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Abstract: Single-particle electron cryomicroscopy (cryoEM) has become an indispensable tool for
studying structure and function in macromolecular assemblies. As an integral part of the cryoEM
structure determination process, computational tools have been developed to build atomic models
directly from a density map without structural templates. Nearly a decade ago, we created Pathwalk-
ing, a tool for de novo modeling of protein structure in near-atomic resolution cryoEM density maps.
Here, we present the latest developments in Pathwalking, including the addition of probabilistic
models, as well as a companion tool for modeling waters and ligands. This software was evaluated
on the 2021 CryoEM Ligand Challenge density maps, in addition to identifying ligands in three IP3R1
density maps at ~3 Å to 4.1 Å resolution. The results clearly demonstrate that the Pathwalking de
novo modeling pipeline can construct accurate protein structures and reliably localize and identify
ligand density directly from a near-atomic resolution map.

Keywords: cryoEM; Pathwalking; de novo modeling; near-atomic resolution; density map;
probabilistic models; ligand modeling

1. Introduction

Once restricted to relatively low resolutions, single-particle electron cryomicroscopy
(cryoEM) has emerged as a powerful structural biology tool, capable of deciphering complex
functional mechanisms in large, complex macromolecular assemblies [1–3]. The rapid
adoption of cryoEM has been primarily due to technological advancements in electron
microscopes, imaging hardware, and tools for data processing that have made solving
structures at near-atomic resolution routine [4]. Furthermore, new computational tools
have been developed to enable reliable atomic model generation, even in complex density
maps at varying resolutions [5,6]. Today, cryoEM is at the forefront of biomedical science
and human health, providing atomic detail for the structure and function of ribosomes [7],
ion channels [8], G-protein coupled receptors [9], CRISPR [10], and SARS-CoV-2 [11].

While density maps at near-atomic resolutions were relatively uncommon a decade
ago, it is now common to achieve better than 4 Å resolution with single-particle cryoEM [12].
State-of-the-art structures are even pushing toward 1 Å resolution and can resolve densities
for individual atoms [13–16]. As such, computational modeling tools for analyzing and
generating models from cryoEM density maps have also become standard fare [17].

Originally, model building in cryoEM was restricted to feature-recognition methods
such as secondary-structure element identification [18], template-based rigid body fit-
ting [19], flexible fitting [20] or density-constrained modeling [21]. In recent research, new
fitting tools leverage predictive modeling via AlphaFold2 and RosettaFold for generating
models from cryoEM density maps (https://doi.org/10.1101/2022.01.07.475350). While
these methods play critical roles in our understanding of macromolecular structure and
function, today’s most common methods for analyzing near-atomic resolution density
maps focus on building models directly from the map itself. The first “de novo” modeling
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approaches adapted feature recognition tools, where secondary structures in the map and
those predicted from the sequence were used to derive a protein fold [22], though with
improving resolutions, new computational tools have looked to exploit “high-resolution”
features in maps to build all-atom models [6]. These methods, coupled with manual and
automated refinement tools to optimize chemistry and density fitting [23–25], have resulted
in cryoEM models with similar quality to those from X-ray crystallography and NMR.

Most of the current modeling tools are based on a similar approach; visible features
in the density map are used to establish a basic fold, from which a variety of force fields
and chemical restraints help place and refine atom positions [26]. In Phenix, automated
modeling building is accomplished by generating a range of atomic models using several
independent methods followed by real-space refinement with restraints [27]. MAINMAST
generates a set of points, determines and refines connections among these points, and then
threads a sequence onto the trace for subsequent refinement [28]. With DeepTracer, 3D deep
learning methods are used to rapidly construct atomic models directly from cryoEM density
maps [29]. Regardless of the approach, these procedures are relatively robust and can build
reliable models at resolutions better than 2.5 Å, though some require large computational
resources [6]. At lower resolutions, or in density maps with varied resolvability, “standard”
approaches tend to fall short.

With Pathwalking, we reimagined model building as a geometrical optimization
problem bound by chemical constraints [30–32]. Pathwalking is based on the traveling
salesperson problem (TSP); TSP solvers calculate possible cyclical paths between a set of
nodes, minimizing the distance traveled [33]. Here, the TSP solver is used to calculate a
path, i.e., the protein fold, using a set of derived nodes (Cα atoms) from a target cryoEM
density map without explicitly using sequence or structural constraints. The only required
input for Pathwalking is a density map (<5 Å resolution) and the number of amino acids
in the protein. Iterative path optimization with increasing physical constraints is used to
find an optimal path through the density. Once an optimal path is found, the sequence is
threaded onto the path, optimized to fit density, and refined against chemical constraints.

