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Image-based phenotyping of disaggregated cells
using deep learning
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The ability to phenotype cells is fundamentally important in biological research and medicine.
Current methods rely primarily on fluorescence labeling of specific markers. However, there
are many situations where this approach is unavailable or undesirable. Machine learning has
been used for image cytometry but has been limited by cell agglomeration and it is currently
unclear if this approach can reliably phenotype cells that are difficult to distinguish by the
human eye. Here, we show disaggregated single cells can be phenotyped with a high degree
of accuracy using low-resolution bright-field and non-specific fluorescence images of the
nucleus, cytoplasm, and cytoskeleton. Specifically, we trained a convolutional neural network
using automatically segmented images of cells from eight standard cancer cell-lines. These
cells could be identified with an average F1-score of 95.3%, tested using separately acquired
images. Our results demonstrate the potential to develop an “electronic eye” to phenotype
cells directly from microscopy images.
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ancer cell lines have been extensively used to model the
disease as well as to screen for potential therapeutic agents.
However, since cancer is such a heterogeneous condition,

the ultimate utility of these cancer cell line models depends on the
ability to accurately classify them. Cancer cell lines are primarily
classified based on the histopathology of the original tumor but
subtyping of the cell lines may require lengthy molecular and
genetic profiling!~%. Immunofluorescence phenotyping has con-
tributed to reducing the burden for cell line classification but
immunofluorescence relies on the expression of specific cell
surface antigens, which is expensive and error-prone, despite
efforts in standardizing staining, data collection and automation
of analysis®. Specifically, immunofluorescence phenotyping may
be undesirable because: (1) phenotyping markers may be una-
vailable or lack specificity, (2) the sample may be too hetero-
geneous, (3) number of markers required may exceed the number
of available fluorescence channels that can be detected, and (4)
specific labeling may affect the cell in undesirable ways, such as
activation or loss of viability. In many of these situations, an
important question is whether individual cells could be pheno-
typed directly using microscopy images without specific labeling.
Previous approaches for image-based cell phenotyping typi-
cally rely on manual feature engineering, which involves
extracting specific image features from each cell, such as size,
shape, and texture of the nucleus and cytoplasm®’. Machine
learning approaches, such as support vector machines or neural
networks, are then used to classify cells using these features.

a

C Input Conv Pool Conv Pool
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The ability to identify specific phenotypes using this approach is
limited because the feature extraction methods must be manually
designed, limiting the feature complexity which in turn restricts
the ability to distinguish between similar phenotypes. Addition-
ally, feature extraction from microscopy images is a highly vari-
able process that depends on many manually tuned parameters.
In order to address these issues, machine learning approaches
have been used to phenotype cells directly using microscopy
images®®. However, previous phenotyping studies have been
restricted to broad cell groups, such as lymphocytes, granulocytes,
and erythrocytes, that have morphologies easily distinguishable to
the human eyelO-13, Phenotyping cells with more subtle
morphologies has been largely restricted to binary classification in
order to detect specific alterations resulting from disease!%»14-17.
Another approach is to use brightfield microscopy images to
predict the location of immune-stains on sub-cellular structures
in order to identify organelles!8-21. However, a further step is
required to interpret these stains to establish the cell phenotype.

A key challenge in developing machine learning algorithms for
classifying cells from microscopy images is segmenting larger
microscopy fields into single-cell images. Specifically, adhesion
cells are notoriously difficult to segment because they grow
next to one another making their boundaries difficult to distin-
guish?2-24, This segmentation problem could be dramatically
simplified by enzymatically disaggregating cells prior to imaging.
However, it is currently unclear if phenotypic information is
sufficiently preserved in disaggregated cells.
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Fig. 1 Segmentation and network design. a Sample widefield microscopy image taken on a Nikon TI-2E with a QI2 Camera. The three fluorescent channels
are showing nuclear (Hoechst), cytoskeleton (SiR-Actin) and cytoplasm (Calcein). b Sample segmented 75 x 75 (55.5 x 55.5 pm) single-cell images.
Channels shown from left to right are brightfield, Hoechst, SiR-Actin and Calcein. € Network model where the number of grey boxes represents the size of
the kernel being used for each convolution layer with a stride of one. Not shown in the image is that after every convolution or fully connected layer is a
ReLU activation and batch normalization as well as dropout of 20% after each fully connected layer.
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Here, we show disaggregated cells can be phenotyped with a
high degree of accuracy from bright-field and non-specifically
stained microscopy images using a trained convolutional neural
network (CNN). We trained the CNN using 75x75 pixel
brightfield and fluorescence microscopy images of individual cells
from eight standard cancer cell lines. All cells were non-
specifically stained to identify their nucleus (Hoechst), cyto-
plasm (Calcein), and cytoskeleton (SiR-actin). The resulting
images were indistinguishable to the human-eye, but the CNN
was able to classify the cells with a cross-validation accuracy of
96.0 £0.8%. We further tested the network using separately
prepared cell images and achieved an F1-score of 95.3%. Finally,
to investigate the generality of this approach, we imaged cells
using a different microscopy system and camera, and then clas-
sified the cell images using transfer-learning and achieved an F1-
score of 96.0%. This work demonstrates the potential to develop
an “electronic eye” to phenotype both adherent and suspension
cells based on brightfield and non-specific fluorescence images
without the need for specific markers.

