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Abstract
Genetic networks can characterize complex genetic relationships among groups of 
individuals, which can be used to rank nodes most important to the overall connec-
tivity of the system. Ranking allows scarce resources to be guided toward nodes in-
tegral to connectivity. The greater sage-grouse (Centrocercus urophasianus) is a 
species of conservation concern that breeds on spatially discrete leks that must re-
main connected by genetic exchange for population persistence. We genotyped 
5,950 individuals from 1,200 greater sage-grouse leks distributed across the entire 
species’ geographic range. We found a small-world network composed of 458 nodes 
connected by 14,481 edges. This network was composed of hubs—that is, nodes fa-
cilitating gene flow across the network—and spokes—that is, nodes where connectiv-
ity is served by hubs. It is within these hubs that the greatest genetic diversity was 
housed. Using indices of network centrality, we identified hub nodes of greatest con-
servation importance. We also identified keystone nodes with elevated centrality 
despite low local population size. Hub and keystone nodes were found across the 
entire species’ contiguous range, although nodes with elevated importance to 
network-wide connectivity were found more central: especially in northeastern, cen-
tral, and southwestern Wyoming and eastern Idaho. Nodes among which genes are 
most readily exchanged were mostly located in Montana and northern Wyoming, as 
well as Utah and eastern Nevada. The loss of hub or keystone nodes could lead to the 
disintegration of the network into smaller, isolated subnetworks. Protecting both hub 
nodes and keystone nodes will conserve genetic diversity and should maintain net-
work connections to ensure a resilient and viable population over time. Our analysis 
shows that network models can be used to model gene flow, offering insights into its 
pattern and process, with application to prioritizing landscapes for conservation.

K E Y W O R D S

Centrocercus urophasianus, graph theory, multiscale conservation prioritization

www.ecolevol.org
http://creativecommons.org/licenses/by/4.0/
mailto:tbcross@fs.fed.us


     |  5395CROSS et al.

1  | INTRODUC TION

Understanding population structure and quantifying genetic con-
nectivity are important for guiding ongoing conservation and res-
toration efforts (Crooks & Sanjayan, 2006). Traditionally, population 
structure is first analyzed and subpopulations delineated, then ge-
netic connectivity among subpopulations is quantified. However, 
this process need not be completed in two stages. Genetic network 
models can be used to simultaneously gain an understanding of pop-
ulation structure and to quantify genetic connectivity among popu-
lations in natural systems (Bunn, Urban, & Keitt, 2000; Dyer, 2007; 
Dyer & Nason, 2004).

Genetic networks are constructed of components called nodes 
and edges, where nodes may represent populations and edges 
represent genetic connectivity among nodes (Sallaberry, Zaidi, & 
Melançon, 2013). Each node can be weighted by the genetic di-
versity within the nodes and each edge by the genetic covariance 
among local populations (Bunn et al., 2000). The overall structure of 
the network provides a means by which to rank the importance of 
how each component contributes to maintaining network connec-
tivity (Jacoby & Freeman, 2016). One can think of network structure 
in terms of the commercial airline model. In such models, nodes and 
edges are known, as are nodes of high and low connectivity (hence-
forth, hub nodes and spoke nodes, respectively). In the airline indus-
try, hub nodes are strategically selected to maximize efficiency of 
air traffic, while spoke nodes are selected based on limited need for 
services. For wildlife populations, where populations serve as hub 
nodes and where populations serve as spoke nodes are unknown.

Qualifying genetic network structure and identifying nodes that 
act as hubs can be very informative to conservation and manage-
ment of wildlife species (Garroway, Bowman, Carr, & Wilson, 2008; 
Lookingbill, Gardner, Ferrari, & Keller, 2010). Knowledge of which 
nodes are connected to one another and which nodes rank highly 
in network centrality can facilitate prioritization for management 
(Jacoby & Freeman, 2016). Prior network modeling of wildlife pop-
ulations have shown that which nodes function as hubs and which 
function as spokes is not intuitive (Bunn et al., 2000; Garroway, 
Bowman, & Wilson, 2011; Garroway et al., 2008; Koen, Bowman, 
& Wilson, 2015). One might expect a node’s proximity to the cen-
ter of the species’ range would influence that node’s importance to 
connectivity, where centrally located nodes have greater genetic 
exchange than peripheral nodes. However, it has been shown that 
populations at the periphery of a species’ range can act as critical 
hub nodes, connecting populations across the network, and that 
populations located toward the center of the range do not necessar-
ily function as hub nodes (Bunn et al., 2000).

Emergent properties of genetic networks can be used to iden-
tify hub nodes and spoke nodes and the sensitivity of the entire 
network to the loss of connectivity (Dunne, Williams, & Martinez, 
2002). There are three common network structures: (1) single-scale 
(“regular”), (2) broad-scale (“random”), and (3) small-world—a sub-
set of which are known as scale-free (Amaral, Scala, Barthélémy, & 
Stanley, 2000; Bray, 2003). Regular networks are highly structured 

such that proximal nodes tend to be linked to each other, while dis-
tant nodes tend not to be linked: a structure comparable to the iso-
lation by distance pattern commonly discovered in the population 
genetics literature (e.g., a stepping-stone model; Wright, 1943). In 
a regular genetic network, genetic connectivity is between neigh-
boring nodes and nodes separated by a greater number of edges 
will be more isolated from one another. In regular networks, hub 
nodes are nonexistent as all nodes are equally connected. Random 
networks are unstructured such that proximity of nodes is irrele-
vant to whether nodes are connected or not and to the strength of 
connections: a structure most similar to the theoretical island model 
first proposed by Wright (1931) and analogous to the population 
genetic concept of panmixia. In a random genetic network, genetic 
connectivity is unencumbered across the entire network because 
the number of steps between any two nodes is relatively small such 
that close and distant nodes have equal chances of being linked. In 
random networks, there are no hub nodes, but there exist thorough-
fares through the network that foster quick transit among any set 
of nodes. In contrast, small-world networks are composed of few 
highly connected nodes (hub nodes) and a greater number of more 
isolated nodes (spoke nodes), much like the hub-and-node model 
characteristic of the familiar commercial airline model. Most nodes 
can be reached from every other node by a small number of steps, 
often routed through central hub nodes, which foster connectivity 
among the spoke nodes. Redundancy is an important characteristic 
of small-world networks. In small-world genetic networks, genetic 
connectivity is greatest among nearest neighbor nodes, but genetic 
connectivity can exist between any two nodes by a small number of 
steps through hub nodes which are nodes at which genetic connec-
tivity is concentrated such that these nodes serve to connect other 
distal nodes (also known as, spoke nodes). An extreme form of small-
world networks is scale-free networks. In scale-free networks, there 
is less redundancy in internode connections and greater centrality 
for the hub nodes.

Within any network’s structure, individual node importance to 
network connectivity can be quantified by centrality indices. There 
are several centrality indices, each of which quantifies the impor-
tance of a node to network connectivity in a different way (Table 1). 
Some centrality indices rank nodes based on local connectivity 
and some based on network-wide connectivity. Therefore, these 
function-valued centrality indices can be easily transformed into 
node-specific rankings, and these rankings can be used to prioritize 
conservation (Jacoby & Freeman, 2016).

