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Intermittent compressive force induces cell cycling and reduces
apoptosis in embryoid bodies of mouse induced pluripotent
stem cells
Jeeranan Manokawinchoke1,2, Phoonsuk Limraksasin1,2, Hiroko Okawa1, Prasit Pavasant2, Hiroshi Egusa 1,3✉ and
Thanaphum Osathanon 2✉

In vitro manipulation of induced pluripotent stem cells (iPSCs) by environmental factors is of great interest for three-dimensional
(3D) tissue/organ induction. The effects of mechanical force depend on many factors, including force and cell type. However,
information on such effects in iPSCs is lacking. The aim of this study was to identify a molecular mechanism in iPSCs responding to
intermittent compressive force (ICF) by analyzing the global gene expression profile. Embryoid bodies of mouse iPSCs, attached on
a tissue culture plate in 3D form, were subjected to ICF in serum-free culture medium for 24 h. Gene ontology analyses for RNA
sequencing data demonstrated that genes differentially regulated by ICF were mainly associated with metabolic processes,
membrane and protein binding. Topology-based analysis demonstrated that ICF induced genes in cell cycle categories and
downregulated genes associated with metabolic processes. The Kyoto Encyclopedia of Genes and Genomes database revealed
differentially regulated genes related to the p53 signaling pathway and cell cycle. qPCR analysis demonstrated significant
upregulation of Ccnd1, Cdk6 and Ccng1. Flow cytometry showed that ICF induced cell cycle and proliferation, while reducing the
number of apoptotic cells. ICF also upregulated transforming growth factor β1 (Tgfb1) at both mRNA and protein levels, and
pretreatment with a TGF-β inhibitor (SB431542) prior to ICF abolished ICF-induced Ccnd1 and Cdk6 expression. Taken together,
these findings show that TGF-β signaling in iPSCs enhances proliferation and decreases apoptosis in response to ICF, that could
give rise to an efficient protocol to manipulate iPSCs for organoid fabrication.
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INTRODUCTION
Induced pluripotent stem cells (iPSCs), which can be generated by
reprogramming of somatic cells including oral tissue cells,1

possess unlimited self-renewal property and can differentiate
into any type of cell and tissue. Therefore, iPSCs are considered to
be a promising tool not only for tissue regeneration but also for
disease modeling by in vitro fabrication of three dimensional (3D)
tissues/organs (organoids).2 Recently, technologies for engi-
neered cell manipulation have been actively investigated to
control 3D cell-cell interactions of stem cells to generate
organoids. Mechanical stress is a promising manipulation
technique for organoid formation of iPSCs.3

Mechanical force regulates numerous biological responses in
stem cells.4 Mechanical stimulation induces differentiation and
maturation of iPSCs toward bone and cartilage cell lineages.5,6

Application of shear stress to pluripotent embryonic stem cells
(ESCs) promotes endothelial cell and hematopoietic cell differentia-
tion.7 In contrast, specific hydrodynamic forces in 3D shaking
culture maintain and restore multipotency of mesenchymal stem
cell (MSC) spheroids.8 Low-intensity vibration attenuates adipogenic
differentiation in MSCs.9 Thus, the effects of mechanical force on
stem cell responses substantially depend on many factors related to

both force and cells, including force type, force magnitude,
treatment duration, cell type, and cell stage.
In the field of oral science, intermittent compressive force (ICF)

has been particularly well investigated with regard to the
regulation of cell behaviors in association with mastication, biting
or orthodontic treatments. ICF stimulates osteogenic differentia-
tion in human periodontal ligament stem cells (PDLCs) via the
transforming growth factor (TGF-β) pathway.10 In human bone-
derived cells, ICF activates the Wnt pathway and subsequently
promotes osteogenic differentiation.11 Expression of receptor
activator of nuclear factor κB ligand (RANKL) is increased under
ICF application via regulation of interleukin 1β in PDLCs.12 In
mouse pre-osteoblasts, ICF upregulates Notch target gene
expression through the TGF-β pathway.13 This evidence suggests
that ICF regulates many signaling pathways and further influences
a variety of cell responses; therefore, a systematic analysis is
required to investigate how ICF affects cell responses.
Global gene expression profiles have been investigated in

various conditions to determine the potential pathways regulated
by mechanical force. ICF-treated PDLCs show a significant change
of gene expression in focal adhesion, regulation of actin
cytoskeleton, TGF-β signaling, and cytokine-cytokine receptor
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pathways.10,14 PDLCs treated with orthodontic force exhibit
changes in cell cycle, DNA replication, immune system, and
metabolism pathways.15 Cyclic stretch treatment in embryonic
mouse cardiomyocytes leads to significant changes in gene
ontology categories related to contractile fiber parts, myofibrils,
contractile fibers, and regulation of cellular component organiza-
tion.16 In this context, the development of effective regenerative
medicine and engineered cell manipulation approaches requires
understanding of global gene expression profiles in response to
mechanical stimulation, particularly in iPSCs, which are capable of
sophisticated organoid formation in vitro. However, the effect of
ICF on iPSCs remains unknown. The present study aimed to
identify the ICF-regulated pathways in 3D-cultured mouse iPSCs
by global gene expression analysis using RNA sequencing.