Results

Imaging. To acquire a training set for deep-learning, we imaged
8 standard cancer cell lines. These cell lines were derived from
colorectal (HCT-116) and prostate (PC3) carcinoma, prostate
(LNCaP) and mammary (MCF7) adenocarcinoma, osteosarcoma
(U208), as well as neutrophilic (HL60), monocytic (THP-1) and
T-cell (Jurkat) leukemia. All cells were seeded in 96-well imaging
plates and stained using DAPI to visualize the nucleus, Calcein-
AM to assess cell viability and cytoplasmic morphology via
intracellular esterase activity, and SiR-Actin incorporation to
visualize cytoskeletal morphology. Following staining, the cells
were imaged using a 10X objective on a Nikon Ti-2E microscope
and DS-Qi2 camera, to acquire fields of 2424 x 2424 pixels.

Segmentation. We developed a Python program to extract 75 x
75 x 4 pixel images of individual cells from wide-field microscopy
images. Our program first identified the locations of individual
cells by identifying cell nuclei using an Otsu threshold on the
DAPI channel (Fig. 1a). Small 75 x 75 x4 pixel image patches
centered on each of the nuclei were then cropped out and fed
through a series of tests to reject images containing multiple cells,
nuclei, dead cells and debris. First, image patches containing a cell
that did not have adequate Calcein-AM present were rejected as
non-viable. Second, the watershed algorithm was used on each
candidate image patch to determine if multiple objects were
present in the nuclear or cytoplasm channels; these were rejected
if multiple objects were detected as only single-cell images were
desired. Third, any image-patches containing separate fluores-
cently stained debris, potentially from dead cells, were rejected.
Finally, a minimum fluorescence emission threshold (Otsu) was
used to ensure each image had the three fluorescent stains pre-
sent. Together, this digital processing automatically produced a
set of high-quality single-cell images with adequate staining from
each of the three fluorescent dyes (Fig. 1b). The total number of
successfully segmented images for each cell type is listed in
Table 1, and sample image patches are shown in Figs. S1-8.

Network design. We designed a CNN consisting of a feature
extraction and a classification section using the Keras library in
TensorFlow. The feature extraction section consists of a series of
4 convolution layers with 3 max-pooling layers. We investigated a
range of initial layer kernel sizes, as a larger kernel size is expected
to capture more robust features. However, we ultimately selected
a kernel size of 7 x 7 based on the observation that larger kernel
sizes did not greatly improve performance. Each convolution

Table 1 Size of each class in the training and testing sets.
Class Training Testing
HCT-116 7151 3306
HL60 26,298 1313
JURKAT 9208 3980
LNCAP 2555 1216
MCF7 4109 1702
PC3 4700 1908
THP-1 8656 1371
u20S 15,413 1069

layer was followed by batch normalization and ReLU activation.
The classification section of the network consisted of 3 fully
connected layers followed by a smaller fully connected output
layer. Each of the 3 fully connected layers was followed by batch
normalization, ReLU activation and 20% dropout. The output of
the model used a SoftMax error function for backpropagation
during training.

