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Abstract Compared to biochemical reactions taking place in
relatively well-defined aqueous solutions in vitro, the
corresponding reactions happening in vivo occur in extremely
complex environments containing only 60–70% water by
volume, with the remainder consisting of an undefined array
of bio-molecules. In a biological setting, such extremely
complex and volume-occupied solution environments are
termed ‘crowded’. Through a range of intermolecular forces
and pseudo-forces, this complex background environment
may cause biochemical reactions to behave differently to their
in vitro counterparts. In this review, we seek to highlight how
the complex background environment of the cell can affect the
diffusion of substances within it. Engaging the subject from
the perspective of a single particle’s motion, we place the
focus of our review on two areas: (1) experimental procedures
for conducting single particle tracking experiments within
cells along with methods for extracting information from
these experiments; (2) theoretical factors affecting the
translational diffusion of single molecules within crowded
two-dimensional membrane and three-dimensional solution
environments. We conclude by discussing a number of recent
publications relating to intracellular diffusion in light of the
reviewed material.
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Introduction

In colloidal and polymer chemistry, the theoretical description
of diffusion in non-turbulent fluids1 has reached a high level
of predictive capability primarily due to the ability to test and
refine the theory using relatively well-defined experimental
systems (Doi and Edwards 1999; Batchelor 2000; Byron
Bird et al. 2002). In contrast, a predictive theory of diffusion
in cell biology has yet to be attained due to the general lack
of system definition associated with the type of reaction
vessels, i.e. there are many different cell types, with each
cell’s internal composition capable of dramatic variation over
the very small spatial and temporal scales associated with
diffusive motion. Indeed, as indicated by Fig. 1, we are often
largely ignorant of the exact chemical surroundings in which
our diffusing probe is moving, making the application of
complex theory problematic. As a result, our measurements
become largely phenomenological in nature and lack ready
transferability to other situations. Deciphering observations
of diffusive motion made in the complex patchwork
collection of microstructures within the cell requires that
the discussion of diffusion be conducted within a reductionist
framework. In such an approach, general physical principles
espoused from the consideration of more highly resolved
situations are used to help interpret observations made from
small regions of the intracellular molecular landscape
(Baumeister 2004). It is towards this viewpoint that we have
tailored this review. In the belief that the next step towards a
quantitative accounting of intracellular diffusion will be
assisted by benchmark conceptualizations of the process, we
have reviewed some of the general physical features

1 This review is restricted to the discussion of diffusion in low
Reynolds number fluid systems (the Reynolds number is a dimen-
sionless parameter reflecting the relative importance of inertial to
viscous forces), which are good approximations of the intracellular
environment.
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associated with diffusion in crowded solutions from the
perspective of a single molecule’s Brownian motion, giving a
simple introduction to the factors responsible for the
phenomenon and highlighting methods capable of extracting
maximum information from the data. The subject of
diffusion is a perennial favourite for review, with many
excellent examples on different aspects of the topic (Berg
1993; Saxton and Jacobson 1997; Peskir 2003; Frey and
Kroy 2005; Philibert 2006; Dix and Verkman 2008; Saxton
2008). Aware of this fact, we have tried our best to approach
the subject matter in a manner that will hopefully prove
useful as both a practical and conceptual aid for those
actually engaging with the complexities of diffusion in the
cell using single particle trackingmethods as their experimental
avatar.

Some diffusion basics

Particles in fluids undergo near continual random displace-
ments due to collisions and subsequent momentum transfer
with the surrounding solvent molecules—a situation termed
‘Brownian motion’.2 For a large number of particles
initially located near to the same region in space, such
Brownian motion has the consequence that the particles
will tend to disperse over time, this situation being known
as diffusion (Fig. 2). At the macroscopic level, the dispersal
of the concentration profile of an arbitrary ideal solute
component i, Ci(r,t), can be described by Fick’s second law
of diffusion3 (Eq. 1a), which is an equation relating the partial
time derivative of the concentration to its second partial
spatial derivative using a phenomenological4 coefficient of
diffusion, Di (units of m

2s-1). At the time of its development,
the diffusion coefficient was interpreted as a simple constant
denoting a shared characteristic of the diffusing component i
and the operative solution conditions under which the
experiment was conducted. Throughout the period from
1905 to 1908, three scientists, Einstein (Einstein 1956),
Smoluchowski (Fulinski 1998) and Langevin (Langevin
1908), all using different approaches, were able to provide a
theoretical link between the phenomenological diffusion
coefficient utilized by Fick and the system properties
governing the individual particle displacements, ∆ri=[∆x,

∆y, ∆z]T, occurring over time intervals, ∆t, first observed by
Brown (Eq. 1b)5 (Fig. 2).

@Ci ri; tð Þ
@t

¼ Di
@2Ci ri; tð Þ

@r2
ð1aÞ

Fig. 1 Interrogating Brownian motion in the ‘black box’ of the cell. A
labeled (white) particle’s motion is followed in (top) the two-dimensional
(2D) plane of the cell membrane (shown here as composed of various
lipid domains and integral membrane proteins in contact extracellularly
with polysaccharides and intracellularly with the cortical cytoskeleton)
and (bottom) in the three-dimensional (3D) space of the cell cytosol
(shown here as composed of various soluble proteins, cytoskeletal
elements, nucleic acids, lipids, carbohydrates and inorganic ions)

2 After the botanist, Robert Brown, who first noted it while observing
pollen grains under a microscope in the early 1800s.
3 Adolf Fick published a series of papers on diffusion in 1855 (a
modern analysis of his observations of the diffusion of salt is provided
by Philibert 2006). By likening the diffusion of ions in solution to the
flow of heat, Fick was able to adopt the mathematical methods
developed by Fourier, thus explaining why the diffusion equation is
near identical to equations developed for modelling heat flow.
4 Phenomenological as of the time of Fick.