RESULTS
Differential gene expression profile in ICF-treated iPSCs
To examine the pathways regulated by ICF in iPSCs in a 3D form,
embryoid bodies formed from mouse iPSCs were plated on a tissue
culture plates. During embryoid body formation, the cells were
cultured in the presence of retinoic acid to form relatively
homogeneous immature mesenchymal cell constructs.17 iPSC
constructs attached on the plates were then treated with ICF in
serum-free medium for 24 h, followed by total RNA isolation for high-
throughput RNA sequencing (Fig. 1a). After 24 h of ICF treatment,
there was no significant morphological change in the iPSC constructs
compared to the unloaded control (Fig. 1b, c). ICF did not affect cell
viability at 24 h compared with the unloaded control (Fig. 1d). ICF
treatment upregulated 893 genes and downregulated 1,076 genes.
The top 50 differentially regulated (upregulated and downregulated)
genes are shown in Fig. 1e and the top 20 significantly upregulated
and downregulated genes are shown in Table 1. Over-representation
analysis was performed and the number of genes in each gene
ontology analysis for the upregulated and downregulated genes are
illustrated in Fig. 2a–f. The differentially regulated genes were mainly
associated with metabolic process, membrane, and protein binding
in the categories of biological process, cellular component, and
molecular function, respectively.
A network topology-based analysis according to the protein-

protein interaction network BIOGRID functional database was
performed to enrich the gene ontology in the biological process
category. The top 10 enriched gene ontology categories for up-
and downregulated genes are shown in Fig. S1a and S1b. The
enriched gene ontology categories for the upregulated genes
were related to cell cycle (Fig. S1a), whereas the enriched gene
ontology categories for the downregulated genes were related to
small molecule and cofactor metabolic processes (Fig. S1b).

ICF affected the p53 and cell cycle pathways in iPSCs
Bioinformatic analysis using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database revealed several pathways regulated
by ICF. The upregulated genes were involved in the p53 signaling
and FoxO signaling pathways, whereas the downregulated genes
were involved in the HIF-1 signaling pathway (Table 2). Twenty
genes in the p53 signaling pathway (Fig. 3a) and 11 genes in cell
cycle pathways (Fig. 3b) were differentially expressed with ICF
treatment compared to the control. All 20 differentially expressed
genes shown in Fig. 3a were distributed in the pathway map of
the KEGG database for the p53 signaling pathway (map04115)
(Fig. S2), indicating that ICF affected most arms of the p53
pathway, including cell cycle (G1 arrest), apoptosis, DNA repair/
damage prevention and p53 negative feedback. Ccnd1, which
forms a complex with Cdk6 to regulate G1/S transition, was
present in the heat maps for both the p53 signaling pathway and
cell cycle (Fig. 3a, b). Cyclin G1 (Ccng1) is upregulated after DNA
damage and functions as a negative feedback system that
attenuates the activity of p53.18 Based on these results, we

focused on Ccnd1, Cdk6, and Ccng1 to validate the mRNA
expression of these genes using real-time quantitative polymerase
chain reaction (PCR) (Fig. 3c–e). ICF induced Ccnd1, Ccng1, and
Cdk6 mRNA expression in iPSCs similarly to the results of the RNA
sequencing analysis (Fig. 3c–e).
To further confirm the biological function, cell cycle analysis

using flow cytometry was performed after ICF treatment for 24 h
in serum-free medium (condition 1). ICF treatment resulted in a
reduction of the SubG0 population and increase in the S phase
population (Fig. 4b, c). After ICF, cells were maintained for 48 h in
normal growth medium (in the presence of serum) (condition 2)
and used for the cell cycle analysis (Fig. 4a). The G0/G1 population
was significantly decreased, whereas the S and G2/M populations
were markedly increased after ICF stimulation compared with the
control (Fig. 4e, f). The proliferative index was significantly
increased in both conditions (Fig. 4d, g).
The reduction of the SubG0 population with ICF treatment

implied a reduction of cell apoptosis. To confirm the reduction of
apoptosis, the cells were fluorescently stained with annexin V and
propidium iodide (PI) to identify cells in early and late apoptosis.
Flow cytometry showed that ICF significantly attenuated the
number of early apoptotic cells but did not affect the number of
late apoptotic cells (Fig. 5a, b).