Training. The training accuracy of a network typically sets a
ceiling on the expected outcome of validation accuracy. There-
fore, the goal of network design is to reduce the gap between
training and validation accuracy. We trained our CNN using a
balanced dataset of 10,000 images from each cell phenotype. The
dataset was balanced to avoid biasing training results. Classes
containing >10,000 cell images were sub-sampled, while classes
containing <10,000 cell images were augmented using random
integer multiplications of 90-degree rotations. The network was
trained over 25 epochs on the dataset. The network was able to
train quickly with no volatility due to pairing batch normalization
with a small amount of dropout between layers (Fig. 2a). The
batch normalization prevented runaway weights and reduced
model training time while dropout prevented convergence on
local minimums. The final training accuracy for the four-channel
model was 98.2%, while the training accuracies were lower for
individual channels of brightfield (92.2%), nucleus (91.6%),
cytoplasm (95.0%), and cytoskeleton (95.3%).

Cross-validation. We initially validated our results using
exhaustive five-fold cross-validation. The training-set were ran-
domly divided into five groups. The CNN was trained on four of
the groups and tested on the fifth at the end of each epoch. The
process was repeated four times, once for each combination. The
five-fold cross-validation accuracy for the four-channel model
plateaued after 25 epochs with an average accuracy of 96.0 +0.8%
(Fig. 2b). The three fluorescent channels achieved similar results
with an average accuracy of 85.2+1.25%. The classification
accuracy for the brightfield channel was significantly lower at
48.1 £16.0%. The accuracy of the four-channel model combined
with its low variability suggests a high level of confidence in the
classification accuracy of the model.

Testing. A key concern in assessing classification accuracy using
five-fold cross-validation is the potential for batch effects where
sampling artifacts are used by the model for classification®>. To
address this concern, we separately prepared and imaged more
cells from the same cell lines, and then classified them using our
trained CNN’s. Each test set contained 500 randomly sampled
images from each class in order to obtain a balanced test set.
Using this approach, we found the four-channel model achieved
an accuracy of 96.3% (Fig. 2¢), which is very similar to the cross-
validation accuracy (Fig. 2b). The classification accuracy of the
cytoplasm and cytoskeleton channels were 87.3% and 90.2%,
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Fig. 2 Training and Testing. a Training accuracy results of the five models. Each model was trained over 25 epochs on a balanced dataset of 80,000
images. b 5-fold exhaustive cross-validation results of the five models. The four-channel model reached a classification accuracy of 96% with a standard
deviation of 0.8% after 25 epochs. ¢ Testing results of each of the five models, tested on 500 images of each class, sampled from a new dataset that was
separately prepared and imaged. The four-channel model achieved classification accuracy of 96.3%. d ROC curve displaying the macro-average trend

across classes for each of the five models. The macro-average was computed from the results of each individual classes ROC curve, calculated using a one-

vs-all approach.

which is also similar to cross-validation results. The nuclear
channel had a much more volatile trend of testing accuracy
compared to cross-validation suggesting there may have been
some batch effects in the cross-validation results. The brightfield
channel performed as expected with a final accuracy of 37.7%.

Contributions from individual channels. To investigate the
amount of information our method gains by incorporating
fluorescent images we trained four networks using either the
brightfield or one of the fluorescence channels and compared the
classification accuracy with our four-channel model. The results
show that the brightfield channel performed the worst out of all
channels, implying that the channel had the least relevant
information for classification (Fig. 2b-d). We believe this result
stems from the brightfield channel only giving insight into the
external morphology of cells, which is less distinctive because of
disaggregation by trypsin, whereas the fluorescent channels pro-
vided insight into the internal structure of the cell. The nuclear
channel was found to have the second lowest classification
accuracy, which likely stemmed from the lower morphological
diversity of nuclei. Finally, the cytoplasmic channel has the
greatest single channel classification accuracy, which suggest the
greatest amount of phenotypic information in this channel.

ROC curve. To investigate how the model would perform
in situations were the number of true positive or false positives is
of great importance we computed a receiver operating char-
acteristic (ROC) curve (Fig. 2d). The ROC curve was computed
by analyzing the output probabilities of the model in a one-vs-all
fashion, for each class, then computing the macro-average for
each model. The resulting graph shows that the four-channel
model had extremely high sensitivity and specificity. The ability

to exchange sensitivity and specificity will be useful for applica-
tions, such as rare cell detection, that can tolerate some false
positives to capture more true positives. In these results we can
see that the cytoplasm and cytoskeleton models are also effective
but would have to accept much higher fraction of false positives
to achieve a similar yield of true positives.

