCA. Conclusion. We constructed and validated a novel PPAR signature, which showed
the excellent performance in predicting prognosis and chemotherapy sensitivity of BLCA patients.

1. Introduction

Bladder cancer (BLCA) is one of the common causes of
cancer-related deaths with elevated heterogeneity, account-
ing for over 200,000 cancer-related deaths in 2020 [1].
According to the tumor with or without muscle invasion,
BLCA is classified into non-muscle-invasive BLCA
(NMIBLCA) and muscle-invasive BLCA (MIBLCA). The
former is characterized by recurrence and progression while
the latter is characterized by metastasis and unfavorable
prognosis [2]. Despite the uplifting improvement in cancer

therapy for the past two decades, including laparoscopic
and robotic surgery, targeted therapy, and immune check-
point inhibitor therapy, the 5-year survival rate of patients
with MIBLCA remains unsatisfactory. Therefore, identifying
novel biomarkers for predicting prognosis and response to
therapeutic drug in BLCA is of considerable clinical meaning.

Peroxisome proliferator-activated receptors (PPARs)
were the critical members of the steroid hormone receptor
family. Meanwhile, PPARs were also a group of specific
nuclear transcription factors activated by natural ligands
(fatty acids and eicosanoids) and synthetic ligands (fibrates
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and thiazolidinediones) [3]. According to the various tissue
distribution, metabolic patterns, and ligand specificity,
PPARs were classified into three isotypes: PPARα, PPARβ/
δ, and PPARγ [4]. PPARα was mainly located in brown adi-
pose tissue and liver and involved in eliminating cellular or
circulating lipids [5, 6]. PPARγ was primarily expressed in
the adipose tissue and the immune system and correlated
with adipose differentiation. PPARβ/δ was highest expressed
in the gut, kidney, and heart and mainly implicated in lipid
oxidation and cell proliferation. Accumulating studies have
certified the crucial roles of PPARs in various biological
processes including cell differentiation, apoptosis, inflamma-
tion, immune function, angiogenesis, metabolism, and carci-
nogenesis [3, 7–10]. Furthermore, several drugs that targeted
PPARs have been applied in clinical trials [11]. However, the
relationship between PPARs and outcomes of BLCA
patients was still unknown.

In the present study, we investigated the expression and
outcomes of PPARs through integrated bioinformatic
approaches in BLCA. Subsequently, a PPAR-based signature
was established for predicting the prognosis and drug
sensitivity, and the predictive ability of this signature was
validated in two external datasets. Furthermore, we also
explored the correlation between the signature and clinical
characteristics as well as tumor microenvironment. In addi-
tion, enrichment analysis was conducted to investigate the
potential mechanisms of PPARs in BLCA. Finally, a nomo-
gram was constructed to improve the clinical management
of BLCA patients.

2. Materials and Methods

2.1. Data Acquisition. The RNA-sequencing data and clinical
characteristic information of patients with BLCAwere acquired
from The Cancer Genome Atlas database (TCGA, https://gdc-
portal.nci.nih.gov/). In addition, GSE13507 and GSE32894
were originated from the Gene Expression Omnibus database
(GEO, https://www.ncbi.nlm.nih.gov/geo/) and served as the
independent external validation datasets. 130 experimentally
verified PPAR-targeted genes were obtained from the PPAR-
gene database (http://www.ppargene.org/) [12].

2.2. Identification of Differentially Expressed PPAR Genes.
The differential expression analysis was conducted with the
edgeR package in R software (version R 3.6.1). Differentially
expressed PPAR genes (DEPPARGs) were identified with
the criterion of false discovery rate ðFDRÞ < 0:05 and ∣log 2
FC ðfold changeÞ ∣ >1 between BLCA and normal samples.
Heatmap and volcano plot were used to display DEPPARGs.
In addition, Gene Ontology (GO) analysis and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) analysis were
performed to investigate the potential functions of DEP-
PARGs by using the clusterProfiler packages in R software.

2.3. Identification of Candidate Small Molecule Drugs. To
identify the potential small molecule drugs for treatments
of patients with BLCA, the Connectivity Map database
(CMAP, https://portals.broadinstitute.org/cmap/) was per-
formed to select the candidate drugs. The enrichment score

was used to evaluate the effect of a drug, and the negative
score indicated that a drug might have antitumor activity.