ICF modulated the expression of cell cycle-related genes via TGF-β
signaling
TGF-β signaling is well known to be stimulated in stem cells by
mechanical stresses.10,19 Because Tgfb1 was identified as a cell
cycle gene differentially expressed by ICF stimulation (Fig. 3b line
3), we focused on TGF-β signaling as a possible mechanism
underlying modulation of cell cycle-related gene expression by
ICF. Real-time quantitative PCR analysis revealed that ICF
stimulation significantly upregulated Tgfb1 mRNA expression after
24 h (Fig. 6a). The significant Tgfb1 protein expression at 24 h was
also confirmed by enzyme-linked immunosorbent assay (ELISA)
and immunofluorescence staining (Fig. 6b, c). To investigate the
involvement of TGF-β signaling in the modulation of the cell cycle
by ICF, iPSCs were pretreated with 4 μmol·L−1 SB431542, an
inhibitor of the TGF-β receptor, for 30 min prior to ICF application
(the experimental scheme is illustrated in Fig. 6d). SB431542
attenuated the effect of ICF on Ccnd1 and Cdk6 mRNA expression
(Fig. 6e, f). In contrast, Ccng1 mRNA expression levels were not
significantly changed with SB431542 pretreatment (Fig. 6g).
Corresponding with the mRNA results, SB431542 pretreatment
decreased force-induced Ccnd1 protein expression (Fig. 6h).

DISCUSSION
The present study investigated the effect of ICF on the gene
expression profile of iPSCs in a 3D construct form. Gene ontology
analyses demonstrated ICF-induced differential expression of
genes mainly associated with metabolic process, biological
function, and response to stimulus as biological process categories;
membrane and nucleus as cellular component categories; and
protein binding, ion binding, and nucleic acid binding as molecular
function categories. These results suggest that iPSCs indeed sensed
mechanical stimulation by ICF to regulate a variety of molecular
mechanisms that resulted in several biological effects, such as
metabolic control of the cell cycle. The cellular response to ICF
seems to depend on stem cell type because our previous study
using the same ICF assay on PDLCs showed significant differences
in differentially regulated genes mainly associated with calcium
signaling, focal adhesion, and TGF-β pathways.10,14 Although the
specificity of the gene expression profile induced by ICF was not
determined in this study, the type of compressive force should
have a specific influence on the gene expression profile because a
previous report showed that static compressive force and ICF
differentially regulated gene expression in PDLCs.10 Not only mRNA
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but also miRNA and long non-coding RNA are also regulated by
mechanical force. Application of tensile force to PDLCs regulates
the expression of many miRNAs, and the pathways enriched in
tensile force-treated cells include many signaling pathways

including MAPK, Rap1, and Hippo.20 Static compressive force
treatment of PDLCs results in a change in long non-coding RNA
expression in many gene ontologies including extracellular matrix
(ECM) organization, collagen fibril organization, and cellular
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MTT assay (b–d). RNA sequencing analysis was performed. Heat map shows the top 50 significant differentially regulated genes (e)
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response to hypoxia.21 Hence, it is important to investigate the
effect of specific mechanical treatment conditions on specific cell
types using multiple omics analyses.
In this study, the network topology-based analysis for the

protein-protein interaction network demonstrated that ICF
induced genes in cell cycle categories in iPSCs, whereas genes
involved in metabolic processes were downregulated. Corre-
spondingly, a systematic review of gene expression in PDLCs
previously illustrated that static compressive force regulated
numerous enriched pathways including ECM organization, cano-
nical glycolysis, glycolytic process, cell adhesion, cell-matrix
adhesion, integrin-mediated signaling, and cell adhesion
mediated by integrin in two-dimensional (2D) culture.22 In
contrast, compressive loading in 3D-cultured PDLCs was shown
to regulate pathways related to cell cycle, cell division, cell
proliferation, and mitotic process-related pathways.22 In the
present study, ICF was applied to iPSCs in 3D form and found to
mainly induce genes for the cell cycle. This implies that 3D cell

constructs might be susceptible to cell cycle induction by
compressive forces, which may have implications for manipulating
iPSCs for in vitro organoid formation.
The role of mechanical stimulation in cell growth is still

controversial. Application of high pressure to Wharton jelly-
derived MSCs under hypoxic conditions has been shown to
promote cell proliferation.23 The magnitude of the pressure also
influenced this effect, as a pressure of 2.0 PSI induced more cell
proliferation than 2.5 PSI.23 In human embryonic lung fibroblasts,
the effect of mechanical stretch on cell proliferation was shown to
be magnitude-specific.24 Specifically, 5% and 10% stretching
resulted in an increase in the proliferation index, whereas a higher
magnitude of stretching (15% and 20% elongation) led to reduced
proliferation.24 Static compressive force was shown to increase the
proliferation index in human gingival fibroblasts and this effect
was attenuated by inhibition of the TGF-β receptor.25 On the
contrary, the static compressive force of 2 g·cm−1 decreased PDLC
viability and proliferation.26 Specifically, the number of trypan