5 Einstein was first, closely followed by Smoluchowski second;
therefore, the relationship is alternately called the Einstein relation or
the Einstein–Smoluchowski equation.
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Di ¼
Δrij j2

D E
2dΔt

¼ kT

fi
ð1bÞ

In this description, k is Boltzmann’s constant, T is the
absolute temperature, fi is the particle’s frictional constant,
and d is the dimensionality of the Cartesian space involved
in the diffusion process. These theoretical predictions
relating the diffusion coefficient to the sampling observation
time and the particle mean squared displacement (MSD) were
confirmed experimentally in the following years by optical
microscopy-based observations of colloidal behaviour made
by Perrin and co-workers (Perrin 1910) and sedimentation
dispersion profiles measured by Svedberg and colleagues in
the newly invented analytical ultracentrifuge (Svedberg and
Pederson 1940). Importantly, both the theoretical assumptions
used to derive Eqs. 1a and 1b as well as the experimental
requirements necessary for achieving agreement with the
theory, require that the solute particles be dilute and non-
interacting—situations which are far removed from the reality
inside the cell.

Experimental measurement of single particle motion
within the cell

In correspondence with the macroscopic and particle level
descriptions of diffusion embodied by Eqs. 1a and 1b, there
are two general approaches for experimental determination
of the diffusion coefficient: methods that measure the time-
dependent behaviour of a large number (virtual continuum)
of particles over relatively large regions of space and
methods that involve observing the properties of individual
particles over a small region of space. Experimental
techniques belonging to the former category include pulsed
gradient nuclear magnetic resonance (NMR) (Stejskal and
Tanner 1965; Morris and Johnson Jr. 1992; Regan and
Kuchel 2003), electron spin resonance (ESR) procedures
(Regan and Kuchel 2003; Mirosavljević and Noethig-Laslo
2008), optical microscopy-based observation of light-
absorbing or light-emitting solutes (Guo et al. 2008; Lorén
et al. 2009), neutron scattering (Doster and Longeville 2007)
and single- and multi-wavelength dynamic light scattering
experiments (Peetermans et al. 1987). Experimental methods
belonging to the later category, i.e. methods capable of
observing intracellular single molecule diffusive motion at the
microsecond and 100-nm level of precision (approximately)
are largely due to technological advances in optical micros-
copy (Diaspro 2002; Elson 2004; Murcia et al. 2007; Guo et
al. 2008). Particular promising from the viewpoint of
deciphering the effects of underlying internal cellular struc-
ture are the single particle molecule tracking (SPT) techni-
ques (Saxton and Jacobson 1997; Kusumi et al. 2005; Murcia

et al. 2007) and the confocal based fluctuation microscopy
approaches (Elson 2004; Weiss 2008). As the confocal based
fluctuation approaches have been recently reviewed, both in
this journal and elsewhere (Elson 2004; Weiss 2008; Chiantia
et al. 2009; Jameson et al. 2009), we place our focus in this
review on the SPT approach.

Optical microscope based SPT experiments involve
recording the trajectory of a single molecule possessing
either some naturally occurring detectable feature or an
attached label (Fig. 3). The most common formats for
realization of this procedure involve tagging the diffusing

Fig. 2 Diffusion occurs as the result of the Brownian motion of a large
number of particles. a Time snapshot of the dispersal of 350 solute
particles undergoing one-dimensional (1D) Brownian movement.
Particles were initially located along the central plane of the box. The
conditions were T=37°C, η = 1 × 10−4 kgm−1 s−1, particle radii=5 nm,
snapshot time =0.001 s. b Dispersal profile described in terms of the
number particle linear density as calculated using Eq. 1a (solid lines)
and via stochastic simulation of the individual particles trajectories
(dots) using Eq. 1b (circles). For solutions carried out using Eq. 1a, DI

was estimated from the theoretical relation given in Eq. 1b. Simulation
times were t=0.001 s (green), t=0.0001 s (red), and t=0.00001 s (blue)
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component of interest with a fluorescent compound having
a high quantum yield (e.g. fluorescent proteins attached via
molecular biology procedures (Hibino et al. 2009) or
modern fluorescent ‘laser’ dyes and quantum dots (Alcor
et al. 2009) which can be visualized using various
implementations of fluorescence microscopy. Alternatively,
differentially polarizable materials (e.g. small metal or latex
colloidal particles) which are capable of being observed
using standard bright field or interference based microscopy
approaches (de Brabander et al. 1991; Geerts et al. 1991;
Kusumi et al. 2005) can be attached to the molecule of
interest. The choice of format for particle detection is
usually dictated by the experimental problem at hand in
conjunction with the photophysical properties (e.g. fluores-
cence excitation/emission bands, fluorescence lifetime,
‘blinking’ artefacts) and physical compatibility (size and
chemical properties of the label in relation to the tracer
molecule of interest). In the cases where a molecular
biology based approach is not adopted, the labelled tracer
can be introduced into the cell via passive uptake, liposome

fusion, electroporation or micro-injection (Kusumi et al.
2005; Alcor et al. 2009). Once in place, a video or digital
movie camera attached to the microscope is used to record
the Brownian motion of the individual particles. The
coupling of highly sensitive camera equipment (CCD or
CMOS) with modern microscope developments, such as
cylindrical objective lenses with multi-focus capabilities
(Kao and Verkman 1994), confocal and multiphoton
methods (Diaspro 2002; Hellriegel and Gratton 2009) and
evanescent wave-based total internal reflection illumination
procedures for recording close to surfaces, has meant that
time-dependent single particle tracking (SPT) experiments
are able to be performed in both the two- and three-
dimensional (2D and 3D, respectively) intracellular spaces
(e.g. the cell membranes and cytosol) at relatively high
temporal and spatial frequencies.

Extracting information about the diffusive properties of
the observed tracer particle involves analysing the particle’s
position trajectory, r(t) (Fig. 3), by repetitive calculation of
the position difference vector, ∆r, over an arbitrary time
interval, n∆t (Eq. 2).

Δr nΔtð Þ ¼ r t þ nΔtð Þ � rðtÞ ð2Þ
For a given integer multiplier, n, of the smallest recorded

sampling time interval, ∆t, the diffusion tensor of component
i, Di, (Batchelor 2000; Fernandes and de la Torre 2002) may
be calculated by sufficiently averaging the successive
product of the position difference vector with its transpose,
both throughout the trajectory and, where possible, by
averaging from multiple particles migrating through the
same region of space. (Eq. 3).