The greater sage-grouse (Centrocercus urophasianus; hereafter, 
sage-grouse; Figure 1) is a lekking gallinaceous bird of conservation 
concern, an indicator species for sagebrush (Artemisia spp.) commu-
nities (Rowland, Wisdom, Suring, & Meinke, 2006), and an indicator 
species for landscape-scale connectivity across the western United 
States and southern Canada (Aldridge et al., 2008). Sage-grouse once 
occupied over 1.2 million km2 (Edminster, 1954; Schroeder et al., 
2004). The species now occupies less than 0.67 million km2 across 
11 western states and two Canadian provinces (Patterson, 1952; 
Schroeder et al., 2004)—56% of its range compared to pre-Western 
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Settlement (Schroeder et al., 2004). An additional 29% of the re-
maining species’ range is likely at risk of extirpation (Aldridge et al., 
2008). Increased geographic isolation and declines in sage-grouse 
populations range-wide coincide with fragmentation and loss of 
sagebrush due to changes in land use (Copeland, Doherty, Naugle, 
Pocewicz, & Kiesecker, 2009; Knick et al., 2003; Schrag, Konrad, 
Miller, Walker, & Forrest, 2011).

Sagebrush provides essential cover, is a staple of the species’ 
diet, is where the bird nests and rears its broods, and congregates 
in the spring to display and breed on leks (Beever & Aldridge, 2011; 

Hagen, Connelly, & Schroeder, 2007; Patterson, 1952; Remington 
& Braun, 1985; Wallestad & Eng, 1975). On leks, males battle with 
one another to claim the center and energetically display to potential 
mates. Lek attendance by males is significantly correlated with fe-
male lek attendance (Bradbury, Vehrencamp, & Gibson, 1989).

Despite long seasonal migratory movements (up to 240 km; 
Smith, 2012) and large home ranges (4–195 km2; Connelly, Hagen, 
& Schroeder, 2011; Connelly, Rinkes, & Braun, 2011), fidelity to leks 
and stability in lek location are well documented (Cross, Naugle, 
Carlson, & Schwartz, 2017; Dalke, Pyrah, Stanton, Crawford, & 
Schlatterer, 1963; Dunn & Braun, 1985; Emmons & Braun, 1984; 
Patterson, 1952; Schroeder & Robb, 2003; Wallestad & Schladweiler, 
1974). However, sage-grouse may shift or abandon leks because of 
persistent disturbance or alteration of sagebrush cover (Holloran, 
Kaiser, & Hubert, 2010; Walker, Naugle, & Doherty, 2007).

Sage-grouse are known to disperse during the breeding season 
and are capable of long-distance breeding dispersal movements 
(Cross et al., 2017). While the fashion of long-distance dispersal 
movements is unknown, most migratory movements are made in 
stepping-stone fashion (Tack, 2009), and short-distance abrupt sin-
gular movements are common when suitable habitat is lacking (Dunn 
& Braun, 1986).

The lek mating system of sage-grouse is well suited to network 
analyses because leks are fairly fixed spatial locations. Given the 
species’ patterns of dispersal, we would expect that network struc-
ture should be composed of clustered, hub node-like nodes charac-
teristic of a small-world network (Garroway et al., 2008).

TABLE  1 Network parameters used to quantify connectivity, the unit for which each is calculated, and the definition of the parameter, 
and relation of the parameter as pertains to the greater sage-grouse population network. All but characteristic path length and weight are 
centrality indices

Network parameter Network unit Definition source Ecological interpretation

Characteristic path 
length

Entire network The mean of all pairwise network distances 
connecting nodesb

Mean number of steps for genetic exchange 
among all nodes along all possible paths

Betweenness 
centrality

Node The number of shortest paths upon which a 
particular node liesb

The importance of node to maintaining 
network-wide genetic exchange along the 
most direct routes

Closeness centrality Node The mean shortest path between node and all 
other nodes (connected network)

Mean number of steps for the most direct path 
of genetic exchange between any two nodes

Clustering 
coefficient

Node The probability that two nodes connected to a 
given node are also connected (ranges from 
0–1)b

An index of genetic connectivity among nodes 
that are both connected to another node

Degree centrality Node The number of edges connected to a nodeb The number of other nodes with which a given 
node exchanges genes

Eigenvector 
centrality

Node The direct and indirect connectivity: per node 
and immediate neighborsa

An index of how well connected a given nodes’ 
connections are as follows: that is, how much 
genetic exchange occurs at a node’s 
immediate connections

Strength Node The sum of all edge weightsb An index of the magnitude of genetic exchange 
with all nodes connected to a given node

Weight Edge The magnitude of covariance between con-
nected nodes

The magnitude of genetic exchange between 
any two connected nodes

aGarroway et al. (2008).
bNewman (2006).

F IGURE  1 A male greater sage-grouse (Centrocercus 
urophasianus) displays on a lek in the early morning. Photograph 
credit: Rick McEwan
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New connectivity insights would come at a critical time for sage-
grouse. In 2010, sage-grouse were added to the federal Endangered 
Species Act (ESA) candidate list following several petitions for pro-
tection (U.S. Fish and Wildlife Service 2010). In September 2015, a 
U.S. Fish and Wildlife Service determination found current efforts 
by state and federal agencies and other partners adequate to obviate 
the need for listing. However, significant conservation challenges re-
main, and the species’ status will again be reviewed in 2020 (U.S. 
Fish and Wildlife Service 2015). Understanding genetic connectivity 
is a critical step toward comprehending the relationship between the 
distribution and abundance of extant populations across fragmented 
landscapes. Perhaps more importantly, network analysis will greatly 
benefit planning in identifying conservation targets with the great-
est benefit to maintaining genetic connectivity.

In this study, we had two primary objectives. First, we sought 
to determine the network structure of connectivity among leks, 
weighting edges by genetic divergence based on genetic covariance 
among leks. Second, we sought to identify which leks were import-
ant to maintaining overall population connectivity and persistence 
using network centrality indices. Within this second objective, we 
also sought to identify keystone nodes, that is, nodes that act as 
more important to maintaining gene flow than their size or location 
within the species range alone would indicate.

2  | METHODS

2.1 | Study area and sampling

We used 16,420 spatially referenced sage-grouse feather and blood 
samples collected from 2,139 leks (mean of 7.68 samples per lek) 
across the entire contiguous range of the species in the United 
States of America and Canada from 2005 to 2015. The spatial dis-
tribution of our sampling was optimized as described in Hanks et al. 

(2016), following a smaller pilot sample. Feather samples were col-
lected from leks using noninvasive methods (Bush, Vinsky, Aldridge, 
& Paszkowski, 2005; Segelbacher, 2002) after having been dropped 
by sage-grouse during breeding activity, while blood samples were 
collected from sage-grouse on leks as part of radiotelemetry field 
research. The only location throughout the entire distribution of the 
species that we did not use was Washington State because samples 
from this location were collected during a different period (from 
1992 to 1999) than the rest of the samples.