Table 1. Top 20 significantly upregulated and downregulated genes in the ICF-treated mouse iPSCs

Items Gene symbol Gene name Log2FC FDR

Upregulated genes Mt2 Metallothionein 2 1.679 881 12 1.92E-57

Zfp365 Zinc finger protein 365 1.414 175 91 1.92E-41

Mt1 Metallothionein 1 1.379 982 17 4.92E-35

Fam212b Inka box actin regulator 2 1.780 233 32 3.48E-32

Slc30a1 Solute carrier family 30 (zinc transporter), member 1 1.095 122 89 2.64E-19

1700007K13Rik RIKEN cDNA 1700007K13 gene 1.055 539 59 1.68E-18

Phlda3 Pleckstrin homology-like domain, family A, member 3 0.920 961 22 1.09E-17

Mapkapk3 Mitogen-activated protein kinase-activated protein kinase 3 0.761 985 97 1.11E-17

Btg2 B cell translocation gene 2, anti-proliferative 0.700 049 1.50E-16

Celf5 CUGBP, Elav-like family member 5 0.844 8561 7 1.32E-14

Cpt1c Carnitine palmitoyltransferase 1c 0.636 578 96 3.96E-14

Nefh Neurofilament, heavy polypeptide 0.858 813 64 4.43E-14

Plk2 Polo-like kinase 2 1.017 012 41 6.14E-14

Gas6 Growth arrest specific 6 0.602 381 47 1.24E-13

Mcam Melanoma cell adhesion molecule 0.904 323 58 3.62E-12

Eng Endoglin 0.604 656 63 4.82E-12

Ccng1 Cyclin G1 0.878 373 39 1.06E-11

Zscan10 Zinc finger protein 365 0.575 425 24 1.25E-11

Sesn2 Sestrin 2 0.521 310 1 2.36E-11

Sytl1 Synaptotagmin-like 1 1.102 422 23 4.50E-11

Downregulated genes Bnip3 BCL2/adenovirus E1B interacting protein 3 −2.220 347 1.19E-74

Pfkp Phosphoglycerate kinase 1 −1.173 744 2.75E-64

Slc16a3 Solute carrier family 16 (momocarboxylic acid transporters), member 3 −2.000 059 7 9.23E-59

A2m Alpha-2-macroglobulin −2.577 263 7 4.06E-46

Ankrd37 Ankyrin repeat domain 37 −2.275 651 2 4.72E-46

Ldha Lactate dehydrogenase A −1.538 845 6 6.06E-44

Pgk1 Phosphoglycerate kinase 1 −1.366 441 4 7.39E-37

Aldoc Aldolase C, Fructose-bisphosphate −1.896 344 9 1.16E-35

Adm Adrenomedullin −2.304 846 3 3.42E-35

Aoc3 Amine oxidase, copper containing 3 −2.208 889 8 2.51E-34

Upp1 Uridine phosphorylase 1 −1.347 068 4 2.92E-34

Tpi1 Triosephosphate isomerase 1 −1.246 284 9 7.86E-33

Vldlr Very low density lipoprotein receptor −1.122 410 4 4.69E-28

Aldoa Aldolase A, Fructose-bisphosphate −1.171 554 2 8.41E-28

Ccng2 Cyclin G2 −1.030 579 6 2.81E-27

Lef1 Lymphoid enhancer binding factor 1 −1.395 389 8 1.48E-26

1700029P11Rik Riken cDNA 1700029P11 gene −1.043 410 5 8.56E-26

Grin1 Glutamate receptor, ionotropic, NMDA1 (zeta1) −1.880 521 9 1.84E-25

Me1 Malic enzyme 1, NADP(+)-dependent, cytosolic −0.767 628 1 2.15E-25

Slc2a1 Solute carrier family 2 (facilitated glucose transporter), member 1 −1.269 661 4 1.88E-24
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blue-positive cells increased over time upon static compressive
force treatment.26 Another study employing the same force type
and magnitude for PDLCs reported that static compressive force
reduced cell proliferation and the Ki67-positive cell population.27

This phenomenon occurred via regulation of MIR31HG.27

The present study found that ICF treatment for 24 h in the
serum-free medium led to a significant increase in the
proliferation index. In addition, cells pretreated with ICF
for 24 h and subsequently maintained in a normal growth
medium showed a significant increase in proliferation index.
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Table 2. Top 10 KEGG enriched pathways for upregulated and downregulated genes in ICF-treated mouse iPSCs