2.4. Establishment and Validation of the PPAR-Related
Prognostic Signature. To identify the DEPPARGs associated
with overall survival (OS), univariate Cox regression analysis
was performed to explore the relationship between DEP-
PARGs and prognosis of BLCA patients in the TCGA data-
set. All the DEPPARGs with P value < 0.05 were identified as
candidate genes for subsequent analyses. Then, the least
absolute shrinkage and selection operator (LASSO) analysis
was used to shun the overfitting and identify optimal prog-
nostic DEPPARGs. Finally, multivariate Cox regression
analysis was conducted to establish an optimized risk score
(PPARscore). The PPARscore of patients with BLCA was
calculated by the following formula: PPARscore =∑n

i Xi ×
Yi (where Y represented the mRNA expression of gene
and X represented the coefficient of the relevant gene from
the multivariate Cox analysis). Patients were classified into
high- and low-risk groups based on the median risk score.
Survival analyses were conducted to evaluate the difference
of prognosis among different groups by R packages (survival
and survminer) in R. In addition, a receiver operating char-
acteristic (ROC) curve was performed to test the predictive
performance of the signature by using the survivalROC
package. Moreover, principal component analysis (PCA)
and t-distributed stochastic neighbor embedding (t-SNE)
were executed to investigate the distribution characteristics
of patients among two groups. In addition, the predictive
power of our constructed signature was verified in the two
external validation datasets (GSE13507 and GSE32894) by
using the same approach.

2.5. Gene Set Enrichment Analysis and Immune Infiltration
Analyses. Gene set enrichment analysis (GSEA) was used
to explore the underlying biological mechanisms of the
PPAR-based signature with the criterion of P value < 0.05
and FDR < 0:25. Given the importance of the tumor immune
microenvironment, the ESTIMATE algorithm was con-
ducted to evaluate the stromal score, ESTIMATE score, and
immune score among two groups. In addition, the CIBER-
SORT algorithm was performed to explore the immune cell
infiltration levels of 22 distinct leukocyte subsets among
different groups. Furthermore, we also investigated the corre-
lation between PPARscore and key immune checkpoints
(PD-1, PD-L1, CTLA4, LAG3, HAVCR2, and TIGIT). P
values < 0.05 were considered as statistical criteria.

2.6. Chemotherapy Sensitivity Prediction. To assess the dif-
ference of chemotherapy sensitivity between different
groups, we used the GDSC database to estimate the half-
maximal inhibitory concentration (IC50) of chemotherapy
drugs for predicting the sensitivity of chemotherapy drugs
by using the package (pRRophetic). P values < 0.05 were
considered statistically significant.

2.7. Construction of a Nomogram. Univariate and multivari-
ate cox regression analyses were conducted to investigate
whether the PPAR-based signature was an independent
prognosis factor in patients with BLCA. Furthermore, we
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also categorized patients into various subgroups stratified by
clinical features, and the Kaplan-Meier curves were con-
ducted in each subgroup to further test the predictive power
of the PPAR-based signature in predicting prognosis. Based
on the results of multivariate analysis, a nomogram consist-
ing of risk score and several clinical features for predicting
the over survival of 3 and 5 years was established. The cali-
bration curve was used to evaluate the accuracy of survival
prediction in the nomogram.

3. Results

3.1. Identification of Differentially Expressed Genes. Figure 1
displays the procedure of our study. The mRNA expression
profile of 130 PPAR target genes between BLCA samples
(n = 414) and normal bladder samples (n = 19) was obtained
from the TCGA dataset. A total of 27 DEPPARGs were iden-
tified with the threshold of FDR < 0:05 and ∣log 2 FC ∣ >1,
including 15 downregulated and 12 upregulated genes