2.2 | DNA extraction

Genetic analysis was conducted at two molecular biological labo-
ratories: the National Genomics Center for Wildlife and Fish 
Conservation at the USFS Rocky Mountain Research Station and 
the Molecular Ecology Lab at the USGS Fort Collins Science Center. 
Protocols were established at the inception of the study to ensure 
consistency among laboratory genotyping and are described below. 
Feather DNA was extracted from the quill (calamus) using QIAGEN 
DNeasy Blood and Tissue Kit and the user-developed protocol for 
purification of total DNA from nails, hair, or feathers. The protocol 
was modified by incubating samples for a minimum of 8 h after ad-
dition of Proteinase K to maximize tissue lysis and by eluting DNA 
with 100 μl of Buffer AE to increase the final DNA concentration in 
the eluate. Blood samples were extracted using QIAGEN  DNeasy 
Blood and Tissue Kit and the protocol for nucleated blood. At USGS, 
parts of the extraction process were automated using a QIAcube 
(Qiagen).

2.3 | Microsatellite DNA amplification  
and genotyping

We based our analysis upon a panel of neutral, polymorphic micros-
atellite loci both to identify individuals from noninvasively collected 
samples (of unknown individual origin) and to quantify relatedness 
(i.e., functional movement resulting in gene flow). We amplified 15 
variable microsatellite loci (BG6, SGMS064, SGMS066, SGMS068, 
MSP11, MSP18, SG28, SG29, SG36, SG39, SGCA5, SGCA11, 
SGCTAT1, TUT3, and TUT4) and one sex-diagnostic locus [CHD 
gene, using the primers 1237L and 1272H (Kahn, St. John, & Quinn, 
1998)]. Primer design, PCR conditions, and electrophoresis used at 
USFS and USGS are detailed in Cross, Naugle, Carlson, and Schwartz 
(2016); Cross et al. (2017) and Row et al. (2015).

To ensure correct genotyping from low-quality and low-quantity 
feather DNA samples, each sample was PCR-amplified twice across 
the 15 variable microsatellite loci to screen for allele dropout, stut-
ter artifacts, and false alleles (DeWoody, Nason, & Hipkins, 2006). 
To minimize genotyping error, at least two independent observers 
scored each sample. If any locus failed to amplify in either replicate 
or if there was a discrepancy between locus genotypes as scored 
by the two observers, PCR amplification and genotyping were re-
peated twice more. If a genotype was confirmed by this repeat anal-
ysis, then it was retained. If a genotype failed again, the sample was 

TABLE  2 Sample summary listed by U.S. state or Canadian 
province for all samples used to construct range-wide greater 
sage-grouse genetic network. Total individuals sampled per state/
province, leks sampled per state/province, and total number of 
nodes per state/province

State/Province Individuals Leks sampled Nodes

CA 53 14 6

CAN (SASK) 6 2 1

CO 679 106 38

ID 988 281 80

MT 1881 358 130

ND 7 2 1

NV 430 116 45

OR 296 52 31

SD 75 15 6

UT 607 114 44

WY 902 120 76
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assigned a missing score at the failed locus. To ensure consistency 
among laboratories, both laboratories genotyped the same 70 indi-
viduals (approximately 1% of the retained genotypes). Each laborato-
ry’s genotypes for these individuals were compared, and necessary 
shifts to synchronize allele calls were made for all samples.

To screen samples for quality control, we removed from analy-
sis any individual for which amplification failed at one-third of the 
loci (i.e., five loci). After removal of poor-quality samples, genotypes 
were screened to ensure consistency between allele length and 
length of the microsatellite repeat motif using MICROCHECKER 
v2.2.3 (Van Oosterhout, Hutchinson, Wills, & Shipley, 2004). To 
identify and remove multiple captures of the same individual and 
to screen for and correct genotyping error, we used DROPOUT 
2.3 (McKelvey & Schwartz, 2005 as implemented in Schwartz et al. 
2006), MICROCHECKER v2.2.3 (Van Oosterhout et al., 2004), and 
package ALLELEMATCH 2.5 (Galpern, Manseau, Hettinga, Smith, & 
Wilson, 2012) in program R 3.3.0 (R Core Team 2016). Finally, we 
quantified the power of our microsatellite locus panel to discern in-
dividuals using probability identity (PID; Evett & Weir, 1998) which 
calculates the probability that two individuals drawn at random from 
the population have the same genotype across all loci.

2.4 | Network construction

A minimum of four or more individuals per node is required to calcu-
late within-node genetic variation (Dyer, 2014b). Therefore, before 
constructing the network, we performed a hierarchical clustering 
analysis of lek locations. First, we calculated a distance-based tree 
using the geographic coordinates for the leks from which the 6,242 
individual samples were collected (using the HCLUST function in 
base R). Second, we clustered all lek locations within 15 km of one 
another (cut distance implemented using the CUTREE function in 
base R). We selected 15 km as the cut distance, as this is the best 
estimate of median breeding dispersal distance among leks for sage-
grouse (Cross et al., 2017). Third, we removed any resultant clusters 
of leks composed of fewer than four individuals.

Following clustering, we constructed a weighted population net-
work among the resulting clusters, which we henceforth refer to as 
nodes. For all clustered samples and for all nodes, we calculated the 
mean and standard deviation for number of alleles per locus, effec-
tive number of alleles, expected and observed heterozygosity, and 
FIS. We estimated genetic covariance among nodes, where micro-
satellite genetic covariance represents the weight of each network 
edge connecting nodes. We used the packages GSTUDIO (Dyer, 
2014a) and POPGRAPH (Dyer, 2014b) in program R to estimate the 
conditional genetic covariance network following the methods of 
Dyer and Nason (2004) using default parameters (α = 0.05 and tol-
erance = 1 × 10−4; Garroway et al., 2008). Following pruning using 
the recommended settings, the resultant minimal incidence matrix 
contained the smallest set of edges that sufficiently capture the 
among-node genetic covariance structure (Dyer & Nason, 2004). 
We also calculated the minimum spanning tree, which is the subset 
of network edges that connect all nodes together with the maximum 

genetic covariance among nodes (edge weight), without any cycles. 
To test for structure within the minimum spanning tree, we tested 
for correlation between weighted (factoring genetic covariance) dis-
tances among nodes in the minimum spanning tree and geographic 
distance (great circle distance) among all nodes calculated using 
the RDIST.EARTH function in the FIELDS package (Nychka, Furrer, 
Paige, & Sain, 2015) in R.