Items ID Name Number of Genes FDR

Upregulated pathway mmu04115 p53 signaling pathway-Mus musculus (mouse) 22 2.95e-12

mmu05206 MicroRNAs in cancer-Mus musculus (mouse) 19 6.04e-04

mmu03460 Fanconi anemia pathway-Mus musculus (mouse) 8 9.7e-02

mmu05218 Melanoma-Mus musculus (mouse) 9 1.69e-01

mmu01524 Platinum drug resistance-Mus musculus (mouse) 9 2.3e-01

mmu04110 Cell cycle-Mus musculus (mouse) 12 2.3e-01

mmu03440 Homologous recombination-Mus musculus (mouse) 6 2.54e-10

mmu04068 FoxO signaling pathway-Mus musculus (mouse) 12 3.18e-01

mmu05215 Prostate cancer-Mus musculus (mouse) 9 3.34e-01

mmu00514 Other types of O-glycan biosynthesis-Mus musculus (mouse) 4 3.34e-01

Downregulated pathway mmu01230 Biosynthesis of amino acids -Mus musculus (mouse) 25 5.48e-11

mmu01200 Carbon metabolism-Mus musculus (mouse) 30 6.42e-11

mmu01100 Metabolic pathways-Mus musculus (mouse) 130 6.42e-11

mmu00010 Glycolysis/gluconeogenesis-Mus musculus (mouse) 19 9.15e-08

mmu00100 Steroid biosynthesis-Mus musculus (mouse) 10 8.04e-07

mmu00030 Pentose phosphate pathway-Mus musculus (mouse) 11 2.74e-05

mmu00500 Starch and sucrose metabolism-Mus musculus (mouse) 11 3.36e-05

mmu04066 HIF-1 signaling pathway-Mus musculus (mouse) 20 5.81e-05

mmu03010 Ribosome-Mus musculus (mouse) 22 2.56e-04

mmu00520 Amino sugar and nucleotide sugar metabolism -Mus musculus (mouse) 12 2.81e-04
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These results indicate that ICF promotes the growth of iPSCs,
which is consistent with the gene expression profile analysis. In
addition, we observed that ICF increased the percentage of
cells in S phase. This is consistent with previous studies
showing that uniaxial compressive stress increased the
percentage of cells in the S and G2/M phases over time in
human dental pulp cells.28 Cyclic tensile strain has also been
shown to increase the G2/M and S phase populations in rat
growth plate chondrocytes, and this stimulatory effect was
attenuated when cells were treated with YAP and ERK
inhibitors.29 It has also been shown that nuclear envelope
flattening by compressive force promotes the transition from
G1 to S phase in HeLa cells.30

However, there are also reports indicating negative effects of
mechanical force on cell cycle progression. For example, laminar
shear stress was shown to reduce [3H]thymidine incorporation over
time.31 This reduction corresponded with an increase in the G0/G1
population, indicating that laminar shear stress-induced cell cycle
arrest in rat bone marrow-derived MSCs.31 Similarly, in smooth
muscle cells, cyclic stretching led to accumulation of cells in the G0/
G1 phase, which was associated with reduced retinoblastoma protein
phosphorylation and increased p21 levels.32 Correspondingly, the
expression of the cell cycle markers MCM2, cyclin A, PCNA, and cyclin
D decreased with static compressive force treatment.26 Many factors
can explain the discrepant findings regarding the effects of
mechanical force on cell cycle progression, for example, different
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cell types, force parameters, and culture conditions. Nonetheless, a
generalized understanding of the effects would facilitate the control
of cell-cell interactions for engineered cell manipulation.
In the present study, ICF attenuated the Sub G0 population,

corresponding with a significant decrease in the percentage of cells
in the early apoptotic phase (annexin V+/PI− cells). Similarly, static
force application in a previous study increased the annexin V+/
7AAD− and annexin V+/7AAD+ cell populations in human PDLCs
over time.26 Laminar shear stress reduces the proportion of early
apoptotic cells and induced Bcl-2 in rat bone marrow-derived MSCs,
with a greater effect observed for higher magnitudes of stress.31

Hydrostatic compressive force decreases caspase-3 expression in
fibrochondrocytes, leading to inhibition of cell apoptosis.33 This effect
involves signal transduction from integrin α5 and β1 receptors.33