Difference expression analysis

PPARgene database

130 PPAR targeted genes 

GO and KEGG analyses CMAP analysis

Univariate Cox regression analysis

LASSO regression analysis

Multivariate Cox regression analysis

Identification of the PPARscore

Clinical correlation  Cox regression analysis Survival analysis

Construction of a nomogram

Chemotherapy sensitivity analysis

GSEA analysis

Tumor microenvironment analyses

GSE13507 validation GSE32894 validation

TCGA-BLCA dataset

D
at

a a
cq

ui
sit

io
n

C
on

str
uc

tio
n 

an
d 

va
lid

at
io

n 
of

 th
e P

PA
Rs

co
re

Cl
in

ic
al

 si
gn

ifi
ca

nc
e o

f t
he

 P
PA

Rs
co

re

Figure 1: The flow chart of the PPAR signature in predicting survival of BLCA.
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(Figure 2). The volcano map was used to exhibit the expres-
sion profile of DEPPARGs. To further expound the potential
mechanisms of DEPPARGs, GO and KEGG analyses were
performed with the 27 DEPPARGs. GO analysis indicated
that DEPPARGs were mainly implicated in the regulation
of lipid metabolic process, triglyceride metabolic process,
acylglycerol metabolic process, neutral lipid metabolic pro-
cess, lipid localization, and reactive oxygen species metabolic
process (Supplementary Figure 1(a)). The result of KEGG
analysis revealed that DEPPARGs were mainly involved in
the PPAR signaling pathway, cholesterol metabolism, ovarian
steroidogenesis, platinum drug resistance, and microRNAs in
cancer (Supplementary Figure 1(b)), which suggested that
DEPPARGs might function as the crucial role in the
tumorigenesis, progression, and drug resistance of BLCA.

3.2. Small Molecular Drugs. To further enhance the thera-
peutic efficacy of BLCA, the CMAP database was performed
to identify candidate drugs based on the DEPPARGs. The
eleven small molecular drugs with anticancer activity were
identified (Table 1). These drugs (vorinostat, cinchonine,
helveticoside, lanatoside C, tiapride, idoxuridine, niclosa-
mide, ampicillin, epitiostanol, pyrimethamine, and cephae-
line) might alleviate the progression of BLCA and serve as
novel potential targeted drugs for BLCA treatment.

3.3. Construction of a Prognostic PPAR Signature. Based on
the 27 DEPPARGs, Cox and LASSO regression analyses
were implemented to identify DEPPARGs correlated with
OS in the TCGA dataset. First, ten DEPPARGs exhibited
fairly correlation with the outcomes of patients with BLCA
via univariate Cox regression analysis (Figure 3(a)). Then,
to guarantee the reliability of ten prognostic genes, LASSO
regression analysis was performed to further screen DEP-
PARGs without the overfitting (Figures 3(b) and 3(c)).
Finally, based on the result ofmultivariate Cox regression anal-
ysis, four DEPPARGs, including CALR, FADS2, CPT1B, and
AHNAK, were identified and applied to establish a prognostic
signature (Figure 3(d)). We developed a four gene-based
PPARscore as follows: PPARscore = ð0:2739 × CALR
expressionÞ + ð0:352 × AHNAK expressionÞ+ð−0:3324×CPT
1B expressionÞ + ð0:164 × FADS2 expressionÞ. Patients were
then categorized into high- and low-risk groups in accordance
with the median PPARscore. PCA and t-SNE analyses also
displayed the various dimensions between the high-risk group
and the low-risk group (Supplementary Figures 2(a) and 2(b)).
The prognosis of patients in the low-risk group was
significantly superior to those in the high-risk group
(P < 0:05) (Figure 4(a)). Time-dependent ROC analysis
suggested that the AUC values for 1-, 3-, and 5-year survival
of PPARscore in the TCGA dataset were 0.647, 0.688, and
0.694, respectively (Figure 4(b)). These results indicated that
the PPAR signature might have a certain applicability in
predicting the outcomes of patients with BLCA. Additionally,
the heatmap of the expression profiles of four genes showed
that CALR, AHNAK, and FADS2 were highly expressed in
the high-risk group, while CPT1B was elevated in the low-
risk group (Figure 4(c)).

3.4. Validation of the PPAR Signature. In GSE13507, survival
time and status from 165 patients with BLCA were applied
to validate our constructed signature. The PPARscore of
each patient was generated with the same approach as
before, and patients were classified into high- and low-risk
groups in accordance with the median PPARscore. PCA
and t-SNE analyses displayed the diverse dimensions
between the high-risk group and the low-risk group (Supple-
mentary Figures 2(c) and 2(d)). K-M curve analysis
indicated that the prognosis of patients in the low-risk
group was significantly superior to those in the high-risk
group (P < 0:05) (Figure 5(a)). Time-dependent ROC
analysis suggested that the AUC values for 1-, 3-, and 5-
year survival of PPARscore in the TCGA dataset were
0.630, 0.672, and 0.671, respectively (Figure 5(b)).
Similarly, in GSE32894, 224 patients containing survival
time and status were served as another external validation
dataset. The results of GSE32894 were also consistent with
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Figure 2: Volcano map showed the differentially expressed PPAR-
targeted genes (DEPPARGs). The red plots represented the
upregulated genes, the blue plots represented the underregulated
genes, and the black plots represented no statistically differentially
expressed genes with the criterion of FDR < 0:05 and ∣log 2 FC ∣ >
1. FDR: false discovery rate; FC: fold change.