2.5 | Network structure determination

To determine the network structure, we compared the degree distri-
bution, clustering coefficient, and characteristic path length of the 
sage-grouse genetic network to that of 1000 Erdos–Renyi model 
random networks with the same number of nodes, edges, and edge 
weight distribution as the range-wide sage-grouse genetic network. 
The characteristic path length is defined as the average shortest path 
length between all pairs of nodes in the network, and it provides an 
understanding of how long it takes alleles to traverse the network. 
We generated the random networks using package IGRAPH (Csardi 
& Nepusz, 2006) in program R and tested for significant differences 
between the degree distribution, clustering coefficient, and charac-
teristic path length of the true sage-grouse network and the ran-
dom networks using permutation tests, following the methods of 
Garroway et al. (2008). We used the results of these comparisons 
to determine whether network structure was purely a function of 
the number of nodes and edges or whether network structure was 
a result of nonrandom processes. For example, if we found a char-
acteristic path length that did not deviate significantly from that of 
the random networks coupled with a significantly higher clustering 
coefficient than that of the random networks, then we could con-
clude that the network had small-world or scale-free characteristics 
(Watts & Strogatz, 1998). Furthermore, if we found a degree distri-
bution that did not follow the power law (which would indicate scale-
free network), was not binomial (which would indicate a random 
network) or fixed (which would indicate a regular network), but in-
stead that was fat-tailed, we would conclude that the likely network 
structure was that of the hub node-and-spoke small-world network.

We quantified pairwise conditional genetic distance among all 
nodes. Conditional genetic distance is the length of the shortest 
path connecting each pair of nodes conditioned on network struc-
ture (Dyer, Nason, & Garrick, 2010) or the relative strength of the 
genetic covariance between nodes along the connecting edges 
(Koen, Bowman, Garroway, & Wilson, 2013). When compared to 
geographic distance among nodes, conditional genetic distance can 
provide insight into network structure. For example, if conditional 
genetic distance is correlated with geographic distance, one can 
conclude that the process of isolation by distance shaped a genetic 
network (Dyer et al., 2010).

We calculated six centrality indices (Table 1) and used these 
metrics to quantify connectivity and relative isolation of each node 
across the network. To calculate standard error (SE) of the mean 
and median as well as their respective 95% confidence intervals 
(CI), we calculated 1000 resampled networks of 75% of the nodes. 
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Betweenness centrality quantifies the importance of a node in 
terms of the bottleneck to gene flow it creates, eigenvector cen-
trality quantifies how connected a node is, and strength quantifies 
how strong the connection is between a node and all its neighboring 
nodes (Garroway et al., 2008). Eigenvector centrality is an index of 
both how well a node is connected and how well a node’s immedi-
ate connections are connected—in essence, measuring both direct 
and indirect connectivity. These properties make eigenvector a 
better index than betweenness if one is interested in quantifying 
the strength of connections. This is because eigenvector central-
ity increases not only just with increased immediate connectivity 
of the node of interest, but also the immediate connectivity of the 
nodes to which the node of interest is connected. When quantifying 
connectivity, we used the centrality index of node strength rather 
than node degree, as Koen et al. (2015) found that strength more 
adequately depicts migration and gene flow than degree centrality. 
To examine relationships between network centrality indices, we 
tested for pairwise correlation between all indices using Spearman’s 
rank correlation. We also tested for correlation between each net-
work centrality index and mean peak male count per node (calcula-
tion described below). All network centrality indices were calculated 
using the IGRAPH package in R, and all correlations were calculated 
in base R.

To identify hub nodes of genetic exchange, we screened all 
nodes within the top 1% of each network centrality index (Table 1), 
and within the top 50% of all node centrality indices combined in 
order to identify those nodes that were most important to local net-
work (regional) and network-wide (range-wide) connectivity. These 
nodes represent the top hub nodes of genetic exchange that main-
tain connectivity at all scales. To identify spoke nodes, we identified 
the nodes with the lowest ranking for each centrality index.

2.6 | Keystone nodes

We hypothesized that nodes composed of the most highly attended 
leks and the most geographically central nodes in the species’ range 
would rank highest for centrality (i.e., node abundance and range 
centrality would be positively correlated with node centrality). To 
calculate abundance, we used the per-lek high male counts recorded 
between 2005 and 2015 (WAFWA, 2015) and calculated the mean 
peak male count per node over these years using all leks constitut-
ing each node (male lek attendance is significantly correlated with 
female lek attendance; Bradbury et al., 1989). Using mean peak male 
count, we tested for correlation with network centrality indices.

We defined range centrality as the great circle distance from 
the center of the geographic center of the sampling distribution. 
We calculated range centrality as the distance of each node from 
the centroid of a minimum convex polygon enveloping all nodes, 
such that increased magnitude of distance was equivalent to in-
verse range centrality. We calculated the minimum convex polygon 
using the GCONVEXHULL function and calculated the centroid of 
the minimum convex polygon using the GCENTROID function in the 
RGEOS package (Bivand & Rundel, 2017) in R. Finally, we calculated 

the distance of every node from the centroid using the RDIST.
EARTH function in the FIELDS package (Nychka et al., 2015) in R. 
Using range centrality, we tested for correlation with node centrality 
indices.

Finally, we sought to identify nodes with greater importance to 
genetic connectivity than the magnitude of lek attendance within 
the node or node location within the species range alone might 
indicate. We call these nodes keystone nodes. We identified key-
stone nodes as those that were low in attendance or peripheral to 
the range, but that still ranked high in centrality. To identify key-
stone nodes, we plotted both the mean peak male count within a 
node and the range centrality of each node against each network 
centrality index. We then called the outliers of these plots, key-
stone nodes.

3  | RESULTS

3.1 | Genotyping and network construction

After genotyping the same 70 individuals at each laboratory, we 
compared allele calls. For two loci, the laboratories had a two base 
pair difference across all allele calls (BG6 and SGCA5), for one locus, 
there was a four base pair difference (SGCA11), and for another 
locus, a seven base pair difference (SGCTAT1) as well as two alleles 
called off-step on a dimer repeat motif changed to comply with the 
tetramer repeat motif. Each laboratory’s genotypes for these indi-
viduals were shifted to synchronize allele calls for all samples for 
these loci. With the additional ALLELEMATCH analysis, we discov-
ered no additional multiple matches (identical genotypes resulting 
from the same sample being genotyped by both laboratories). PID 
for the complete microsatellite panel was 2.20 × 10-22, providing 
evidence that our microsatellite panel was adequate for distinguish-
ing individuals. Our genotyping efforts resulted in 6,729 individual 
genotypes from 1,388 leks (median = 3 individuals per lek, IQR = 4 
individuals per lek, range = 1–62 individuals per lek) following dupli-
cate removal and quality control.

Hierarchical clustering and removal of nodes with fewer than 
four individuals yielded 5,924 samples from 1,180 leks clustered 
into 458 nodes from 2006 to 2015 (median = 10 individuals per 
node, IQR = 7.00–15.75, range = 4–90 individuals per node, Table 2). 
We were able to use 1,057 mean peak male counts for 399 nodes. 
For all clustered samples and across all nodes, average number of 
alleles was 17.0 ± 7.48 (mean ± SD) and 6.43 ± 1.47, for the effective 
number of alleles was 7.30 ± 2.88 and 4.41 ± 0.75, for expected het-
erozygosity was 0.84 ± 0.06 and 0.74 ± 0.05, for observed heterozy-
gosity was 0.78 ± 0.05, and for FIS was 0.07 ± 0.02 and −0.06 ± 0.06. 
We constructed a network composed of 458 nodes connected by 
14,481 edges. The minimum spanning tree (Figure 2a) was cor-
related with geographic distance (rs = 0.61, p < 2.2 × 10−16). Montana 
nodes compose a large group within the minimum spanning tree and 
are joined to the rest of the network through nodes in Wyoming 
and Idaho (Fig 2). Nodes in Colorado also group together and are 
linked by nodes in Wyoming and Utah (Figure 2). There was strong 
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evidence for a positive correlation between conditional genetic dis-
tance and geographic distance (Table 4).