As with other cryoEM modeling tools, there are a few shortcomings that can limit the
ability to build reliable, robust models in cryoEM density maps [5,6]. First, modeling non-
protein density, including nucleic acids, waters, ions, small molecules, and other ligands
is generally carried out by hand and only included during the final model refinements.
Second, differences in resolution and resolvability, common in cryoEM density maps, may
result in varying model quality between, or even within, individual subunits. While there
are a number of methods to assess model quality [34,35], there are almost no mechanisms
that simultaneously assess model degeneracy in terms of both density fitting and chemistry.

In this study, we addressed two major bottlenecks in de novo model building with
Pathwalking. In addition to several algorithmic and automation improvements, we im-
plemented a mechanism to rapidly generate alternate paths from the density map and
compare these paths in an effort to determine an accurate probability score for model paths.
Furthermore, we designed a new companion tool, pw_ligands.py, that builds on a number
of the core Pathwalking concepts, to localize and identify waters, ions, and other ligands.
Together, these tools offer a more robust and comprehensive de novo modeling platform
for near-atomic resolution density maps.

2. Materials and Methods
2.1. Workflow Overview

The set of Pathwalking tools for de novo model building in cryoEM density maps can
be summarized in five basic steps: (1) map filtration, (2) pseudoatom generation, (3) path
identification, (4) path optimization, and (5) sidechain assignment and refinement (Figure 1).
Each of these steps is critical in the generation of the final model, though the pseudoatom
generation, path identification, and path optimization steps, unique to Pathwalking, are
the key determinants of successful de novo modeling.
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lated (dashed orange box). In (2a) 100 separate paths over 5 thresholds and 20 noise levels were 
calculated using Pathwalking. In (2b), an average model from the 100 paths is shown. Connections 
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access, we completely rewrote the original software in Python3 and incorporated it into 
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(for more details, see Supplementary Methods) [36]. An updated list of all Pathwalking 

Figure 1. Pathwalking. The basic steps of Pathwalking using EMD-20028, human apoferritin at
3.1 Å resolution, are shown. In the blue box, the reconstruction of apoferritin is shown with a single
monomer segmented from the density map. In (1), the map is low-pass-filtered to ~4.5 Å resolution,
which is then followed by pseudoatom generation (2). An initial trace is computed using a TSP
solver in (3) and then refined to optimally fit the density and remove any non-protein-like features (4).
Finally, the sequence is threaded onto the model, from which a full atom model is generated and
real-space-refined using the original segmented density map (5). The new version of Pathwalking
has the option to generate a set of decoy models from which a probabilistic model can be calculated
(dashed orange box). In (2a) 100 separate paths over 5 thresholds and 20 noise levels were calculated
using Pathwalking. In (2b), an average model from the 100 paths is shown. Connections are colored
based on probability that pseudoatom N is connected to N + 1 and N − 1 in all 100 models. Red
spheres indicate instances where the connection probability was below 50%.

In an effort to unify the Pathwalking utilities and provide for improved developer
access, we completely rewrote the original software in Python3 and incorporated it into
Phenix, a comprehensive software package for macromolecular structure determination
(for more details, see Supplementary Methods) [36]. An updated list of all Pathwalking
options can be found in Table 1. Pathwalking and the new companion tool, pw_ligands.py,
are now available via the command line in Phenix. This step was critical in providing the
framework for the new features discussed below.
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Table 1. Table of Pathwalking options. A list of all command-line inputs, along with a description,
value type, and default setting is provided. Pathwalking is invoked using phenix.pathwalker
<map file> <threshold> <nres => <options>.

Inputs Required? Default Value Description

map_file required na Density map of interest in CCP4 or
MRC format.