Table 1: The 11 small-molecule drugs of CMP database analysis.

cmap name Mean n Enrichment P value
Percent
nonnull

Vorinostat -0.766 2 -0.995 0.00008 100

Cinchonine -0.697 2 -0.983 0.00058 100

Helveticoside -0.83 2 -0.982 0.0007 100

Lanatoside C -0.818 2 -0.981 0.00082 100

Idoxuridine -0.64 2 -0.963 0.00304 100

Niclosamide -0.621 2 -0.959 0.00368 100

Ampicillin -0.607 2 -0.958 0.0038 100

Epitiostanol -0.595 2 -0.952 0.00497 100

Tiapride -0.652 2 -0.972 0.00159 100

Pyrimethamine -0.57 2 -0.935 0.00891 100

Cephaeline -0.521 2 -0.879 0.00347 100
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the previous results (Figures 5(e) and 5(f)). Taken together,
all these results revealed that the PPAR signature might
serve as a potential biomarker for predicting the outcomes
of BLCA patients.

3.5. GSEA. To further illustrate the molecular mechanisms of
PPAR signature, GSEA analysis was conducted. The results
of GSEA analysis indicated that focal adhesion, pathways
in cancer, GAP junction, chemokine signaling pathway,
WNT signaling pathway, TGF-β signaling pathway, steroid
biosynthesis, bladder cancer, MAPK signaling pathway,

and calcium signaling pathway were mainly enriched in
the high-risk group, suggesting that patients of high-risk
groups were notably related to cancer-related signaling path-
way, while oxidative phosphorylation and cardiac muscle
contraction were highly enriched in the low-risk group
(Supplementary Figure 3).

3.6. Immune Landscape of the PPAR Signature. To explore
whether PPAR signature could illustrate the characteristic
of tumor immune microenvironment, ESTIMATE and
CIBERSORT algorithms associated with immune cell
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Figure 3: Identification of DEPPARGs correlated with prognosis in the TCGA dataset. (a) Identification of the prognostic DEPPARGs by
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infiltration were conducted. The results of ESTIMATE sug-
gested that patients with high PPARscore displayed a higher
immune score, stromal score, and ESTIMATE score than
patients with low PPARscore (Figure 6(a)), which indicated
that PPARscore might be correlated with the tumor micro-

environment. Furthermore, the results of CIBERSORT
revealed that the proportions of CD8+ T cell, Tregs, plasma
cell, and T cells gamma delta were obviously higher in
patients with low PPARscore, while the proportions of M2
macrophages and M0 macrophages were remarkably higher
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Figure 5: Continued.
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in patients with high PPARscore (Figure 6(b) and Supple-
mentary Figure 4). In addition, we also compared the
expression of key immune checkpoints between two groups
and found that immune checkpoints (PD-L1, LAG3, TIGIT,
and HAVCR2) were upregulated in the high-risk group,
while the expressions of CTLA4 and PD-1 were no different
among two groups (Supplementary Figure 5). All these
results uncovered that the PPAR signature might be
implicated in the tumorigenesis and progression of BLCA
via regulating the infiltrating distribution of immune cells.

3.7. Chemotherapeutic Response Analysis. To improve the
therapeutic effect of BLCA patients, we further investigated
whether our PPAR signature could predict the sensitivity
to several common chemotherapy drugs between two
groups. The results of GDSC database analysis suggested that
IC50 values of chemotherapy drugs including Bleomycin,
Mitomycin C, Gemcitabine, Cyclopamine, Docetaxel, Cis-
platin, Thapsignargin, Paclitaxel, Rapamycin, Parthenolide,
Vinblastine, and Doxorubicin were elevated in patients with
low PPARscore compared to those with high PPARscore,
which indicated that patients with high PPARscore were
much more sensitive to these chemotherapy drugs (Figure 7).

3.8. Relationship between PPAR Signature and Clinical
Characteristics. To improve the clinical management of
BLCA patients, we also explored the correlation between
PPARscore and clinical characteristics in the TCGA dataset.
Heatmap displayed the distributions of clinical characteris-
tics including tumor grade, tumor stage, gender, age, N
stage, and T stage between two groups, and obvious differ-
ences were observed in tumor grade, tumor stage, T stage,
and N stage (Figure 8(a)). In addition, the boxplot exhibited
the significant correlation between PPARscore with the
poorer clinical characteristics (T3-T4 stage, N1-N2-N3

stage, stage III–IV, and grade high) (Figure 8(b)). These
results suggested that PPARscore might be related to the
progression of BLCA.