3.2 | Network structure determination

The sage-grouse genetic network deviated from random network 
structure in both mean clustering coefficient and mean charac-
teristic path length. Both indices were significantly greater for the 
sage-grouse genetic network than for the 1000 random networks 
with the same number of nodes, edges, and edge weight distribu-
tion as the sage-grouse network; none of the random networks had 
a greater mean clustering coefficient or characteristic path length 
than the sage-grouse network (clustering coefficient: p < .001, char-
acteristic path length: p < .001). Both the mean clustering coefficient 
(0.19 ± 3.35 × 10−3 [SE]) and the mean characteristic path length 
(1.88 ± 7.04 × 10−3 [SE], [1.88, 1.91]) were short, and the node de-
gree distribution was fat-tailed (Figure 4d).

3.3 | Node properties

In order to describe node location, we used USGS hydrologic cata-
loging units, also known as watersheds (https://water.usgs.gov/GIS/
metadata/usgswrd/XML/huc250k.xml). We discovered hub nodes 
within the C.J. Strike Reservoir watershed in Idaho and the Big Horn 
Lake and Upper Green-Slate watersheds in Wyoming. These nodes 
rank highly across multiple centrality indices indicating the impor-
tance of these regions to maintaining genetic connectivity across 
the network. Collectively, these two basins contained nodes with 
the maximum centrality indices (Figure 3). Many other regions con-
tained hub nodes as determined with one or more centrality indices. 
Notably, the Big Horn Lake watershed in Wyoming, the Bullwhacker-
Dog and Middle Musselshell watersheds in Montana, the Fremont 
watershed in Utah, and the Middle Snake-Succor watershed in 
Idaho and Oregon contain nodes that rank high for centrality indi-
ces indicative of their functioning as hub nodes that maintain local 

F IGURE  3 The top 1% of nodes for each of the six centrality indices (n = 20 per index). Nodes in the top 1% of more than one index are 
offset to the left or right to reveal both. Node color indicates centrality measure. Shaded polygons depict the watershed within which these 
top-ranking nodes are located. The species’ range is shown as light gray polygons
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connectivity. The Crazy Woman watershed, the Upper Green-
Slate watershed, and the Middle North Platte-Casper watershed 
in Wyoming, the Lake Walcott watershed in Idaho, and the Upper 
Bear watershed in Utah all contain nodes that rank high for central-
ity indices indicative of their functioning as hub nodes that maintain 
network-wide connectivity (Figure 3).

Only five nodes ranked in the top 50th percentile of all net-
work centrality indices, indicating their importance to genetic 
connectivity both locally and network-wide as well as the rarity of 
this combination of local and network-wide importance. The range 
of each centrality index for these hub nodes was large (Table 3). 
These nodes were located within the Idaho Falls, Lake Walcott, 
and Salmon Falls watersheds in Idaho, and the Middle North 
Platte-Casper and Sweetwater watersheds in Wyoming (Figure 3); 
locations central to both the sampling extent and the geographic 
range of the species.

Nodes with high betweenness centrality act as bridges between 
different parts of the network, so their loss can have network-wide 
impacts on genetic connectivity (Garroway et al., 2008). We iden-
tified several hub nodes whose betweenness ranking was high, 
located toward the center of the species’ range. Three of the top 
1% of nodes ranked by betweenness centrality were located in 
Wyoming—one in the Crazy Woman watershed, one in the Middle 
North Platte-Casper, and one in the Upper Green-Slate watershed. 
Of the remaining two nodes, one was located in the Lake Walcott 

watershed in Idaho, and one was located in the Upper Bear water-
shed in Utah (Figure 3). Of these, the node with the greatest be-
tweenness (1491) was located just south of Grand Teton National 
Park in the Upper Green-Slate watershed. This same node also 
indexed high for strength (700.89). Most nodes in the network 
were important to network-wide connectivity (right-skewed dis-
tribution: Table 3, Figure 4). However, seventeen nodes had a 
betweenness of zero, indicating relatively low importance to fos-
tering genetic connectivity across the network. These spoke nodes 
had an average strength of 429.2 (±218.3 [SD]), indicating strong 
connections to other nodes despite low importance to network-
wide genetic connectivity. Many of these spoke nodes with the 
lowest betweenness indices were located toward the periphery of 
the species’ range.

To identify nodes that covaried the greatest with all other nodes 
in the network, we ranked nodes by closeness centrality. Closeness 
is an index of the average shortest path between a node and all 
other nodes in the network. Hence, a smaller closeness index indi-
cates shorter paths on average, and therefore, greater connectivity. 
There were a small number of very closely covarying nodes in the 
network (left-skewed distribution: Table 3, Figure 4). The top-ranked 
closeness nodes were central to the species’ range, away from the 
periphery. Two of the nodes in the top 1% of closeness centrality 
were located in the Lake Walcott watershed in Idaho. The remain-
ing nodes were located in the Little Snake watershed in Colorado 

TABLE  3 Network centrality indices (betweenness, closeness, clustering coefficient, degree, and eigenvector) and network connectivity 
(strength and weight) for the range-wide greater sage-grouse genetic network (a) and networks (b) calculated from 1000 networks 
constructed from a resample of 75% (n = 343 nodes) of the originally sampled 458 nodes (sampled without replacement). Listed are the 
network centrality index, the component for which each index was calculated, minimum, mean, median, standard error (SE) of the mean and 
median, and 95% confidence intervals (CI) of the mean and median

(a)

Centrality index Component Min Mean ± SD Median (IQR) Max

Betweenness centrality Node 0.00 203.60 ± 249.63 90.50 (29.25–270.50) 1491.00

Closeness centrality Node 4.91 × 10−5 1.34 × 10−4 ± 1.51 × 10−5 1.37 × 10−4 
(1.28 × 10−4–1.45 × 10−4)

1.59 × 10−4

Clustering coefficient Node 0.12 0.19 ± 0.022 0.18 (0.17–0.20) 0.33

Eigenvector centrality Node 0.07 0.55 ± 0.18 0.57 (0.43–0.69) 1.00

Strength Node 88.19 619.10 ± 181.51 634.70 (488.60–752.50) 1085.00

Weight Edge 3.02 9.82 ± 2.23 9.68 (8.42–11.00) 35.61

(b)

Centrality index Component

Resampled networks

Mean ± SE [95% CI] Median ± SE [95% CI]

Betweenness centrality Node 155.77 ± 1.28 [153.28, 158.26] 87.00 ± 4.87 [78.00, 98.00]

Closeness centrality Node 1.75 × 10-4 ± 1.83 × 10-6 [1.71 × 10-4, 
1.78 × 10-4]

1.78 × 10-4 ± 1.87 × 10-6 [1.75 × 10-4, 
1.82 × 10-4]

Clustering coefficient Node 0.18 ± 0.0032 [0.18, 0.19] 0.18 ± 0.0032 [0.17, 0.19]

Eigenvector centrality Node 0.55 ± 0.025 [0.49, 0.59] 0.56 ± 0.027 [0.50, 0.60]

Strength Node 449.46 ± 8.82 [431.19, 466.40] 455.71 ± 10.22 [435.06, 475.58]

Weight Edge 9.86 ± 0.066 [9.74, 9.99] 9.74 ± 0.069 [9.60, 9.87]
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and the Sweetwater and Upper Green-Slate watersheds in Wyoming 
(Figure 3). The node with the minimum closeness (4.91 × 10−5) was 
located in the Spring-Steptoe Valleys watershed in Nevada and 
had low betweenness (0). The node with the greatest closeness in 
the network (1.59 × 10−4) was located just south of Grand Teton 
National Park in the Upper Green-Slate watershed in Wyoming and 
had a relatively high betweenness (1521) and strength (700.89).