Similarly, hydrostatic compressive force reduced chondrocyte
apoptosis, with a greater effect observed for higher magnitudes of
stress, and this effect occurred through the integrin-FAK-ERK/PI3K
pathway.34 Our data, together with these reports, appear to
contradict the general idea that exposure to cellular stress stimulates
p53 to induce apoptosis.35 This discrepancy may be explained by the
fact that cellular responses through the p53 pathway are influenced
by several factors, including the type of stress and cells as well as the
activity of p53 co-activators.35 It is known that Ccng1 expression,
which can be regulated by p53 in response to DNA damage36,
functions together with murine double minute 2 (Mdm2) to decrease
p53 activity in a negative feedback loop.18 In contrast, without Ccng1,
Mdm2 inhibits p53 activity by ubiquitinating p53 through the E3
ligase activity, blocking p53 from binding to its target transcription
sites and exporting p53 from the nucleus.37 In the present study,
both Ccng1 and Mdm2 were differentially expressed in iPSCs in
response to ICF (Fig. 3a), and this was reflected in the “p53 negative
feedback” pathway identified in the KEGG database (Fig. S2). We
speculate that the iPSCs upregulated Ccng1 and Mdm2 in response
to ICF, that might, in turn, activate the p53 negative feedback
pathway to reduce apoptosis. The mechanism of how ICF reduces
iPSC apoptosis should be further investigated in detail.
TGF-β signaling has been shown to participate in the regulation

of cell behavior by mechanical force. Our previous studies showed

that ICF increased sclerostin and periostin expression via the TGF-
β pathway in human PDLCs to maintain periodontal tissue
homeostasis and regeneration.38 In addition, pretreatment of
PDLCs with ICF promoted osteogenic differentiation via TGF-β
signaling.10 Mechanical force generated by shaking culture-
induced chondrogenic differentiation via TGF-β and Wnt signaling
in 3D iPSC constructs.19 Tensile force upregulated scleraxis,
inhibiting ossification in PDLCs through TGF-β-ephrin
A2 signaling.39 In human gingival fibroblasts, compressive force
increased cell proliferation, ECM synthesis and TGF-β expression,
and a TGF-β inhibitor attenuated these effects.25 In this study, ICF
significantly induced mRNA and protein expression of Tgfb1 in
iPSCs. Pretreatment with a TGF-β inhibitor (SB431542) prior to
force application attenuated ICF-induced Ccnd1 and Cdk6
expression. Correspondingly, knockdown of latent TGF-β binding
protein 1 decreased expression of cyclinD1, CDK4 and Ki-67, and
inhibited cell cycle progression in natural killer/T cell lymphoma
cells, suggesting a role for TGF-β signaling in cell proliferation and
cell cycle progression.40 Conversely, a study in human endometrial
cancer cells showed that withaferin A, an antiproliferative drug
used in cancer treatment, suppressed proliferation, cell cycle,
migration, and invasion and decreased TGF-β-related protein
expression, implying that TGF-β signaling is involved in the
inhibition of proliferation.41 In this study, the KEGG database
indicated that Tgfb1 was differentially regulated in relation to the
cell cycle in response to ICF (Fig. 3b). To our best knowledge, this
is the first study to demonstrate the role of TGF-β signaling in
enhancing cellular proliferation and decreasing apoptosis in iPSCs
in response to ICF, which could contribute to a protocol to
manipulate iPSCs for organoid fabrication.

CONCLUSION
ICF promoted iPSC proliferation and cell cycle and suppressed
apoptosis. TGF-β signaling may be involved in ICF-induced cell
cycle progression in iPSCs.

MATERIALS AND METHODS
iPSC culture and preparation
Mouse gingival fibroblast-derived iPSCs42 were cultured as
described in previous reports.43,44 Briefly, cells were seeded on
SNL feeder cells in ESC culture medium. The medium was
Dulbecco’s modified Eagle medium (Gibco, Grand Island, NY, USA)
containing 15% fetal bovine serum (Gibco), 2 mol·L−1 L-glutamine
(GlutaMAX-1, Gibco), 100 units per mL penicillin, 100 μg·mL−1

streptomycin (EmbryoMax, Millipore, Temecula, CA, USA),
0.1mmol·L−1 non-essential amino acid (Sigma-Aldrich, St. Louis,
MO, USA), and 0.1mmol·L−1 2-mercaptoethanol (Gibco).
For embryoid body formation, iPSCs were selectively trypsinized

to remove SNL feeder cells and seeded on Corning Elplasia 24-well
round-bottom plates, which contain hundreds of ultra-low attach-
ment surface microwell spots per well (Corning, Oneonta, NY, USA),
to fabricate embryoid bodies with equivalent size.45 Then, iPSCs
were maintained for 2 days in ESC culture medium. Subsequently,
the embryoid bodies were maintained in ESC culture medium
supplemented with 1 μmol·L−1 all-trans retinoic acid (Sigma-Aldrich)
for 2 days to guide differentiation into immature mesenchymal
cells.17 iPSC embryoid bodies were then transferred to 0.1% gelatin-
coated tissue culture plates at 250 000 cells per cm2 and maintained
for 1 day in the same medium before mechanical force stimulation.
A schematic diagram for the cell culture is shown in Fig. 1a.