3.9. Construction of a Nomogram. Univariable and multivar-
iable Cox analyses were applied to further explore whether
PPARscore could be an independent prognostic indicator
for BLCA patients. The result of univariable Cox analysis
indicated that PPARscore, tumor stage, tumor grade, T
stage, and N stage were obviously correlated with outcomes
of BLCA patients (Figure 9(a)). The result of multivariable
Cox analysis showed that PPARscore and age were still asso-
ciated with outcomes of BLCA patients, which suggested
that the PPARscore model could be an independent prog-
nostic factor of BLCA patients (Figure 9(b)). Furthermore,
multiparameter ROC curve analyses showed that the AUC
value of PPARscore was 0.694 (Figure 9(c)), which suggested
that PPARscore was superior to traditional clinical prognos-
tic indicators in predicting outcomes. In addition, the results
of subgroup analyses stratified by various clinical character-
istics indicated an obviously shorter survival probability in
patients with high PPARscore among various clinical
characteristics except T1-T2 stage, and stage I-II subgroups
(Supplementary Figure 6). Based on the result of
multivariable Cox analysis, PPARscore and age were
incorporated to construct a nomogram to preferably
predict the survival ability of 3 and 5 years (Figure 10(a)).
The calibration curves suggested that the nomogram
exhibited the well performance in forecasting the prognosis
(Figures 10(b) and 10(c)).

4. Discussion

In the current study, the expression pattern of PPAR-
targeted genes could predict the outcomes of in BLCA, and
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Figure 5: Validation of the PPAR signature in the GEO dataset. (a–e) Kaplan-Meier curve showed that low-risk patients had better survival
compared with the high-risk patients. The distribution of overall survival between the high-risk group and the low-risk group. The
distribution of PPARscore between the high-risk group and the low-risk group ((a) GSE13507; (e) GSE32894); (b–f) time-independent
receiver operating characteristic (ROC) analysis for evaluating the predictive performance of PPARscore ((b) GSE13507; (f) GSE32894);
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blue box represented the GSE13507 dataset; the red box represented the GSE32894 dataset.
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four genes were applied to further construct and validate a
prognostic PPARscore. Furthermore, PPARscore was also
available in predicting sensitivity to chemotherapy drugs.
In addition, PPARscore was also correlated with adverse
clinical features and immune cells. In GSEA analysis, PPAR-
score was observed to be implicated in various signaling
pathways correlated with tumorigenesis.

Four genes were incorporated in our signature (CPT1B,
CALR, FADS2, and AHNAK). Carnitine palmitoyltransfer-

ase 1B (CPT1B), a crucial enzyme of long-chain fatty acid
β-oxidation and also a member of the PPAR pathway, has
been found to be underexpressed in high-grade BLCA. In
addition, the overexpression of CPT1B could inhibit the
proliferation and metastasis of BLCA cells by accelerating
fatty acid metabolism and reducing epithelial-mesenchymal
transition (EMT) [13]. Calreticulin (CALR), a crucial
member of endoplasmic reticulum (ER) chaperones, was
positively related to superior prognosis owing to the
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activation of anticancer immune in various cancers [14–17].
CALR overexpression was obviously related to advanced
grade and poor prognosis in BLCA [18, 19]. Fatty acid desa-
turase 2 (FADS2), a key enzyme of polyunsaturated fatty
acid (PUFA) metabolism, was involved in multiple diseases
including cancer. FADS2 was adversely related to prognosis
in BLCA by bioinformatic analysis [20]. In addition, Jiang
et al. also reported that FADS2 might serve as a ferroptosis

suppressor [21]. The aberrant expression of AHNAK has
been reported in various cancer [22–26]. For example,
AHNAK overexpression inhibited the TNBC cell prolifera-
tion and lung metastasis by partly regulating the Wnt/β-
catenin signaling pathway.

Subsequently, we performed GSEA analysis to further
disclose the mechanism of PPAR signature in BLCA. The
results confirmed that PPAR signature was involved in
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Figure 8: The correlation between the risk scores and clinicopathological factors. (a) Heatmap showed the relative expression of the risk
score in BLCA patients at various clinical features, including age, gender, tumor grade, TNM stage, T stage, and N stage. ∗∗∗P < 0:001
<∗∗P < 0:01<∗P < 0:05; (b) boxplot showed the relative expression of the risk score in BLCA patients at subgroups stratified by age,
gender, tumor grade, TNM stage, T stage, and N stage.
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Figure 9: Continued.
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cancer-related pathways including focal adhesion, pathways
in cancer, WNT signaling pathway, TGF-β signaling path-
way, bladder cancer, and MAPK signaling pathway. There-
fore, PPAR signature could serve as a predictor for BLCA
prognosis and might play a critical role in BLCA biology.