Di nΔt; conditions; positionð Þ
¼ 1

2d nΔtð Þ Δr:ΔrT
� �

¼ 1

2d nΔtð Þ
Δx:Δxh i Δx:Δyh i Δx:Δzh i
Δy:Δxh i Δy:Δyh i Δy:Δzh i
Δz:Δxh i Δz:Δyh i Δz:Δzh i

24 35

¼
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

24 35

ð3Þ

The diffusion tensor as calculated by Eq. 3 provides a
measure of the isotropy6 of the system. For isotropic
systems, all diagonal elements of D will be equal, and all
non-diagonal elements will average to zero, thereby
allowing a description of the system by a single diffusion
constant D = Dxx = Dyy = Dzz. When this condition is not
met, a rotational matrix, R, can be applied to the diffusion
tensor with the condition of producing a transformed

Fig. 3 Single particle trajectories for tracer diffusion in simple (a) 2D
(Di=5.4 μm2s-1) and (b) 3D continuum fluids Di ¼ 2:3� 10�9m2s�1.
R i = 1 n m , H i = 5 n m , h ¼ 1� 10�4kgm�1s�1, h0 ¼ 1�
10�1kgm�1s�1, T=37°C, total simulation time was 1 s. Particles were
initially located at the central position. Particle trajectories were
simulated using time steps of 25 μs

6 Isotropy refers to the equivalence of a given process along different
directions through the medium.
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diffusion tensor D′ that is diagonal in nature and necessarily
defined in terms of a Cartesian coordinate system x′,y′,z′
that lies along the principle axes of the anisotropy (Eq. 4)

Di
0 nΔt; conditions; positionð Þ¼R�D ¼

Dx0x0 0 0
0 Dy0y0 0
0 0 Dz0z0

24 35
ð4Þ

The system isotropy can be visualized graphically by
making the diagonal terms of the diffusion tensor the
characteristic measures of an ellipsoid lying along the axes
specified by the rotational transform (Fig. 4). For the
isotropic case in which diffusion along all three axes will be
equally likely the representation will be a sphere.

Calculation of the tensor elements at different sampling
time intervals, n∆t, provides additional information on the
so-called anomalous nature of the diffusion constant. In this
approach, each tensor element calculated at the limiting
sampling time interval is effectively modified by an
empirical function, f(n∆t), of the sampling time interval.
A common form of the function, f(n∆t) = (n∆t)(α), is shown
in Eq. 5 in which the parameter α is termed the anomalous
diffusion coefficient.

MSDi nΔt; conditions; positionð Þ
¼ 2dð ÞDi Δt; conditions; positionð Þ nΔtð Þa ð5Þ

For normal diffusion, the modifying functional parameter,
α, is equal to 1 (Fig. 4c. d). For the case of super-diffusion
(Di increasing with time), α is ≥ 1 (Fig. 4e), and in the case
of sub-diffusion (Di decreasing with time), α is ≤1 (Fig. 4f).
Although the problem is essentially an inverse one, many
researchers have used an iterative process of model building
and simulation to provide an interpretation of experimentally
observed anomalous diffusion in terms of cellular structural
characteristics or local solution conditions (Goulian and
Simon 2000; Jin and Verkmann 2007; Sanabria et al. 2007;
Saxton 2007, Saxton 2008; Weiss 2008). We cite it here as
an important descriptor of the diffusion process in crowded
solutions (Banks and Fradin 2005; Ridgway et al. 2008;
Weiss 2008). It also serves as an important reminder of the
importance of asserting the sampling interval time when
comparing tracer diffusion coefficients. Indeed, the two
limiting forms corresponding to short time n∆t → 0 and
long time n∆t →∞ are commonly used for comparative
purposes (Bernadó et al. 2004).

Theoretical description of Brownianmotion within the cell

Parallel to the advances in technology that have made high
spatial, high temporal frequency single particle tracking a

relatively straightforward technique, corresponding devel-
opments in computing power have meant that coarse
grained particle modelling of cell like situations have
started to become a possible, if not routine, addition to
the biophysicist’s bag of tools, providing a much required
extra level of discrimination in the construction and testing
of cellular level biological hypotheses. In general the
particle based models available for simulating intracellular
diffusion involve the specification of a set number of solute
particles within a boundary enclosing volume representing

Fig. 4 Analysis of the mean squared displacement components of the
diffusion tensor as a function of the sampling interval time for 3D
tracer diffusion. a Colour-coded averaged tensor elements. b Ellipsoid
representation of the diffusion tensor using the diagonal components
of the diffusion tensor to represent the characteristic lengths of the
ellipsoid. c Isotropic ‘simple’ Brownian motion. All diagonal
components equal (Dxx=Dyy=Dzz), and the mean squared displace-
ment (MSD) is directly proportional to the sampling interval (α=1).
d Anisotropic ‘simple’ diffusion: Dxx=3Dyy=3Dzz (α=1). e Aniso-
tropic ‘super’ diffusion produced by Brownian diffusion with a weak
constant drift velocity in the y direction [Dyy (α>1)] > [Dxx=Dzz

(α=1)]. f Anisotropic ‘anomalous’ diffusion produced by a weak
harmonic potential restoring force acting along the y direction only
[Dyy (α<1)] > [Dxx=Dzz (α=1)]. The red arrow blocks refer to the
time intervals at which the ellipsoids representing D were constructed
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the cell wall (Andrews and Bray 1994; Jeschke 2008;
Czech et al. 2009; Moraru et al. 2009; Takahashi et al.
2005; Wils and De Schutter 2009). If one considers the
average cell size to be defined by a length scale
approximately 10 μm and the average protein radius
approximately 2 nm, then it becomes obvious that a full
particle representation of the components of the cell is
beyond current computing capabilities as it would involve
on the order of 1×1010 particles. To subvert this problem
models of intracellular diffusion are ‘coarse grained’ i.e. they
are simplified by reducing the number of components and the
level of detail. Such modelling approaches often involve
simplifications in which Brownian motion characteristics are
considered to be independent of the surrounding local
environment, and particle interactions (if considered) are
incorporated at the level of like/dislike rule based algorithms.
Contrarily, much of the higher order theory already developed
for the description of diffusion in concentrated solution
environments cannot feasibly be employed due to the
problems discussed in the introduction relating to general
ignorance of the cellular solution composition. In the
following section we discuss some of the factors affecting
the Brownian motion of single particles in crowded environ-
ments and then we review some different levels of approxi-
mation for carrying out particle model simulations at different
time and length scales commensurate with the level of
knowledge of the fine structure of the cell.