ICF treatment
ICF was applied using a computer-controlled apparatus.10 Retinoic
acid-treated iPSCs were seeded on 0.1% gelatin-coated 6-well tissue
culture plates (Corning) for 1 day. Subsequently, ICF was applied with
1.5 g·cm−2 force and 0.23 Hz frequency for 24 h in SFM.10

Controla

b

104

103

102

101

101 102

Annexin V FITC

Control50
**

40

30

P
er

ce
nt

ag
e 

of
 c

ou
nt

ed
 c

el
ls

20

10

0

Froce

Early apoptotic
cells

Late apoptotic/
necrotic cells

103 104

100

100 101 102

Annexin V FITC

103 104100

104

103

102

P
I-

F
L3

P
I-

F
L3

101

100

Force

Fig. 5 ICF reduces the number of early apoptotic cells. iPSCs were
treated with ICF for 24 h in serum-free medium. Cells were stained
with Annexin V and propidium iodide (PI). The percentage of early
and late apoptotic cells is shown in (a, b). Bars indicate a significant
difference between conditions (**P < 0.01)

Effects of intermittent compressive force on iPSCs
Manokawinchoke et al.

8

International Journal of Oral Science            (2022) 14:1 



Tgfb1

Ccnd1 Cdk6 Ccng1

Tgfb1

Controlca

b

d

e f

h

g

Force

Tgfb1

DAPI

50 �m

50 �m

50 �m

50 �m

DAPI

Tgfb1Control *

*

Force

Control

2 h
0.0

1.6

1.4

1.2

1.0

0.8

0.5

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n
N

or
m

al
iz

ed
 T

gf
b1

 e
xp

re
ss

io
n 

to
to

ta
l p

ro
te

in
 a

nd
 c

on
tr

ol

1.0

1.5

2.0

8 h 24 h

Force

Control

ES medium

Serum free medium

Unloaded
control

Intermittent
compressive force

ES medium
+RA+RA

48 h 24 h

SB431542
application RNA collection

Force
application

30 min 2 h 4 h 24 h

24 h

48 h

3 2.5

2.0

1.5

1.0

0.5

0.0

2

1

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n

0

3

4

2

1

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n

0

Embryoid body culture

* * **

miPS on
SNL feeder cells

Adhering
culture

Gelatin coated plate

Protein collection

Force

Control Control

SB431542 (4 µmol·L-1) SB431542 (4 µmol·L-1)

SB431542 (4 µmol·L-1)

SB431542 (4 µmol·L-1)

Force Force Control ControlForce Force

Control ForceControl

Ccnd1

Actin

Force

Control ControlForce Force

Fig. 6 ICF regulated cell cycle-related gene expression via the TGF-β signaling pathway. iPSCs were treated with ICF in serum-free medium.
Tgfb1 mRNA expression was investigated using real-time PCR at 2, 8, and 24 h (a) and Tgfb1 protein expression was determined by ELISA (b)
and immunofluorescence staining (c) at 24 h. DAPI was used for nuclear staining. Scale bars: 50 μm. In the TGF-β inhibition experiment, cells
were treated with SB431542 (4 μmol·L−1) for 30min prior to exposure to the force. The experimental scheme is illustrated in (d). The mRNA of
Ccnd1, Ccng1, and Cdk6 is shown in (e–g). The protein expression of Ccnd1 was examined using western blot analysis (h). Bars indicate a
significant difference between conditions (*P < 0.05, **P < 0.01)

Effects of intermittent compressive force on iPSCs
Manokawinchoke et al.

9

International Journal of Oral Science            (2022) 14:1 



RNA sequencing
After mechanical stimulation for 24 h, total cellular RNA was
extracted using Ribospin II (GeneAll, Seoul, South Korea). Three
independent experiments were performed. RNA quality and
quantity were first screened using Nanodrop and further assessed
using an Agilent 2100 BioAnalyzer (Agilent Technologies, CA, USA)
as well as a Qubit RNA HS assay kit (ThermoFisher Scientific, MA,
USA). The library was prepared using a NEBNext Ultra Directional
RNA Library Prep Kit for Illumina (New England Biolabs, MA, USA)
to obtain a strand-specific mRNA library. Single-ended sequencing
was performed using an Illumina Nextseq platform with 75 cycles.
Read quality was checked and low-quality reads were filtered using
FastQC and Trimmomaic, respectively.46 Processed reads were
mapped to a reference genome, G, and sorted by creating a sorted
bam file using HISAT2 and Samtools.47,48 Gene transcripts of each
sample were counted using HTSeq.49 Differential gene expression
was examined using DEseq2.50 A significant difference was
established when the false discovery rate was less than 0.05. Raw
sequencing and read count data were deposited in the NCBI
Sequence Read Archive (SRP158658) and NCBI Gene Expression
Omnibus (GSE118952). Gene ontology and enriched pathways
were analyzed using WebGestalt and Reactome.51,52 The KEGG
database was also employed as a reference.53 Heatmap was
generated using Heatmapper.54