Numerous evidences have proven the crucial influence
of tumor microenvironment upon the progression, progno-
sis, and therapy in BLCA. The higher infiltration level of
CD8+ T cells was positively correlated with better prognosis
[27–29]. Increasing evidence suggests that M2 macrophages
could accelerate the malignant progression and distant
metastasis [30, 31]. Furthermore, M2 macrophages were also
correlated with the immunosuppressive microenvironment
and unfavorable prognosis [32, 33]. T cells gamma delta,
also known as γδ T cells, were characterized with the antigen
specificity and NK-like cytotoxicity. γδ T cells can recognize
and present tumor antigen in a major histocompatibility
complex- (MHC-) independent manner, and activated γδ
T cells could enhance the antitumor activity of adaptive
immune cells [34, 35]. In addition, γδ T cells also have been
reported to be related to favorable prognosis [36]. Neverthe-
less, some studies have reported that γδ T cells facilitated
tumor progression by promoting angiogenesis, recruiting
inhibitory cells, and enhancing the apoptosis of antitumor
immune cells [37–39]. γδ T cells played an important role
in antitumor activity of intravesical bacillus Calmette-
Guérin (BCG) against BLCA [40, 41]. γδ T cells also can
heighten the carboplatin-induced cytotoxicity to BLCA
[42]. Our results also suggested that PPAR signature dis-
played the strong correlation with tumor microenvironment
as well as immune cell infiltration. Furthermore, the results

showed that CD8+ T cell, Tregs, M0 and M2 macrophages,
plasma cell, and T cells gamma delta were significantly
distinct between high- and low-risk groups. Patients with
high PPARscore had more proportions of M0 and M2
macrophages while patients with low PPARscore had more
proportions of CD8+ T cell, plasma cell, and T cells gamma
delta. In addition, immune checkpoints including PD-L1,
HAVCR2, TIGIT, and LAG3 in the high-risk group were
also higher than those in the low-risk group, which indicated
that patients in the high-risk group might belong to the
“hot” tumor that was tended to benefit from immune check-
point inhibitor therapy [43]. Furthermore, based on the
results of the GDSC database, patients in the high-risk group
also might benefit from chemotherapy drugs including Bleo-
mycin, Mitomycin C, Gemcitabine, Cyclopamine, Docetaxel,
Cisplatin, Paclitaxel, Rapamycin, Parthenolide, Vinblastine,
and Doxorubicin.

We found that eleven small molecule drugs, such as
vorinostat, cinchonine, helveticoside, lanatoside C, tiapride,
idoxuridine, niclosamide, ampicillin, epitiostanol, pyrimeth-
amine, and cephaeline, could improve the therapeutic effect
of BLCA patients. Pyrimethamine, an antimalarial drug, has
been observed to inhibit the proliferation and induce the
apoptosis in various cancers [44–46].

Of course, there were also several disadvantages in our
study. On one hand, the prognostic PPAR signature was
constructed and validated only by public database and retro-
spective research and required to be verified through a
prospective trial. On the other hand, the molecular mecha-
nisms of PPAR signature in BLCA should be further
validated by in vivo or in vitro experiments.
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Figure 9: The PPAR signature was an independent prognostic factor for BLCA in the TCGA set. (a) The univariate Cox analysis for
evaluating the independent prognostic value of PPAR signature; (b) multivariate Cox analysis for evaluating the independent prognostic
value of PPAR signature; (c) ROC curve analyses of the clinical characteristics and risk score.
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Figure 10: Establishment of the nomogram in the TCGA dataset. (a) Nomogram based on the PPARscore and age; (b) the 3-year calibration
plot for the nomogram; (c) the 5-year calibration plot for the nomogram.
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5. Conclusion

We comprehensively explored the clinical significance of
PPAR-targeted genes and constructed and validated a novel
PPAR signature, which showed the excellent performance in
predicting prognosis and chemotherapy sensitivity of BLCA
patients. Furthermore, we also investigated the correlation
between PPAR signature and tumor microenvironment.
Finally, several small molecule drugs were identified for the
treatments of BLCA patients. All these results uncovered
the crucial role of PPAR in BLCA progression and provided
novel directions for BLCA therapeutic intervention.
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