Factors affecting the Brownian motion of single particles
in crowded environments

The Langevin approximation (Langevin 1908; Dhont 1996;
Snook 2006) of Brownian motion formalises the particle
model approach by considering the solution as an implicit
background of solvent containing a number of explicitly
recognized particles. As such the Newtonian acceleration of
the ith particle can be calculated as the net force due to the
combination of intermolecular potentials acting between
explicitly considered particles, (Fp)i, a frictional forces
arising from the tendency of the solvent to resist directed
motion, (Ff)i, and random forces resulting from unbalanced
collisions with the solvent molecules, (Fr)i. When the
number of explicitly recognised particles is low the
Langevin description approaches its dilute limiting form
(Eq. 6a). However at elevated ‘crowded’ conditions the
intermolecular potentials become significant and must be
accounted for (Eq. 6b).

mi
dvi
dt

� Ffð Þi þ Frð Þi Dilute Limit ð6aÞ

mi
dvi
dt

¼ Fp

� �
i þ Ffð Þi þ Frð Þi Concentrated Limit ð6bÞ

Although the Langevin equation has limited potential in
the simulation of diffusion in crowded systems due to its
requirement for short time scales during numerical integration,
it provides a very useful pedagogical aid for developing a
mechanical understanding of the subject. For nowwe note that
in the concentrated limit the Langevin equation is composed
of three force terms, Fp, Ff and Fr, each of which we will
discuss in the sections below.

Forces resulting from intermolecular potentials (Fp)

Although the term macromolecular crowding is used in
biology to describe the special role played by the cell’s
crowded microenvironment on the biochemical reactions
occurring within it, the effects of crowding are, as for all
chemical reactions, physically manifested through the
existence of intermolecular potentials acting between
individual particles. To a first approximation, the properties
of solutions can be described on the basis of the summation
of external forces acting on each of the individual particles
and the summed contribution of the individual particle-
particle pairwise interaction potentials (Elimelech et al.
1995; Leach 2001) (Eq. 7).

E r;Nð Þ ¼
XN
i¼1

E rið Þ þ 1

2

XN
i¼1

XN
j¼1

ðE ri; rj
� � þ :::: ð7Þ

The types of potential specified depend upon the level of
detail included in the description of tracer and background
molecules (Elimelech et al. 1995; Leach 2001; Elcock
2003; McGuffee and Elcock 2006; Qin and Zhou 2009).
Figure 5 and Table 1 describe six simple interparticle
potentials commonly used in polymer and colloidal physical
chemistry (Minton 1989; Elimelech et al. 1995; Doi and
Edwards 1999; Zhou et al 2008) to account for the effects of
concentrated solution environments. In this review, we
regard the tracer particle (particle i) and crowding back-
ground molecule (particle j) as spheres of respective radii Ri

and Rj. In general, the intermolecular potentials all feature
some form of repulsive interaction at short range that
physically arises from electronic repulsion. At longer
distances, the interaction may take on attractive or repulsive
characteristics empirically defined in terms of a potential
energy depth ε and a screening length, Lij. The potentials
described in Fig. 5 and Table 1 are assumed to have spherical
symmetry and hence are functions of intermolecular dis-
tance, dij, only where dij¼ ri � rj

�� ��� �
.

The force acting on particle i, (Fp)i, is calculated as the
sum of the gradients of the intermolecular potentials
existing between the particle under consideration and all
of the surrounding explicit species, Eq. 8. The assumption
of spherical symmetry requires that the force calculated
from each pair potential acts in a direction given by the unit
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vector bs acting along the centre-to-centre line between the
two particles.

Fp

� �
i ¼

XN
j¼1

rEij ri; rj
� � ð8Þ

Although the described potential functions and the forces
derived from them are not realistic, they serve both
heuristic and practical purposes in that they are (1) easy
to comprehend, (2) easy to incorporate into simulations and
(3) represent an advance to just ignoring these features.
Additional features, such as the dependence of the
interparticle potentials on such things as ionic strength,
can be incorporated phenomenologically by the inclusion of
scaling terms in the potential depth and screening length
terms (Elimelech et al. 1995).

Forces resulting from friction exerted by the solvent (Ff)

At limiting dilution in non-turbulent flows, a tracer particle
of characteristic size <10 μm undergoing motion relative to
a viscous solvent environment will experience a frictional
force opposing its motion that is equal to the negative
product of the velocity of the particle, vi (relative to the
velocity of the surrounding fluid), and a frictional constant,
fi, characteristic of the shape of the particle (Dhont 1996;
Byron Bird et al. 2002) (Eq. 9a). For spherical particles
undergoing translational motion in a 3D solvent environ-
ment, fi is given by Stokes law (Eq. 9b: Jones 2002; Byron
Bird et al. 2002). Proteins and lipids in the two dimensions
of the cell membrane are usually modelled as upright
cylinders (of characteristic radius Ri and cylinder height,
Hi) with the frictional coefficient of such a cylinder given
by Eq. 9c (Saffman and Delbrűck 1975). In Eqs. 9b and c,
η and η′ are the dynamic viscosities (units kg m-1s-1) of the
solvent or membrane, respectively. Typical values for η and
η′ at 37°C are ∼1×10-4 and ∼1×10-1kg m-1s-1, respectively
(Byron Bird et al. 2002; Spooner et al. 2000;).