Real-time quantitative PCR
One microgram of the total cellular RNA was converted to
complimentary DNA using a reverse transcription kit (ImProm-II,
Promega, Madison, WI, USA). Subsequently, the complimentary DNA
was further analyzed via polymerase chain reaction using a SYBR
Green detection system (FastStart Essential DNA Green Master kit,
Roche Diagnostics, Mannheim, Germany) on a LightCycler 96 real-
time PCR system (Roche Diagnostics). The amplification profile was
40 cycles of denaturation at 95 °C, annealing at 60 °C, and extension
at 72 °C for 20 s of each step. Gapdh was used as the reference gene.
Primer sequences are shown in Table S1.

MTT assay
Cells were exposed to ICF for 24 h. The culture medium was
replaced with MTT solution (0.5mg·mL−1) and incubated for 30min.
The precipitated formazan crystals were dissolved in DMSO/glycine
buffer and the absorbance was determined at 570 nm using a
microplate reader (Elx800, BIO-TEK, Winooski, VT, USA).

Cell cycle analysis
After ICF treatment, the cells were fixed in cold 70% ethanol for
15min and washed with cold PBS. A cell suspension was obtained in
FACS buffer. RNase treatment was performed at room temperature
for 30min. Further, cells were stained with PI solution (Sigma-Aldrich)
for 30min at room temperature in the dark. The stained cells were
evaluated using a FACSCalibur (BD Bioscience, San Jose, CA, USA).
The proliferation index was calculated as follows; Proliferation index
(%)= [(S+G2/M)/(G0/G1+ S+G2/M)] × 100%.

Apoptosis assay
Cells were trypsinized and collected. The cell pellet was re-
suspended in annexin-binding buffer (BioLegend, San Diego, CA,
USA) and subsequently stained with annexin V-FITC (BioLegend)
and PI for 10min in the dark. The stained cells were examined
using a FACSCalibur system.

Immunofluorescence staining
Samples were fixed in 4% buffered formalin (Sigma-Aldrich) for
10min at room temperature. The samples were then incubated
with 0.1% Triton-X100 (USB corporation, Cleveland, OH, USA) for
5min and subsequently immersed in 2% horse serum (Hyclone,
South Logan, UT, USA) for 30min at room temperature. The
samples were stained with anti-Tgfb1 antibody (Abcam, Cambridge,

UK) overnight at 4 °C. A biotinylated goat-anti rabbit antibody
(Santa Cruz Biotechnology, Dallas, TX, USA) was used as a secondary
antibody. Fluorescence labeling was performed with Streptavidin,
Rhodamine Red-X conjugate (Invitrogen, MD, USA). Nuclei were
stained with 4’, 6-diamidino-2-phenylindole (DAPI: Tocris Bioscience,
Bristol, UK). The samples were then observed under an Apotome.2
(Carl Zeiss, Jena, Germany) fluorescence microscope.

ELISA
Total protein was extracted from the cell lysate using RIPA buffer.
Tgfb1 levels were examined using a human TGF-β1 immunoassay
kit (DB100B, R&D Systems) according to the manufacturer’s
instructions. The optical density was measured at 450 nm. Tgfb1
protein levels were calculated using a standard curve and further
normalized to total protein and the control condition.

Western blot analysis
Cellular proteins were extracted using RIPA buffer with a protease
inhibitor cocktail (Sigma-Aldrich). The samples were electrophor-
esed on a 12% sodium dodecyl sulfate-polyacrylamide gel and
further transferred onto nitrocellulose membranes. The mem-
branes were incubated with primary antibody (rabbit anti-Ccnd1,
Cell Signaling Technology; or anti-actin, Sigma-Aldrich) overnight.
The secondary antibody was goat anti-rabbit antibody (sc-2040,
Santa Cruz Biotechnology). The membranes were incubated with
peroxidase-labeled streptavidin and the signal was examined
using chemiluminescence (SuperSignal West Femto Maximum
Sensitivity Substrate, ThermoFisher Scientific).

Statistical analyses
Graphical illustration and statistical analyses were performed using
Prism 8 (GraphPad Software, CA, USA). Data are shown in scatter
plots and the line represents median values. Each dot represents an
individual value. All experiments were performed in at least
quadruplicate. Statistical analyses were performed using the Mann
Whitney U test for two-group comparisons and the Kruskal Wallis
test followed by pairwise comparisons for more than two-group
comparisons. Significance was defined when P < 0.05.
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