To identify nodes that anchor tightly knit groups connected by 
a high number of edges, we examined node rankings by clustering 
coefficient. Increased clustering coefficient is indicative of small-
world characteristics. Network-wide, there was a low chance that 

any two nodes connected to a given node were also connected to 
one another (right-skewed distribution: Table 3, Figure 4). The nodes 
in the top 1% of clustering coefficient were found across the species’ 
range and were mostly toward its periphery (Figure 3). The south-
ernmost hub node in the top 1% was in the Fremont watershed in 
Utah. Other hub nodes in the top 1% of centrality were located in 
the Middle Snake-Succor watershed in Idaho, the Big Horn Lake 
watershed in Wyoming, and the Bullwhacker-Dog watershed and 
Middle Musselshell watershed in Montana. The hub node with the 
greatest clustering coefficient (0.33) was found in the Middle Snake-
Succor watershed. This node also had low betweenness (0), strength 

F IGURE  4 Centrality index distributions for all nodes (a–f; n = 458) and edges (g; n = 14,433) in the greater sage-grouse genetic network. 
The solid vertical black line shows the median for each index
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(223.65), and eigenvector centrality (0.21). The spoke node with 
the lowest clustering coefficient (0.12) was found in the Shoshone 
watershed in northcentral Wyoming and had low betweenness (7), 
strength (327.34), and eigenvector centrality (0.25).

To identify the most highly networked nodes, we examined node 
rankings by eigenvector centrality. Eigenvector centrality increases 
for nodes that are highly connected to other highly connected 
nodes. All but one of the top one percent of nodes ranked by ei-
genvector centrality were located in the Great Basin, indicating in-
creased genetic connectivity therein. These hub nodes are located in 
the Crowley Lake watershed in California, the Lake Abert watershed 
in Oregon, the Diamond-Monitor Valleys watershed in Nevada, and 

the Upper Malheur watershed in Oregon (Figure 3). The exception 
was a single node outside the Great Basin in the C.J. Strike Reservoir 
watershed in Idaho. This hub node had the greatest eigenvector 
centrality (1.00) and had very high strength (1064.07), but very low 
betweenness centrality (3). The spoke node with the lowest eigen-
vector centrality (0.067) was located in the Escalante Desert water-
shed in Utah and was a terminal node on the minimum spanning tree. 
This spoke node was also low for strength (88.2) and betweenness 
(69): low centrality both locally and network-wide. Eigenvector cen-
trality was normally distributed (Table 3, Figure 4).

To determine which nodes covaried closely with many other 
nodes, we calculated the strength of each node. The top 1% of 
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nodes ranked by strength was located toward the range periphery 
in both the central and southwestern part of the species’ range, in-
dicating increased genetic covariance among a greater number of 
nodes (Figure 3). Of the hub nodes with the greatest strength, one 
hub node was in the Crowley Lake watershed in California, one in 
the Diamond-Monitor Valleys watershed in Nevada, one in the C.J. 
Reservoir Strike watershed in Idaho, one in the Provo watershed in 
Utah, and one in the Upper Green watershed in Wyoming. All five 
of the top 1% of nodes by strength were terminal nodes on the min-
imum spanning tree. The nodes with the greatest and least strength 
(1085.0 and 88.2), located in the C.J. Strike Reservoir watershed in 
Idaho and the Escalante Desert watershed in Utah, were also simi-
larly ranked for eigenvector centrality (two indices for which there 
was very strong evidence for a positive correlation (Table 4)). Node 
strength was normally distributed (Table 3, Figure 4).

We found evidence for a strongly positive significant correla-
tion between betweenness and closeness, and eigenvector and 
strength (Table 4). All other significant correlations among cen-
trality indices were weak and negative. We found evidence for a 
strongly positive significant correlation between number of alleles 
per node and betweenness and closeness, although all other signif-
icant correlations were moderately negative or weak and positive. 
The evidence for a correlation between mean peak male count and 
centrality indices was weak when significant. Finally, we found ev-
idence for a strongly positive significant correlation between the 
number of samples in a node and betweenness, but only moderate 
or weak relationships when testing for correlation with other cen-
trality indices.

3.4 | Edge properties

Edge weight is an index of the magnitude of genetic covariance be-
tween nodes and can be used to identify nodes most closely linked. 
Overall, genetic connectivity among nodes has led to increased net-
work connectivity, with the occurrence of some highly connected 
nodes evidenced by a skewed right distribution of edge weight 
(Table 3; Figure 4). The top 0.1% of edges with the greatest genetic 
covariance emanated from a node in the Spring-Steptoe Valleys 
watershed in Nevada. This node also has the lowest closeness cen-
trality and low eigenvector centrality (0.33) and very low between-
ness (0). The edge of least weight connected two nodes within the 
Fremont watershed in Utah (in the southcentral UT group of nodes 
in Figure 3). This node was of moderate importance to network-wide 
connectivity (betweenness: 115), but had low connectivity to other 
nearby nodes (eigenvector centrality: 0.11).

3.5 | Keystone nodes

It was common that the hub nodes—those with the highest central-
ity rankings—were also those with lower mean peak male count 
(Figure 5). There was strong evidence for a weak positive correla-
tion between mean peak male count and eigenvector centrality and 
mean peak male count and strength and strong evidence for weak TA
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F IGURE  5 Relationships between centrality index (y-axis) and mean peak male count per node (x-axis). Red circles envelope keystone 
nodes. The fitted linear model and confidence interval are shown (blue line with shaded confidence interval)
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negative correlation between mean peak male count and between-
ness and between mean peak male count and closeness (Table 4 and 
Figure 5).

Across all centrality indices, we discovered 26 nodes that ranked 
high for network centrality despite having lower mean peak male 
count than nodes of similar ranking (Figure 6). These 26 keystone 
nodes were located across the entire species’ range. Four of these 
keystone nodes ranked highly for more than one centrality index, 
with high rankings coupled for eigenvector centrality and strength 
and for closeness and clustering coefficient. In all cases, these nodes 
were keystone for betweenness and closeness or for eigenvector 
and strength.