Ffð Þi ¼ �fivi ð9aÞ

fi ¼ 6p hRi ð9bÞ

fi ¼ 4p h
0
Hi loge

h
0
Hi

hRi

� �
� 0:5772

� ��1

ð9cÞ

At non-dilute concentrations, the simple expressions for
the frictional force described in Eqs. 9 becomes suspect due
to the fact that all particles undergoing directed motion7

through a solvent environment must necessarily exert force
on the surrounding solvent, which in turn communicates
that force to other nearby regions of fluid. This means that
the relative velocity between the particle and the surround-
ing solution environment can no longer be simply equated
with the velocity of the particle with respect to an ideal
consideration of its local streamline. This additional
component to the frictional force, known as the hydrody-
namic interaction (HI) force, becomes more pronounced
with increasing concentration and level of volume occupa-
tion. Consequently, recognition of these HI effects in
studies on macromolecular crowding is desirable. Within
the Langevin framework, hydrodynamic interactions can be
incorporated by including supporting functions containing
various degrees of information on the positions, velocities
and precise geometries of all N explicitly considered

7 In this instance directed motion refers to the short steps with
transient direction associated with Brownian motion.

Fig. 5 Pair potential functions useful for describing particle inter-
actions at the coarse grained level. a Free overlap, b hard particle, c
square well, d saw tooth, e soft sphere, f Lennard Jones. The
associated mathematical descriptions are included in Table 1
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simulation components (Eq. 10a) (Rotne and Prager 1969;
Ermak and McCammon 1978; Batchelor 1982; Fernandes
and de la Torre 2002; Padding and Louis 2006; Geyer and
Winter 2009). As such a precise level of system definition
is often lacking when conducting investigations of diffusion
within the cell, coarser methods for factoring in HI forces
based on effective viscosity have been attempted (Heyes
1995; Wade 1996; Urbina-Villalba et al. 2003; Sun and
Weinstein 2007). In this approach, a localized mean field
approximation is used to calculate an appropriately averaged
scalar value of the frictional coefficient, <fi>, over the
displacement ∆r (Eq. 10b)

Ffð Þi ¼ �fivi þ P N; r;R; vð Þ ð10aÞ

Ffð Þi � � < fi > vi ð10bÞ
In practice the average frictional coefficient, <fi>, is

approximated from the known value of the short-time
diffusion constant8 of a tracer particle in a hard particle
fluid, with the value either derived from experimental data
(Urbina-Villalba et al. 2003) or made using a higher order
theoretical method for implementation of hydrodynamic
interactions (e.g. Fernandes and de la Torre 2002; Falck et
al. 2004; Geyer and Winter 2009). For calculations of tracer

diffusion within a solution of identical particles, these
averaged values for <fi > in three dimensions (written in
terms of fractional volume �) or two dimensions (written in
terms of fractional area θ) are presented as Eqs. 11a and
11b, respectively.

< fi ϕð Þ >¼ 6p hRi 1þ 2b2

1� b
� c

1þ 2c
� bc 2þ cð Þ

1þ cð Þ 1� bþ cð Þ
� 	

where b ¼
ffiffiffiffiffiffi
9ϕ
8

r
and c ¼ 11ϕ

16
for ϕ < 0:3

ð11aÞ

< fi qð Þ >¼ 4p h
0
Hi loge

h
0
Hi

hRi

� �
� 0:5772

� ��1
 !

1� 2q � 2:8238q loge
h

0
Hi

hRi

� �
� 0:5772

� ��1
" #
for q < 0:35

,
ð11bÞ

In Eqs. 11a and 11b, � and θ refer to the local fraction of
volume and area, respectively, occupied by all other
explicitly recognized particles9 within a sphere or circle of
radius 4Ri centred at position ri . As an example, Fig. 6
describes the altered frictional force resulting from HI
effects experienced by a tracer protein Ri=2 nm) in an

Table 1 Intermolecular potentials commonly used to describe particle interactions and their associated mathematical functions

Pair-potential
function

Potential energy function (ΔEij(dij)) Force derivation [(Fp)i (dij)]
a, b

Free Overlap ∆Eij=0 (Fp)i=0

Hard Particle ΔEij ¼ 1 dij < Ri þ Rj

0 dij � Ri þ Rj

�
Fp

� �
i undefined for dij< Ri þ Rj

Fp

� �
i ¼ 0 for dij > Ri þ Rj

Square Well ΔEij ¼
1 dij < Ri þ Rj

" Ri þ Rj � dij < Ri þ Rj þ Lij
0 dij � Ri þ Rj þ Lij

8<: ðFpÞi ¼
undefined dij < Ri þ Rj

0 Ri þ Rj < dij < Ri þ Rj þ Lij
0 dij > Ri þ Rj þ Lij

8<:
Sawtooth ΔEij ¼

1 dij < Ri þ Rj

"þ "=Lij
� �

dij Ri þ Rj � dij � Ri þ Rj þ Lij
0 dij > Ri þ Rj þ Lij

8<: Fp

� �
i
¼

undefined dij < Ri þ Rj

"=Lij Ri þ Rj � dij < Ri þ Rj þ Lij
0 dij � Ri þ Rj þ Lij

8<:
Soft Sphere ΔEij ¼ A dij

� ��B
Fp

� �
i
¼ �AB dij

� ��B�1
for all dij

Lennard-Jones ΔEij ¼ 4" RiþRj

dij

� 
12
� RiþRj

dij

� 
6� 	
Fp

� �
i
¼ �36" Ri þ Rj

� �12
dij
� ��13 þ 24" Ri þ Rj

� �6
dij
� ��7

a The assumption of spherical symmetry means that the calculated force acts in a direction given by the unit vector bs acting along the centre-to-
centre line between the two particles.
b In some cases the pair potential functions are not differentiable because of discontinuities. Such functions are generally more suited to position
Langevin and overdamped Brownian dynamics simulations. Alternatively, they can be used with an arbitrary specification of rules for dealing
with physically forbidden overlaps.