Confusion matrix. To summarize the classification accuracy
results for each cell line, we superimposed a confusion matrix on
plots of the cumulative distribution for each class and data
combination to show the uniformity of the classification prob-
abilities (Fig. 3b). These distribution curves show the confidence
of the classification. For example, when the class is predictive of
the data, the inference probability function is heavily skewed
towards 1 (Fig. 3ai). When the class is unpredictive of the data,
the inference probability function is heavily skewed towards 0
(Fig. 3aii). When the class is partially predictive of the data, the
distribution function had an in-between shape (Fig. 3aiii). The
overlapping confusion matrix shows the resulting number of
samples that were classified into each class on the entire unba-
lanced testing dataset (Fig. 3b). The classification results are
summarized in Table 2, reporting the precision, recall and F1-
score for each class. The average Fl-score was 95.3%, with the
best performing class, HCT, having an Fl-score of 98.8% and
the worst performing class, LNCaP, having a score of 90.5%. The
LNCaP’s lower score corresponded with it having the lowest
number of training samples (2,555 samples).

Clustering. We clustered the cell images via t-distributed sto-
chastic neighbor embedding (t-SNE) plots. Using the output of
the layer preceding the final output layer, we removed the final
layer from the model and recorded the 128-feature output of the
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Fig. 3 Classification accuracy and clustering. a Example cumulative frequency probability distributions for when the model is predictive (i), unpredictive
(i), and partially predictive (iii) of the class. b Confusion matrix of the entire testing dataset. Diagonal values correspond to classification accuracy (recall).
Graphs in each position are the cumulative frequencies of classification probabilities for the corresponding classes. ¢ t-SNE graph computed from the 128-
features extracted from the layer preceding the final classification layer for each image in the testing dataset.

Table 2 Result metrics from the testing dataset.

Class Precison Recall F1-score
HCT-16 0.994 0.981 0.988
HL60 0.970 0.932 0.951
JURKAT 0.969 0.989 0.979
LNCAP 0.940 0.873 0.905
MCF7 0.950 0.969 0.960
PC3 0.960 0.981 0.970
THP-1 0.963 0.931 0.947
u20s 0.896 0.953 0.924
AVERAGE 0.955 0.951 0.953

layer. We then used t-SNE with a perplexity of 64 and 2000
iterations, to visualize this higher dimensional data in a two-
dimensional graph (Fig. 3c). The graph shows that the model is
able to cluster the classes into individual clusters with high
separation. This separation is a visualization of the extracted
feature quality, demonstrating that sufficient information is not
only present but ideal for classification. In addition, the quality of
the clusters suggests that classical machine learning approaches
could be used to separate the classes, using these learned features,
with high confidence.

Classifying and clustering previously unseen cells. To investi-
gate how our CNN might respond to previous unseen cell types,
we systematically designated a single-cell line as the previously
“unseen cell line” and trained the CNN using only the seven other
cell lines. We then classified the unseen cell line against these
trained cells. This process was repeated by omitting each indivi-
dual cell line and then classifying it against the remaining cells,
allowing us to construct a matrix of cumulative classification
probabilities (Fig. 4a). The majority of the resulting probability
distributions had the shape of an unpredictive class similar to
Fig. 3aii. However, for each class, there were one or two prob-
ability distributions functions that were partially predictive,
similar to Fig. 3aiii. Interestingly, these partially predictive classes
were generally from a cell line related to the queried cell line. For
example, HL60 leukemia cells were partially classified as Jurkat
and THP-1 cells, which are also leukemia cell lines. Similarly, the
epithelial breast cancer cell line, MCF-7 were partially classified as
LNCaP and PC3 cells, which are epithelial prostate cancer cell

lines. In some cases, the cell lines did not show lineage-specific
classification. LNCaP classified with both Jurkat T-cell line as well
as MCF-1 mammary adenocarcinoma line. However, this result
may reflect the fact that LNCaP had the smallest training set and
the lowest classification accuracy during the validation experi-
ments. U20S also classified with both leukemia and carcinoma
cells but this likely reflects the fact that there were no other
sarcoma cell lines for comparison.