4  | DISCUSSION

4.1 | Emergent network properties

The greatest utility of our network analysis is its ability to be used 
to prioritize and target conservation efforts to the nodes most im-
portant to maintaining network connectivity at any desired scale. 
Our network approach allows nodes to be ranked across multiple 

centrality indices, indicative of different scales and patterns of con-
nectivity, each with unique importance to conservation.

We discovered that the sage-grouse range-wide genetic net-
work is best characterized as hub-and-spoke topology most re-
sembling the structure of a small-world network and not that 
of a random or regular network. Both the mean clustering co-
efficient (0.19 ± 3.35 × 10−3 [SE]) and the mean characteristic 
path length (1.88 ± 7.04 × 10−3 [SE], [1.88, 1.91]) were shorter 
than has been reported for other species (e.g., 0.254 and 2.26 
in Garroway et al., 2008). The fat-tailed distribution of node 
degree (Figure 4d) confirmed small-world network structure by 
ruling out scale-free structure, for which the degree distribution 
follows a power law.

Many hub nodes of connectivity within the network are located 
across the species’ range (Figure 3), with most spoke nodes located 
along the periphery of the range. This hub-and-spoke topology is 
evident in the minimum spanning tree, with important hub nodes 
of genetic connectivity occurring in nearly every state across the 
contiguous range (Figure 2). Loss of one of these highly connected 
hub nodes within several major basins could severely affect overall 
network connectivity.

F IGURE  6 Keystone nodes (n = 26): nodes with greater importance to genetic connectivity than the magnitude of lek attendance within 
the node or node location within the species range alone might indicate. These nodes were low in mean peak high male count relative to 
their network centrality rankings. Points representing keystone nodes for more than one centrality index are offset to the left or right, such 
that these offset touching points represent the same node. Node color indicates centrality measure. Shaded polygons depict the watershed 
within which these top-ranking nodes are located. The species’ range is shown as light gray polygons
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We documented strong connectivity across the entire network, 
evidenced by high-ranking nodes and edges across the species’ 
range. This means that some of the nodes may be able to recover 
should they be extirpated but the habitat remain intact or be re-
stored (e.g., following a local extinction caused by West Nile vi-
rus—e.g., Naugle et al., 2004; or return after restoration following 
natural resource extraction—e.g., Naugle et al., 2011). The ability 
to recover is exhibited in the network’s traversability (i.e., the ap-
parent low resistance to gene flow). However, to the best of our 
knowledge, node recovery has not been previously investigated in 
wildlife networks. The minimum spanning tree can serve as a pow-
erful guide in making management decisions related to the relative 
importance of individual nodes to overall landscape connectivity 
(Urban & Keitt, 2001), as it is possible to model which nodes or 
which parts of the range will most likely be affected by the loss of 
any given node.

Our results suggest that distance plays an important role in 
structuring genetic connectivity (also known as isolation by dis-
tance, Wright, 1943). The vast majority of edges in the minimum 
spanning tree—those connections that represent the greatest cova-
riance—connect geographically proximal nodes (Figure 2a). Similarly, 
there was a correlation between conditional genetic distance and 
geographic distance. These results support prior findings of isola-
tion by distance across the species’ range (Bush et al., 2011; Cross 
et al., 2016; Davis, Reese, Gardner, & Bird, 2015; Fedy, Row, & Oyler-
McCance, 2017; Oyler-McCance, Taylor, & Quinn, 2005; Schulwitz, 
Bedrosian, & Johnson, 2014). However, nodes with greater central-
ity, important to both local and network-wide genetic exchange, are 
located across the species’ range.

Both Cross et al. (2016) and Oyler-McCance et al. (2005) found 
that sage-grouse subpopulations in southwestern Montana were 
diverged from populations in the rest of the state. We confirm 
this prior finding, showing that sage-grouse from these same sub-
populations are more closely related to conspecifics in Idaho than 
to subpopulations in Montana, as is evident in edge connectivity 
within the minimum spanning tree (Figure 2b). Cross et al. (2016) 
also found that the population in Northern Montana was diverged 
from the subpopulation in Southeastern Montana and the Dakotas 
and from the southcentral Montana subpopulation (the SE-W sub-
population in Cross et al., 2016). We confirm these findings here, 
showing nodes with very high clustering coefficient (indicative of 
highly interconnected network subunits) within the same regions 
(Figure 3). We expect that the other top-ranked nodes for clus-
tering coefficient in the Middle Snake-Succor watershed in Idaho 
and the Fremont watershed in Utah might also be embedded at 
the core of their respective subpopulations. Schulwitz et al. (2014) 
found that the subpopulations in southern and southeastern 
Montana and the Dakotas were both highly connected to leks in 
northern Wyoming. We also found the same pattern of connec-
tivity, evident in the hub-and-spoke topology of the minimum 
spanning tree. In our case, a hub node in Wyoming/southcentral 
Montana is located in the Big Horn Lake watershed of northcentral 
Wyoming, and a hub node for Wyoming/southeastern Montana 

subpopulations is located within the Crazy Woman watershed of 
northeastern Wyoming (Figures 2b and 3). Davis et al. (2015) found 
that the small northern California population known to have ex-
perienced population declines had retained genetic diversity. We 
confirm this understanding by finding that the nodes in this area 
show elevated local connectivity (covariance) within the area. We 
also found that genetic connectivity into the northern California 
nodes comes from nodes to the north in Oregon (Figure 2b). Oyler-
McCance, Casazza, Fike, and Coates (2014) discovered a north-
ern and a southern subpopulation within the Bi-State population 
in southern California and southwestern Nevada. We found the 
same break evidenced by a lack of edges connecting these two 
units in the minimum spanning tree (Figure 2b). This lack of inter-
connectivity among nodes in the northern and southern groups is 
especially surprising, given that both groups exhibit greater covari-
ance with far more geographically distant nodes. Fedy et al. (2017) 
documented genetic differentiation between birds in the Bighorn 
and Powder River Basins of Wyoming as well as differentiation be-
tween the northern and southern parts of the state, differences 
reflected in our analysis as evidenced by edge connectivity within 
the minimum spanning tree.

4.2 | Hubs of genetic exchange

We identified nodes with high importance to large-scale, network-
wide genetic connectivity (i.e., nodes with high betweenness), and 
nodes within the top 50% of all centrality indices important to both 
network-wide and local connectivity. These top-ranked hub nodes 
are located across the entire range of the species. The locations 
of these hub nodes important to network-wide connectivity are in 
areas that should foster range-wide genetic connectivity due to their 
location in the topography of the western landscape.