Threshold = <float> required na Threshold value at which resolution
appropriate features can be seen.

nres = <int> required na
Number of pseudoatoms to generate in the
density map—usually corresponds to the

number of expected amino acids.

seq_file = <file> optional na Text file containing the 1-letter amino acid
sequence of the protein.

pa_file = <file> optional na Loads previously generated pseudoatoms in
PDB format.

verbose = <bool> optional False Verbose output.
tsp = <> optional ortools Select TSP solver: ortools or LKH.

pa_type = <> optional kmeans Select pseudoatom generation method:
kmeans, sc, ac, ms, gmm.

noise = <float> optional 0 Adds stochastic noise to pseudoatom positions.

map_weight = <bool> optional False Weight pseudoatom distances based on density
map values.

filt = <bool> optional False Apply a 4.5 Å low pass filter to the input map.

or_time = <int> optional 30 Maximum time (seconds) for TSP solution
calculation in OR tools.

prob_model = <bool> optional False Calculates a probabilistic model when more
than 1 path is computed.

all_atom = <bool> optional False Converts the final model into an all-atom
model; requires seq_file.

reverse = <bool> optional False Threads the sequence file both forwards and
backward on the path; requires seq_file.

refine_resolution = <float> optional 0 Resolution used for real-space refinement.

bracket = [float,float,float] optional na The minimum, maximum, and interval for
specifying multiple thresholds.

tsp_runs = [float] optional 0
A list of noise levels to apply to pseudoatom

positions. A unique path is calculated for each
TSP run. Can be combined with brack.

2.2. Probabilistic Models

On a modern laptop or desktop computer, Pathwalking takes a few seconds to generate
a potential backbone trace for typically sized proteins. With this in mind, it is possible to
generate a large set of potential paths and compare these paths in a fraction of the time that
it takes other de novo modeling methods to generate a single model. Once a set of potential
paths are generated, it becomes feasible to statistically analyze the collection of paths and
determine probabilities for connectivity at each point along the path. Collectively, these
paths (decoys) and the connection probabilities between each point along a path can be
used to generate a probabilistic model and quantitatively assess the reliability of the model
at each pseudoatom position.
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In the current version of Pathwalking, we have implemented an option to allow users
to generate probabilistic models directly from the density map (dashed orange box in
Figure 1). As described, Pathwalking begins with the population of pseudoatoms in the
density; the pseudoatoms offer a reduced representation of the density map and serve as
the nodes used in the TSP solver. Here, the user provides a set number of pseudoatoms
(corresponding to the number of Cα atoms in the map) and a single map threshold, where
the overall connectivity of the density map can be observed. In generating a probabilistic
model, several sets of pseudoatoms are computed across a range of thresholds rather than
a single density threshold, though each set contains the same number of pseudoatoms.
Additionally, for each set of pseudoatoms, small positional perturbations are introduced,
creating a “library” of pseudoatom positions based on different density thresholds with
various amounts of positional noise. The number and range of thresholds, as well as the
positional noise and number of alternate positions, can be defined by the user, making it
possible to generate tens to thousands of sets of pseudoatoms.

Each set of pseudoatoms is used as an input to the TSP solver, whereby the optimal
backbone path can then be constructed. The set of all paths, or “decoys”, are then aligned,
renumbered, and compared. While the exact path of each of these decoys will vary, the
total number of pseudoatoms generated remains constant and in the same coordinate
system as the map of interest. From the set of decoys, an average position for each point is
calculated, creating an “average” set of pseudoatoms; the path for this set of pseudoatoms
is then calculated using the Pathwalking TSP solver. All decoys are then compared with the
average model path. A simple percentage is calculated comparing the connectivity of each
pseudoatom, N, in the average path to the connectivity of the corresponding pseudoatom
in each of the decoy paths. As the paths from Pathwalking are agnostic to direction, both
the N + 1 and N − 1 positions are examined. This probability value is then mapped to
the B-factor column in the PDB file, whereby it can be displayed graphically in molecular
visualization software such as UCSF’s Chimera and ChimeraX [37,38].