8 Reflective of HI only.

9 Not including the volume or area occupied by the i-th molecule
under consideration.
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enclosed 2D membrane at either limiting dilution or under
crowded conditions (θ=0.4). The equations derived above
should be seen as a first order inclusion of HI as they ignore
differences in the perpendicular and parallel components of
the viscosity predicted by higher order theory (Elimelech et
al. 1995; Dhont 1996; Batchelor 2000).

Forces resulting from random collisions
with the solvent (Fr)

The final term required for specification of Eq. 5 is the
stochastic force variable, [Fr(∆t)]i, written here as a
function of the time interval, ∆t, specifying the frequency
with which it is updated. A simple conceptualization of the
random force term that offers physical insight is that of a
thermostat-regulating function (Langevin 1908; Snook
2006) through which it combats the tendency of the viscous
frictional force to slow the system down (and hence cool it).

The most common procedure for assigning a numerical
value to [Fr(∆t)]i involves requiring that it conforms to
relations derived from application of the fluctuation
dissipation theorem (Eq. 12) (Kubo 1966).

FrðtÞð Þi
� � ¼ 0 ð12aÞ

FrðtÞð Þi Fr t þ Δtð Þð Þi
� �

¼ 2kBT fih i dx Δtð Þ; dy Δtð Þ; dz Δtð Þ� �T ð12bÞ

PðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

2ps2

r !
exp � x2

2s2

� �
ð12cÞ

where δ is the Dirac delta function. It can be shown (Kubo
1966) that these requirements are satisfied by selecting
the random component forces (ξ) from a Gaussian
distribution (Eq. 12c) with a standard deviation, σ, given
by s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qkBT fih i=Δt
p

. The magnitude of σ can be seen to
be dependent upon the sampling time,10 the temperature
and the local frictional coefficient (Saxton 2008). The
mathematics behind the result presented in Eq. 12 can be
relatively difficult to follow so here we offer a simple
argument which although only yielding an approximate
result provides some useful insight into the physical origins
of the random force and the natural time constant of the
system. In this simplified model, the average kinetic energy
of the system is first equated with the average thermal
energy via the equipartition theorem, i.e. mv2

� � ¼ dkBT
therefore, v � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dkBT=m
p

. Over time scales sufficiently
small enough to preserve inertial memory, we can equate
the average magnitude of the random force with the average
absolute value of the frictional force (Eq. 13a), with this
relationship being further developed by combination with
the relation for the average particle velocity to determine
the magnitude of the random force term (Eq. 13b).

Frð ÞiðtÞ
�� ��� � ¼ fih ivij jh i ð13aÞ

Frð Þi
�� ��� � � fih i

ffiffiffiffiffiffiffiffiffiffiffi
dkBT

m

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dkBT fih i

Δt

r
where

Δt ¼ m= fih i
ð13bÞ

From a dimensional analysis of Eq. 13b, it can be noted
that m/<fi> has units of time and can thus be interpreted as
specifying a natural time constant for the system, such that
Δt ¼ m= < f i >. For specification of larger time intervals
∆t >> ∆τ, such a direct physical interpretation of the

Fig. 6 Colour-coded description of frictional coefficient experienced
by a tracer particle (R=2 nm, H=5 nm) in a 2D fluid membrane
h0 ¼ 1� 10�1kgm�1s�1ð Þ at 37°C bounded by a hard wall (a) at
limiting dilution (b) at θ=0.35 (as approximated by Eq. 11b). Note the
stagnant regions adjacent to the walls and high local densities of
particles shown in brighter red, indicating higher viscosity/higher
local frictional coefficient

10 The value of q=1 at time scales small enough (∆t < m/<fi>) to
preserve inertial memory, whereas q = 2 for time scales greater than
this ((∆t > m/<fi>).
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random force term breaks down due to the fact that the path
taken between the application of the intervening stochastic
random forces is not linear, but rather occurs as the result of
a random walk produced by many collisions, each occur-
ring at or around the natural time constant of the system. In
this time regime, the average motion of the particle is best
described as a function of its mean squared displacement
(Langevin 1908; Einstein 1956) (Eq. 1b). Using that
definition of the diffusion coefficient, a phenomenological
velocity can be determined over the time step and
calculated displacement (Eq. 14)

vij jh i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
riðtÞ � ri t þ Δtð Þj j2

D Er
=Δt

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dð ÞkBT= fih iΔt

p
ð14Þ

By the same argument as adopted for the small time step,
the case above the magnitude of the random force term can
be written by Eq. 15.

Frð Þi
�� ��� � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2dð ÞkBT fih i=Δt
p

ð15Þ

Using the Langevin equation to simulate diffusion
at different time scales

The approximate relationships developed for the three
force terms can be inserted into Eq. 6b and subsequently
directly integrated over the time interval t-to=∆t11, to yield
Eq. 16.

viðtÞ ¼ vi t0ð Þe
� fih i
mi

t�toð Þ þ C Δtð Þ
fih i 1� e

� fih i
mi

t�toð Þ
� �

ð16aÞ

C Δtð Þ ¼ Fp

� �
i
þ Frð Þi ð16bÞ

If Eqs. 16a and 16b are further integrated over a short
time step (∆t < ∆τ) some of the information relating to the
velocity previously held by the particle is retained (Eq. 17a).
At longer time steps (∆t > ∆τ) the contributions from the
exponential terms becomes relatively minor and a descrip-
tion of the over-damped Brownian dynamics algorithm

(Ermack 1975; Ermack and McCammon 1978) is recovered
(Eq. 17b).

ri t þ Δtð Þ
¼ riðtÞ þ

Z
vi t0ð Þe

� fih i
mi

t�t0ð Þdt þ
Z

C Δtð Þ
fih i 1� e

� fih i
mi

t�t0ð Þ
� �

dt

ð17aÞ

ri t þ Δtð Þ � riðtÞ þ
Fp

� �
i

fih i Δt þ Frð Þi
fih i Δt ð17bÞ

The upper limit for the time step, τB=∆t, chosen for
numerical integration in the Brownian dynamics regime
corresponds to a value which prevents particles from
passing through each other over the interval. For systems
composed of particles of a single radius Ri, τB∼Ri

2 <fi>/
(2d kBT). Due to its simplicity and ability to access larger
time scales, Eq. 17b is particularly suitable for examining
diffusion in crowded solution environments.