Using the data generated by querying each cell line against the
other seven cell lines, we visualized the clustering of each query
cell line using t-SNE plots (Fig. 4b). In this visualization, the
queried cell lines formed well-separated clusters from trained cell
lines and were generally located near cell lines of a similar lineage.
For example, clusters for MCF-7 cells were located near LNCaP
and vice versa. Similarly, clusters for HL60, Jurkat, and THP-1
were located near each other. These plots demonstrate that the
features learned from the other seven cell-lines have the potential
to represent new phenotypes in biologically relevant ways.

Generality of approach. To investigate the generality of our
approach, we imaged four cell lines using a different microscopy
system and then classified them using transfer learning. Specifi-
cally, we imaged the cells using a Nikon Ti-E microscope with a
QImaging camera and 20x objective. The higher magnification
objective approximately compensated for the larger pixel size of
the QImaging camera, enabling reuse of the same network
architecture. The transfer-learning and testing datasets were
acquired following the previous protocol in order to capture the
feature and illumination variance in each of the imaging channels
(Table 3). The originally learned convolution layers, which were
de-activated during training, perform exceptionally well on clas-
sifying the images from the new imaging system, achieving final
testing accuracies of 96.1% (4-channel), 68.1% (Brightfield),
88.8% (Nuclear), 81.8% (Actin) and 83.5% (Cytoplasm) (Table 4).
Importantly, the transfer parameters converged quickly, demon-
strating the generalizability of the previously trained convolution
layers (Fig. 5a). The confusion matrix also showed slightly higher
specificity, while the t-SNE plot shows greater separability of
different phenotypes (Fig. 5b, c). These results confirm that the
original convolution layers were trained on biologically relevant
features for distinguishing different cell phenotypes, demon-
strating the generality of our approach for image-based cell
phenotyping.
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Fig. 4 Classification and clustering of previously unseen cell lines. a Classification probability distribution functions for each cell line when it is withheld
from training. b t-SNE plots of each cell line when it is withheld from training. The withheld class is shown in black, while the trained cell lines are labeled

corresponding to Fig. 3c.

Table 3 Size of each class in the transfer-learning training
and testing sets.

Class Training Testing
JURKAT 4661 1003
LNCAP 4123 1135
RAJI 5544 1627
THP-1 3151 1562

Table 4 Result metrics from the transfer-learning testing
dataset.

Class Precison Recall F1-score

JURKAT 0.918 0.977 0.946

LNCAP 0.985 0.974 0.979

RAJI 0.956 0.936 0.946

THP-1 0.973 0.962 0.967

AVERAGE 0.958 0.962 0.960
Discussion

In this study, we investigated whether deep-learning could phe-
notype single cells directly from microscopy images that are
unidentifiable to the human eye. In contrast to traditional
immunophenotyping where cell identities are determined using
cell-specific antigen profiles, this study employed the distinct
strategy of staining cells for common features, and then using
deep-learning to distinguish cells from microscopy images. We
examined eight cell lines that were dissociated by trypsin and
stained with DAPI nuclear stain, Calcein-AM cytoplasmic stain,
and SiR-actin cytoskeletal stain. Following unaided segmentation
of microscopy images, we developed a CNN model that achieved
a five-fold cross validation accuracy of 96.0 + 0.8%, as well as an
average Fl-score of 95.3% on a separately acquired testing data-
set. To determine whether the CNN model could be used to
detect previously unseen cells, we queried each single-cell type
against a model generated by the other cell lines. While the
efficacy of this approach varied between cell lines, it was
remarkable that previously unseen cells were classified as cell lines
in related differentiation lineages.

Analyzing microscopy images of trypsin-dissociated cells pre-
sented a tremendous challenge for image analysis because the

6

enzymatic activity of trypsin protease causes cells to adopt a
common spherical morphology. However, trypsin digestion also
provides an important practical advantage, because disaggregated
cells can be more evenly dispersed in a microscopy well-plate,
which improves the robustness of the segmentation process.
Previous studies to discriminate cells based on imaging required
seeding cells on a surface, where segmentation is more complex
and cell-surface interactions can influence cell morphology?0-28
or by looking directly at histopathology tissue slides?®. Sir-
inukunwattana et al.2’ applied a deep-learning approach to
classifying cells in histopathology tissue slides and was able to
achieve an average F1-score, across 4 classes, of 78.4%. In contrast
our work demonstrated a significant improvement as we achieved
an average Fl-score, across 8 classes, of 95.3%. In addition to the
improved F1-score our expected baseline error was higher since
we had double the number of classes. Disaggregated cell samples
provide a simpler, more rapid, and more uniform imaging con-
dition. Therefore, a key contribution of this work is the finding
that images of disaggregated cells contain sufficient morpholo-
gical information necessary for phenotyping.