2.3. Modeling Waters and Other Ligands

Typically, only proteins are considered during de novo modeling in near-atomic
resolution density maps, though waters and other ligands are often found in the maps.
To incorporate ligand and water modeling into the Pathwalking pipeline, we utilized our
pseudoatom representation of the density map to effectively locate and identify these
components (Figure 2). At the outset of model building, the population of pseudoatoms
occurs primarily in regions of the protein backbone. Once a preliminary protein model is
constructed using Pathwalking, the protein-associated density can then be masked and a
new set of pseudoatoms populated in the remaining map. These pseudoatoms correspond
to the non-protein components, though they must be filtered, as the density map may
contain “noise” from image processing and reconstruction. To this end, distance from
the model (user definable, default <5 Å) and map resolvability, based on the consistency
of voxel values in half-maps (user definable, <50% voxel value difference), are used to
eliminate pseudoatoms from “noisy” density. Once filtered, size and shape analysis is
performed to characterize the regions of interest. The location and shape of a pseudoatom
distribution are then used to interpret regions of interest and assign them as either an
ion/water or ligand. Once regions are classified as either waters/ions or ligands, structural
templates for the corresponding features can be fit to the pseudoatoms distributions, and
their fit to the density measured using standard correlation-based techniques. A complete
list of the pw_ligands.py arguments and options are listed in Table 2.
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Figure 2. Ligand identification. The steps for generating a full-atom model complete with lig-
ands using Pathwalking and pw_ligands.py is shown in order: (A) map filtration, (B) Pathwalking,
(C) masking out of protein density, (D) generation of pseudoatoms (salmon) in non-protein den-
sity, (E) filtering pseudoatoms into putative ligands (yellow) and waters/ions (blue), (F) creating
density masks for putative waters (purple) and ligands (yellow), (G) fitting ligand to density, and
(H) refinement of ligand into density with protein components. The steps in panels (C–F) are auto-
mated with pw_ligands.py, while steps in panels (A,B) are part of Pathwalking, ligand docking (G) is
performed in Chimera or Coot and ligand refinement (H) is accomplished with Phenix.

Table 2. Table of pw_ligands.py option. A list of all command-line inputs, along with a description,
value type and default setting is provided. Pw_ligands.py is invoked using python pw_ligands.py
<map file> <threshold> <nres => <options>.

Inputs Required? Default Value Description

map_file required na Density map of interest in CCP4
or MRC format.

model_file required na Model corresponding to density
map of interest.

threshold = <float> required na
Threshold value at which

resolution appropriate features
can be seen.

half1 = <map_file> optional na Density half-map 1 in CCP4 or
MRC format.

half2 = <map_file> optional na Density half-map 2 in CCP4 or
MRC format.

bandwidth_weight optional 10

Bandwidth estimator for mean
shift clustering. Values above 30

are required for higher
resolution density maps.

model_dist optional 5
Maximum distance (Å) from any

atom in model; points beyond
this are excluded.

half_thresh optional 0.5
Threshold difference (in map

sigma) at which voxels are
filtered out.
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2.4. Evaluation and Assessment of Pathwalking

The latest version of Pathwalking, complete with ligand identification and probabilistic
models, was used to process the 2021 CryoEM ligand Challenge dataset (https://challenges.
emdataresource.org/?q=2021-model-challenge, accessed on 1 January 2022). Each of the
three datasets contained multiple protein chains and various ligands, all of which were
visible in the 1.9–2.5 Å resolution maps. Individual protein subunits were first segmented
using Segger in UCSF’s Chimera.

Models for each protein were constructed using mostly default Pathwalking options:
a segmented density map, map threshold, the number of expected amino acids, refinement
resolution, a sequence file, and the all-atom flag were specified for each protein subunit
modeled. Additionally, the flags for map filtering and probabilistic models, including
threshold bracketing (threshold, +/− 1 sigma) and positional noise (20 values from 0
to 5 sigma), were specified. The final Pathwalking models for the individual subunits
were then assembled into individual complexes and refined using the default options in
phenix.real_space_refine; non-crystallographic symmetry (NCS) constraints were applied
if the maps contained symmetry.

For ligand identification, the original density map, the protein-only model, and a
density threshold at which ligands can be seen were provided as input. Unlike Pathwalking,
the number of pseudoatoms is not explicitly specified and is computed automatically.
Additionally, half-maps, which are used in pseudoatom filtering, were provided as inputs
when available. The results from the pw_ligands.py program were two coordinate files and
two density maps, one each representing potential ligands and the other set representing
waters and ions. The ligand density map was loaded into UCSF Chimera, along with a
coordinate file for the appropriate ligands. The ligands were then fit to the ligand map with
the Fit to Density function in Chimera. The coordinates for the ions and waters were then
loaded into Chimera. A final model containing the protein, ligands, and water components
was then saved and refined once with phenix.real_space_refine.

For the 2021 CryoEM Ligand Challenge datasets, evaluation of model quality, assess-
ment of fit to density, and comparison to the reference structure were assessed indepen-
dently using the model comparison pipeline (https://model-compare.emdataresource.org/
2021/cgi-bin/index.cgi, accessed on 1 January 2022). Additionally, Phenix was used to
generate relevant statistics.