For simulating Brownian motion in a homogenous phase
over time scales, ∆t >> τB Eq. 17b can be first be used to
produce a sufficiently long time simulation to allow for the
desired time interval diffusion tensor, Di(n∆t), to be either
directly calculated from the data using the methods shown
in Eq. 3 or alternatively estimated by extrapolation. This
diffusion tensor can then be used in conjunction with a unit
vector bm to simulate Brownian motion over the homoge-
nous phase using relatively large time steps as a form of the
position Langevin simulation method (Lax 1966; Zwanzig
1969; Hall 2008; Hall 2010) (Eq. 18a). In this approach
each component in the displacement vector, ∆ri(n∆t), is
randomly chosen from a Gaussian distribution of zero mean
and standard deviation given by the component term
indicated by Eq. 18b.

ri t þ nΔtð Þ ¼ riðtÞ þ Δri nΔtð Þ ð18aÞ

ss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Di nΔtð Þ � bmð ÞΔt

q
ð18bÞ

Discussion of recent experimental findings

From the very earliest studies of diffusive motion in the 2D
and 3D biological environments of the cell membrane and
cell cytosol, strong differences to the simple behaviour
predicted for continuum fluids have been observed (e.g.
3D: Jacobson and Wojcieszyn 1984; Gershon et al. 1985;
Arrio-Dupont et al. 2000; Goulian and Simon 2000; e.g.
2D: Schlessinger et al. 1977; Sheetz et al. 1980; Haggie and
Verkman 2002; Sakaki et al. 1982). Recently, rather than

11 Note this integration is based on the assumption that all force terms
are constant over the time interval, ∆t, for which the integration is
carried out. Additionally we have introduced a factor q here to
describe the different time interval ranges i.e. when ∆t < ∆τ, q=1 and
when ∆t >> ∆τ, q=2d.
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being interpreted as just unnecessary complications, these
effects are now seen as probable design features of the
cellular reaction environment that have resulted from the
natural optimization process of evolution (Kurganov et al.
1985; Bray 1998; Luby-Phelps et al. 1988; Burdzy and
Hołyst 2001; Haggie and Verkman 2002; Schnell and
Turner 2004; Sear 2005; Ma'ayan et al. 2005; Weiss 2008).
In this vein, the degree of anomalous diffusion in the
cytoplasm has been interpreted as a means of tuning the
search process for an interacting partner (Burz et al. 2006;
Iwahara and Clore 2006;Tang et al. 2006) in crowded
solution conditions by helping to both spatially determine
the location of the interacting partner and also to enhance
the probability of encounter (Weiss 2008; Szymanski and
Weiss 2009). In cells lacking significant compartmentaliza-
tion and structural organization (e.g. prokaryotes), the
intracellular 2D and 3D fluids might be approximated by
concentrated macromolecular environments (Zimmerman
and Trach 1991; Konopka et al. 2006). Using the Brownian
dynamics algorithm presented in Eq. 17b, we provide
example simulations of 2D and 3D diffusion in a crowded
solution of particles of identical size (Fig. 7). Estimates of
the long time tracer diffusion coefficient12 indicate that for
intermediate crowding regimes, the effect of a repulsive
potential is to increase the magnitude of the short-time
diffusion coefficient by helping to keep the tracer particle
out of the ‘stagnant’ region associated with high local
densities of background particles. Not surprisingly, the
effect of a weakly attractive potential shows the reverse
behaviour, with the tracer diffusion coefficient decreasing
due to a combination effect arising from the attractive
intermolecular potential (i.e. larger particles diffuse more
slowly) and the HI forces (i.e. the tracer spends more time
located in higher viscosity regions). The purely hard sphere
tracer case with no associated potential was also simulated
and is intermediate between the two13. The time depen-
dence of the diffusion coefficient was also analysed and is
displayed in Fig. 7 e, f for the three different types of
associated intermolecular potential. All three examples
demonstrated anomalous diffusion characteristics (α≈0.85)
similar inmagnitude to those previouslymeasured (Banks and
Fradin 2005; Szymanski and Weiss 2009). The existence within the cell of internal membrane

compartments along with the numerous fibrous elements
associated with the cellular cytoskeleton means that certain
regions of volume (Blum et al. 1989; Provance et al. 1993;
Goulian and Simon 2000; Sanabria et al. 2007; Klann et al.
2009) or area (Sheetz et al. 1980; Saxton 1995; Kusumi et
al. 2005) may be effectively caged or confined. The
partitioning of the cell membrane into such caged regions
has been interpreted as a means for forming reaction
modules (Fig. 8a) (Kurganov et al. 1985; Bray 1998;
Kusumi et al. 2005; Ma'ayan et al. 2005). For the case of
caging (Fig. 8a), our example simulations are in general

12 Made at the times specified by the maximum on the time axis in
Fig. 7e and f.
13 The predicted reduction in diffusion coefficient for the hard
cylinder and sphere cases shown in Fig. 7 is slightly steeper than
suggested by previous theoretical results for unbounded systems (3D:
Tokuyama and Oppenheim, 1994; 2D: Bussell et al. 1995 super-
imposed in green), with the discrepancy due to our simulations being
performed in a repulsive cylindrical/spherical container not featuring
periodic boundary conditions.