A potential major hurdle in robust cell phenotyping using
deep-learning is batch errors, which result from CNNs being
trained on imaging and processing artifacts that do not reflect the
biology of the cell phenotype?>. In order to minimize batch
errors, we generated the training set for each cell line from three
separately prepared and imaged samples, to allow our model to
capture variations in staining efficiency and illumination. We
then ensured that our results were not biased by testing our CNN
on a fourth separately prepared and imaged dataset. This further
round of testing was important as it avoided the potential biasing
in our five-fold cross-validation as each fold was generated by
randomly sampling the training set. To evaluate the generality of
our approach, we further imaged cells using an alternate micro-
scopy system and camera, and then phenotyped the cells using
transfer-learning. These cells were classified with an Fl-score of
96.0% across four classes, which confirmed that our CNN was
trained on biologically relevant features that could be used to
identify each cell phenotype.

Together, this work demonstrates a generalizable deep-learning
strategy that can classify cells based on unspecific fluorescence
images, rather than specific antigens. This finding is important
because immunophenotyping can be an expensive and error-
prone process, despite efforts in standardizing staining, data
collection, and automation of analysis®>. We observed that the
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Fig. 5 Transfer-learning. a Transfer-learning convergence on images acquired using a different microscopy system. Final testing accuracy were 96.1%
(4-channel), 68.1% (Brightfield), 88.8% (Nuclear), 81.8% (Actin), and 83.5% (Cytoplasm). b Confusion matrix of the new testing dataset, classified using
the four-channel transfer model. Diagonal values correspond to classification accuracy. Graphs in each position are the cumulative frequencies of
classification probabilities for the corresponding classes. € t-SNE graph computed from the 128-features extracted from the layer preceding the final

classification layer for each image in the transfer-learning testing dataset.

morphological differences between cells may not need to be
apparent to the naked eye in order to be sufficient for cell clas-
sification. Consequently, we have developed an approach for
using disaggregated cells, similar to the preparation employed in
standard laboratory flow cytometry, to establish rapid and robust
image-based cell phenotyping of cells. With this capability, it
might be possible to develop a model for the 200+ known cell
types in the human body in order to detect previously unknown
phenotypes or detect phenotypic shifts that occur because of
disease or treatment.

Methods

Sample preparation. A total of 8 cancer cell lines were used in this study.
Adherent cell lines were prostate derived cancer cell lines PC3 (ATCC CRL-1435)
and LNCaP (ATCC CRL-1740), breast cancer MCF7 (ATCC HTB-22), colon
cancer HCT 116 (ATCC CCL-247) and bone osteosarcoma U20S (ATCC HTB-
96). Suspension cell lines were leukemic T-cell lymphoblast Jurkat E6.1 (ATCC
TIB-152), acute myeloblastic leukemic HL-60 (ATCC CCL-240) and acute
monocytic leukemia THP-1 (ATCC TIB-202). All adherent cells, except LNCaP,
were cultured in Dulbecco’s Modified Eagle Medium (DMEM) with 4.5 g/L p-
Glucose and 1-Glutamine (Gibco), emented with 10% Fetal Bovine Serum (FBS,
Gibco) and 1X Penicillin/Streptomycin (P/S, Gibco). All other cells were cultured
in RPMI Medium 1640 with L-Glutamine, supplemented with 10% FBS and 1X P/S.
All cells were incubated in T-75 flasks (Corning) at 37 °C with 5% CO2. When
needed, the adherent cell lines were released from the flasks with Trypsin-EDTA
(0.25%, Gibco) and then washed twice in complete media twice, prior to resus-
pension for staining. Suspension cells were also washed twice in complete media.
After resuspension, cells were stained with 5 ug/mL Hoechst 33342 (H3570, Invi-
trogen), 50pM SiR-actin (CY-SC001, Cytoskeleton), and Live Green, 2 pg/mL
Calcein AM (C1430, Invitrogen), incubated at 37 °C with 5% CO2 for 1 h and then
washed twice in PBS. Cells were resuspended in PBS and aliquoted at low density
into Greiner Sensoplate 96-well glass bottom multiwell plates (M4187-16EA,
Sigma-Aldrich).