Connectivity of these hubs is apparent in the minimum spanning 
tree (Figure 2b) where connectivity across the range appears cres-
cent shaped, with one point of the crescent in northern Montana/
Saskatchewan and the other in Oregon. The Upper Snake Basin of 
Idaho (Lake Walcott watershed) forms a thumb terminating in south-
western Montana to the northeast. Hub connectivity opens up 
over the Columbia Plateau of Idaho (Upper Snake-Rock, C.J. Strike 
Reservoir, and Middle Snake-Succor watersheds). Connectivity 
extends south into the Great Basin composing most of eastern 
California, all of Nevada and western Utah. Here, the Southwest 
River Basin in Idaho (Middle Snake-Succor and C.J. Strike Reservoir 
watersheds) connects to the Malheur Basin (Upper Malheur water-
shed) to the west and to the South Lahontan River Basin (Crowley 
Lake watershed) by way of the Central Nevada Desert (Diamond-
Monitor Valleys watershed) to the southwest. The Green River Basin 
of Wyoming (Upper Green and Upper Green-Slate watersheds) sits 
just west of a low section of the North American Continental Divide 
connecting the Upper Snake Basin and Great Basin to the rest of 
Wyoming and farther up into the northeastern part of the species 
range. The Green River Basin also sits just north of the Yampa and 
White River Basins in Colorado (Little Snake watershed), and the 
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Bear River Basin in Utah (Upper Bear watershed), both connected 
by low valleys to the south. Similarly, the Powder and Tongue River 
Basins of Wyoming (Crazy Woman watershed) connect to the north 
with both of the Dakotas and eastern Montana. The Bighorn River 
Basin, which ranks lower for other connectivity indices, connects 
to the southeastern-west subpopulation in the Yellowstone River 
Basin of Montana (Cross et al., 2016)—nodes in the Big Horn Lake 
watershed anchor both basins. We suspect that the topology of the 
genetic network is largely shaped by the topography of the land-
scape, a hypothesis previously posited for sage-grouse (Cross et al., 
2016; Row et al., 2015; Schulwitz et al., 2014), and which has been 
found to influence genetic structure in other species (e.g., Roffler 
et al., 2014).

We identified 26 keystone nodes across the range of sage-grouse 
that stand out with increased importance to genetic connectivity de-
spite having lower mean peak male count (Figure 6). These keystone 
nodes do not follow the presupposition of increased centrality with 
increased mean peak male count (i.e., a proxy for population size for 
any given node) and include the highest ranking nodes for each cen-
trality index, regardless of the population size (Figure 5). We believe 
that these keystone nodes and other hub nodes (Figure 3) are top 
candidates for targeted conservation efforts, as their protection will 
help secure range-wide genetic connectivity. The keystone nodes 
are also distributed across the entire species’ range, from the core 
to the periphery (Figure 6). Therefore, neither range centrality nor 
local population size alone should be trusted proxies for prioritizing 
targeted conservation actions for sage-grouse.

4.3 | Limitations of the study and future directions

Prior research has modeled range-wide sage-grouse connectiv-
ity using a network approach. Knick and Hanser (2011) weighted 
nodes using lek attendance and limited edge connections using hy-
pothesized dispersal thresholds. However, these imposed dispersal 
thresholds may have affected the resultant network structure. For 
example, Knick and Hanser (2011) used an exponential decay func-
tion to determine the probability of connectivity of leks. Imposing 
dispersal thresholds likely oversimplified the contribution that each 
priority area for conservation made to network connectivity by as-
suming dispersal limitations is equal among all nodes regardless of 
the internal population dynamics within nodes and environmental 
conditions within and among nodes. Crist, Knick, and Hanser (2017) 
used network approaches to generate several models of hypothe-
sized connectivity among sage-grouse priority areas for conserva-
tion, which are areas that protect larger leks (i.e., those with more 
males visible during breeding) and surrounding area. They char-
acterized the centrality of each priority area for conservation and 
concluded that several subnetworks exist across the species’ range. 
However, in their analysis, patch size, shape, and boundary length all 
had an effect on the pattern of connectivity and centrality. Our anal-
ysis provides insight into genetic connectivity using centrality indices 
based solely on the species’ biology: the genetic covariance resulting 
from cumulative dispersal and breeding, a quantitative metric.

We have confidence in the cut distance we used to cluster leks 
into nodes, as it is empirically based on dispersal distances doc-
umented over a vast area, across multiple years, involving both 
sexes (Cross et al., 2017). Our clustering approach increased ge-
netic variance within nodes, but also increased covariance among 
nodes (Dyer, 2015). Choice of cut distance depends on the de-
sired scale of analysis for conservation and management applica-
tion. We could have performed this analysis using individual leks. 
Doing so would have resulted in finer resolution for our results. 
However, it also would have resulted in fewer individuals per node, 
which would have limited our characterization of within-node ge-
netic variation. Furthermore, we would have had to cut many leks 
from our analysis due to the minimum node composition require-
ment of four individuals. By clustering leks into nodes, we were 
restricted to making statements about the connectivity of larger 
landscapes that extend beyond the size of an individual lek and 
which were potentially representative of leks unsampled within 
the same landscapes. Furthermore, our clustering approach re-
flects the biology of the species, as prior research has shown that 
both female and male sage-grouse attend multiple leks within a 
breeding season (Cross et al., 2017; Dunn & Braun, 1985; Semple, 
Wayne, & Gibson, 2001).

We found evidence for correlation between some network central-
ity indices and samples per node and mean peak male count. However, 
when significant, these relationships were only moderate or weak in all 
but one case: that of betweenness and samples within a node (Table 4). 
Therefore, we do not believe that sample size drove the centrality of 
a node. Larger populations acting as hub nodes might be expected, as 
these highly populated hub nodes would be expected to house greater 
genetic diversity to be the sources of dispersers. However, as dis-
cussed above, the highest ranking nodes for each centrality index were 
never those with the greatest mean peak male count (Figure 5).

Future work should examine the effect of the spatial distri-
bution of individuals composing nodes on the resultant network 
model structure. For example, constructing a genetic network 
where priority areas for conservation serve as nodes may help 
prioritize conservation based on existing management boundar-
ies at a larger landscape scale. It is worth noting that if priority 
areas for conservation are treated as nodes, larger priority areas 
for conservation may score higher for centrality indices due to the 
within-node proportion of the genetic covariance, which will in-
crease centrality.

4.4 | Applications and future directions

We believe that the greatest utility of our network analysis will be 
its use in prioritizing and targeting conservation efforts to the nodes 
most important to maintaining network connectivity. This network 
approach allows for the ranking of nodes by multiple centrality indi-
ces, indicative of different scales and different patterns of connectiv-
ity. These indices can be used to locate the top-ranking nodes—and 
more importantly, the leks which compose those nodes—which can 
then be prioritized in accordance with management goals (Bottrill 
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et al., 2008). If goals are to conserve hubs of genetic exchange that 
connect the greatest number of nodes range-wide, then ranking 
nodes based on betweenness is most relevant. If goals are to con-
serve hubs of genetic exchange that connect immediate connec-
tions, then ranking nodes based on eigenvector centrality is most 
relevant. If goals are to conserve nodes that have the greatest ge-
netic exchange with their immediate connections, then ranking 
nodes based on strength is most relevant. If goals are to conserve 
hubs of local connectivity, then ranking nodes based on closeness or 
clustering coefficient is most relevant.

Conservation actions may be targeted first toward the top-
ranking nodes, or managers may first choose to combine network 
centrality with economic cost before deciding where to act. We can 
imagine many additional ways in which network centrality may be 
combined with additional metrics to target conservation resources. 
Our hope is that the empirically based sage-grouse genetic network 
we constructed will prove a useful tool to conservation planners.
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