Fig. 7 Effect of crowding on diffusion Top panel (a and b)
Schematic showing diffusion of a tracer particle in crowded and
confined 2D and 3D fluids of same sized particles (tracer R=2 nm,
H=5 nm, fluid vessel radius 30 nm). Central panel (c and d)
Normalized long-time tracer diffusion coefficients as a function of
fractional area, θ, or volume, �: occupation for repulsive saw tooth
(blue), attractive saw tooth (black) and hard particle (red) intermolec-
ular potentials operative between tracer and crowder molecules
(ε=+kBT, -kBT or 0, Lij=Ri) (all trajectories were ended before
approaching the wall). Green line indicates reduction in long-time
tracer diffusion for hard particle cases as calculated for unconfined 2D
fluids by Bussell et al. 1995 and in unconfined 3D fluids by
Tokuyama and Oppenheim 1994. Bottom panel (e and f) Averaged
diagonal elements of the mean squared displacements from the
diffusion tensor for repulsive (blue), attractive (black) and hard
particle only (red) for the most crowded cases considered in 2D and
3D, respectively
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agreement with the predictions and observations of hop
diffusion (Saxton 1995; Saxton 2008; Kusumi et al. 2005),
with the mean squared displacement attaining a horizontal
asymptote that is dependent upon the permeability of the
confining elements. Interestingly, only small differences are
seen for molecules having different limiting case intermo-
lecular potential behaviours, although this difference would
be expected to increase with increasing potential magni-
tude. Additionally, the intrinsic asymmetry of the fibrous
elements can impart orientation derived ordering effects

similar to those observed in liquid crystal theory
(Hentschke and Herzfeld 1989; Herzfeld 2004), leading to
regions that are capable of generating altered diffusion
behaviour that is direction-dependent (Blum et al. 1989;
Han and Herzfeld 1993; Kang et al. 2007). We highlight
some of these different findings in Fig. 8b and c using
example simulations showing the general effects of con-
finement and ordering for the 2D cases of an open channel
(Fig. 8b) and a confined wedge (Fig. 8c). Analysis of the
diffusion tensor indicates that the structures have an
intrinsic anisotropy generating function that is dependent
upon both the width and angle of alignment in accordance
with previous work (Blum et al. 1989; Han and Herzfeld
1993; Kang et al. 2007).

Modelling approaches capable of accounting for such
complex diffusive behaviour as that described above are
required if we are to develop predictive models of
intracellular diffusion. Towards the development of a such
a predictive theory explicit accounting for the spatial
dimension is an important first step. Methods for factoring
in the dimensions of the cellular reaction vessels have been
implemented in programs such as MCELL (Czech et al.
2009), VIRTUAL CELL (Moraru et al. 2009), E-CELL
(Takahashi et al. 2005) and STEPS (Wils and De Schutter
2009) by incorporation of structures from confocal or EM
image traces. However, as we have noted in this review
diffusive, transport processes occurring in solution are not
just affected by geometric considerations, but also by a
combination of intermolecular potentials, hydrodynamic
interactions and random forces effected by the solvent. Recent
modelling and simulation efforts have started to address some
of these issues (Bicout and Field 1996; Andrews and Bray
2004; Takahashi et al. 2005; Jeschke 2008; Czech et al.
2009; Moraru et al. 2009; Wils and De Schutter 2009). It is
towards the goal of providing a readily digestible review of
the general physical factors affecting Brownian behaviour
that we have endeavoured to achieve here.

Concluding remarks

The general area of study relating to how the complex
structured microenvironment of the cell affects the fate of
biochemical reactions occurring within it has been termed
as ‘macromolecular crowding and confinement’ or simply
‘crowding’ for short (Minton and Wilf 1981; Harris and
Winzor 1985; Minton 1992; Zhou et. al. 2008). Despite the
fascination that ‘biological chemistry’ holds for many, the
study of intracellular crowding effects is a difficult subject
area in which to both design and conduct experiments and
to theoretically interpret the experimental results (Zimmerman
and Minton 1993; Hall and Minton 2003; Zhou et al. 2008).
In conventional biochemical investigations complications

Fig. 8 Effect of different types of confinement on the diffusion of a
tracer particle (R=2 nm) in 2D and subsequent analysis of its motion
in terms of the diagonal diffusion tensor components (dotted lines
<∆x∆x>, solid lines <∆y∆y>) for the cases of weak repulsive saw
tooth (blue) and weak attractive saw tooth (black) intermolecular
potentials operating between tracer and confining elements. Top panel
Diffusion of tracer particle in a cage of diameter 20 nm and anomalous
characteristic flattening of the MSD plot. Central panel Diffusion of
tracer particle in a channel bounded in the x direction (width 10 nm)
but unbounded in the y direction. Characteristic anomalous flattening
of the MSD plot for the x component but ‘normal’ behaviour shown
by the y component (with repulsive potential case, indicating greater
diffusion rate in both y and x directions than attractive potential case).
Bottom panel Diffusion of tracer particle in a sector shaped channel
(angle =30°) unbounded in the positive x direction
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arising from unwanted side-reactions are made tractable via
reduction of the number and extent of variable system
components (Goto et al 1993; Hoshino et al 1997). However,
even in in vitro model system approximations of crowding,
such an option is limited when the objective is to examine
the effect of a complex and highly concentrated background
environment of the biochemical reaction at hand. The
situation becomes more difficult when studying crowding
in, in vivo, model systems due to a lack of definition/
knowledge of both the composition (Zimmerman and Trach
1993; Ma'ayan et al. 2005) and position (Luby-Phelps et al.
1988; Diaspro 2002; Leis et al. 2009) of the system
components. Often times, the irreducible nature of the
experimental system can lead to the presence of multiple
competing effects which can confound the ready application
of theoretical methods. As such, the ability of modelling
approaches for generating easily accessible guiding principles
has generally been inversely proportional to their degree of
realism (Zimmerman and Minton 1993; Schnell and Turner
2004; Sear 2005; Hall and Dobson 2006; McGuffee and
Elcock 2006; Qin and Zhou 2009). Relatively simple models
of diffusion in crowded solution have provided considerable
insight into diffusive behaviour within cells (Muramatsu and
Minton 1988; Minton 1989; Han and Herzfeld 1993; Hall
2008, Hall 2010). Recent advances in both single particle
tracking (Saxton and Jacobson 1997, Kusumi et al. 2005;
Murcia et al. 2007; Hellriegel and Gratton 2009) and single
particle simulation methods (Bernadó et al. 2004; Sun and
Weinstein 2007; Dix and Verkman 2008; Ridgway et. al.
2008; Weiss 2008) hold the promise that as we move into the
new decade our potential to understand diffusive behaviour
within the complex confines of the cell will continue to grow –
perhaps putting a predictive theory of diffusion within the cell
within eventual reach.
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