Microscopy. Microscopy imaging was performed using a Nikon Ti-2E inverted

fluorescence microscope. Images were acquired using a Nikon CFI Plain Fluor 10x
objective and a 14-bit Nikon DS-Qi2 CMOS camera. Images were captured using
four channels: brightfield with phase contrast, DAPI (Nikon C-FLL LFOV, 392/23

nm excitation, 447/60 nm emission and 409 nm dichroic mirror), mCherry (Nikon
C-FLL LFOV, 562/40 nm excitation, 641/75 nm emission and 593 dichroic mirror)
and EGFP (Nikon C-FLL LFOV, 466/40 nm excitation, 525/50 nm emission and
495 nm dichroic mirror). Illumination for brightfield imaging was performed using
the built in Ti-2E LED. Epifluorescence excitation was performed using a 130 W
mercury lamp (Nikon C-HGFI). Gain, exposure and vertical offset were auto-
matically determined using built-in NIS functions to avoid user biasing. Cells were
imaged in Greiner Sensoplate 96-well glass bottom multiwell plates (M4187-16EA,
Sigma-Aldrich). The concentration of cells in each well were diluted down to
~1000 cells to ensure adequate spacing between adjacent cells. An automated
procedure was run on NIS using the Jobs function to take 16 images, on each of the
4 channels, inside of each well. The images were exported from NIS to standard
TIFF format.

Segmentation. The TIFF files were segmented using a custom python script. The
script begins by extracting cell locations using a global Otsu-threshold on the
DAPI channel (nuclear stain) followed by object labeling using the SciPy library.
Images from each location are then checked for usability. Specifically, a 75 x 75
pixel bounding box is defined around the centroid of each detected object. The
75-pixel size was selected because it was sufficiently large to fit single cells from
the cell lines imaged using a 10x objective. The proposed image patches are then
put through a number of rejection tests. First, the nuclear channel is thresholded
using an Otsu threshold on the patch and the number of nuclei present is
quantified. If numerous nuclei are detected, or found on the edge of the
bounding box, the patch is rejected. The next test involves checking cell viability
and counting cell bodies in the cytoplasm channel. This is done by running an
Otsu-threshold on the cytoplasm channel and then ensuring a minimal count of
pixels is present (50 pixels). If an adequate number of pixels is not present, the
cell is assumed to be dead. Object detection is then done using the watershed
algorithm on the combination of the three fluorescent channels; if more than one
cell body is present, or if the cell body is touching the bounding box, it is
rejected. The nuclear and cytoplasm channels were than individually checked
likewise for multiple bodies and rejected if multiple objects, or objects on the
bounding box, were found. The actin channel was checked only for contact with
the bounding box as it was possible for actin filaments to be non-connected in
numerous areas of the cell body. Images from acceptable locations were nor-
malized, between 0 and 1, and added to a list of images in a numerical array. The
numerical array of images was serialized and saved in pickle format, which has a
lossless compression. This process was automatically repeated for each stack of
TIFF images in the database.
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CNN model. A CNN, shown in Fig. 1c, was designed in Python using the Keras
library in TensorFlow. The network was designed to accept a 4-channel input of size
75 x 75 pixels. The model started with a 256-channel convolution layer with a kernel
size of 7 x 7 with a stride of 1. The next layer is a 2 x 2 max-pooling layer with a stride
of 1. Next is a 128-channel convolution layer with a kernel size of 5 x 5 and a stride of
1 followed by another 2 x 2 max-pooling layer. After this is two 64-channel con-
volution layers in series, each with a kernel size of 3 x 3 and a stride of 1. These layers
are followed by a max-pooling layer of 2 x 2 and stride of 1 before being flattened for
connecting to the fully connected layers. Each convolution layer was followed by batch
normalization and ReLU activation. Three 128-node, fully connected layers, each with
ReLU activation batch normalization and 20% dropout, were used to learn on the
features extracted using the earlier convolutional layers. The output of the network
consisted of eight nodes, one for each class, with a soft-max error function used for
back propagation. Data augmentation, in the form of random integer multiplications
of 90-degree rotations, was used to up-sample the classes that had under

10,000 samples for training to ensure even classes and non-biasing during training.

Training environment. The software was run on a single computer operating

Windows 10 with an Intel i7-8700K running at 3.70 GHz. There was 64 GB of
DDR4 RAM running at 3200 MHz. The graphics card was an 8 GB GTX 1080.
Training was done in Python 3.6.8 utilizing the TensorFlow 1.13.1 library.

Training. Each iteration of the network was trained on 25 epochs, with Adam
optimization and a learning rate of 0.001. The soft-max function was used as an
error function for the backpropagation. Several different networks were trained to
show the effects of varying different parameters on the inputs. First, the dataset was
sub-sampled through cross-validation to investigate the variability of classification
accuracy as shown in Fig. 2b. Second, the input layer was modified to accept each
individual image channel to quantify the dependency of training on each channel
as shown in all of Fig. 2.

Cross-validation. To ensure the validation accuracy was accurate, five-fold
exhaustive cross validation was used. The cross validation was done by splitting the
training-set into five groups. The network was then trained five times on training
data consisting of four of the five groups. The fifth group in each training session
was used to determine a validation score. The five validation scores were averaged
at each epoch to compute the reported validation accuracies.

Confusion matrix. To identify the miss-classifications between labels a confusion
matrix was constructed. All of the images in the testing dataset were used. A class
label was predicted using the CNN and compared against the true class label. The
diagonal positions correspond to true labels, while the off-diagonal positions show
miss-classifications. The matrix was normalized by the number of images in each
class to represent the probabilistic accuracy.

t-SNE visualization. To visualize the relative clusters in our data a t-SNE plot was
constructed on all of the images in the testing dataset, using the second-to-last fully
connected layer of the network. The layer consisted of 128 nodes, giving a 128-
feature vector for each validation image. This required removing the final layer
from the network, after training, and classifying all the testing images.

ROC curve. To validate the sensitivity of the model a ROC curve was calculated on all
of the images in the testing dataset, using the probability outputs of each class. The
ROC curve was calculated for each class using the SciKit library, which required a one-
vs-all classification method in which all the other class are treated as a single group
being compared to the current class of interest. As the classes preformed similarly, the
macro-average ROC curve was calculated and displayed. The ROC curves were
summed together and divided by the number of classes to find the average accuracy.

Transfer-learning. The model can be made generalizable to other hardware setups
through the use of transfer learning. For our transfer, we utilized a Nikon Ti-E
Eclipse inverted fluorescence microscope. Images were acquired using a Nikon CFI
Plain Fluor 20x objective and a 21-bit QImaging QIClick Camera. Illumination for
brightfield imaging was performed using a 100 W halogen lamp (Ti-Dh Dia Pillar
Iuminator). Epifluorescence excitation was performed using a 130 W mercury
lamp (Nikon C-HGFI). None of the hardware used in the transfer learning
microscope had been previously used in this study. The originally trained models
were used as a starting point. The parameters in the convolution layers were fixed,
making only the fully connected layers trainable. The final classification layer was
replaced with a four-node layer, representative of the four classes (Jurkat, LNCaP,
Raji, and THP-1) in the transfer-learning study. These four classes were T-cell
lymphoblast Jurkat E6.1 (ATCC TIB-152), prostate derived LNCaP (ATCC CRL-
1740), B-cell lymphoma Raji (ATCC CCL-86), and acute monocytic leukemia
THP-1 (ATCC TIB-202). Sample preparation and training hyper-parameters were
kept the same as previously outlined.

Statistics and reproducibility. All replicate experiments are presented as a mean
+ standard deviation. The statistical analysis, and plotting, was completed in
GraphPad Prism. The T-SNE function from the scikit library was used to trans-
form the classification feature space into two dimensions. Cumulative histograms
were created in GraphPad Prism with bin sizes of 0.05.

Data availability

All imaging data that supports the findings of this study have been made available in .tif
format at https://dataverse.scholarsportal.info/dataset.xhtml?persistentld=doi:10.5683/
SP2/TDULMF3?.

Code availability
Custom software and the NIS JOB protocol have been made available at https:/github.
com/SamBerryman/Image-based-Cell-Phenotyping-Using-Deep-Learning!.
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