While not included in the probabilistic model generation evaluation, ligand identifica-
tion was run on three slightly lower resolution datasets from the inositol-1,4,5-trisphosphate
receptor (IP3R1) reconstructions: a 2.96 Å resolution structure of apo-IP3R1 reconstituted
with LMNG (EMD-23337, PDB ID: 7LHF), a 3.3 Å resolution structure of apo-IP3R1 in
nanodisc (EMD-2333, PDB ID: 7LHE) [39], and a 4.1 Å resolution reconstruction of IP3R1
bound to adenophostin A (EMD-7770, PDB ID: 6MU1) [40]. Evaluation of ligand identifica-
tion in the IP3R1 models was carried out by comparing the results to the published models
in Chimera.

3. Results
3.1. Overall Results

As seen in Table 3, automated Pathwalking on the three CryoEM Ligand Challenge
datasets produced accurate and robust structures for the individual protein complexes.
All three Pathwalking models had minimal clashes, Ramachandran outliers, and rotamer
outliers, as well as Molprobity scores below 2.0, suggesting that model quality for these
models was at least on par or better than the reference model. In addition to model quality,
density fitting for each of the models was assessed. As with model quality, all density-
fitting metrics, including cross-correlation, Fourier shell correlation (FSC), atom inclusion,
Q-scores [41], and EMRinger scores [34], indicated that both the mainchain and sidechain
atoms fit the density well. Moreover, each of the three models agreed well with the reference
structure, having less than 1 Å RMSD and near-ideal LDDT and GDT_TS scores. Together,

https://challenges.emdataresource.org/?q=2021-model-challenge
https://challenges.emdataresource.org/?q=2021-model-challenge
https://model-compare.emdataresource.org/2021/cgi-bin/index.cgi
https://model-compare.emdataresource.org/2021/cgi-bin/index.cgi
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these results indicate that Pathwalking can indeed produce highly accurate models that
can capture all of the protein density features in this resolution range.

Table 3. Modeling Results. A table summarizing the results for the three datasets from the 2021
CryoEM Ligand Challenge is shown. All statistics were taken directly from the model compar-
ison pipeline (https://model-compare.emdataresource.org/2021/cgi-bin/index.cgi, accessed on
1 January 2022) or generated with Phenix. All scores are generated using the final, refined model
with the exception of the TM-score, which was calculated from the probabilistic model. RMSDs are
calculated using only C-alpha atoms.

Score Beta-Galactosidase
(Emd-7770)

RNA Polymerase
(Emd-30210)

ORF3a Ion Channel
(Emd-22898)

Map Resolution (Å) 1.9 2.5 2.1
Molprobity score 1.72 1.69 1.37

Clash score 5.78 2.97 5.75
HOH clash 2.49 1.88 0.0

Ramachandran Outliers 0.10 0.0 0.0
Rotamer outliers 1.35 3.14 1.18

FSC (0.5) 2.10 2.67 2.19
CC Mask 0.91 0.72 0.84

All atom inclusion 0.91 0.81 0.79
EMRinger score 6.43 3.39 4.47

Qscore
Protein 0.81 0.72 0.79
Ligand 0.85 0.79 0.71
Water 0.85 0.84 0.86
LDDT 0.97 0.96 0.99

GDT_TS 99.90 99.61 100.00
TM-score 0.8898 0.9950 0.9980

C-alpha RMSD (Å),
reference model PDB_ID

0.20, 6CVM 0.37, 7BV2 0.95, 7KJR

3.2. Probabilistic Model Results

For each of the protein components in the three CryoEM Ligand Challenge datasets,
probabilistic models were also generated across three thresholds (visually identified value
and +/− 1 sigma) and 20 noise levels ranging from 0 to 5 sigma for a total of 60 independent
paths. On an Intel Apple Mac Mini, the generation of each set of models ranged from
~5 min (EMD-30210, chain C) to ~30 min (EMD-7770, chain A). The probabilistic model (i.e.,
the average path with connectivity probabilities) for each subunit was visualized in UCSF’s
Chimera (version 1.16) and colored based on connection probability to identify regions of
potential model variability (Figure 3).

The overall fold of the probabilistic model for each of the protein subunits in the
CryoEM Ligand Challenge datasets revealed nearly identical folds to the published mod-
els; each model had a TM-score [42] of at least 0.9 when compared with the published
model. Further examination of the decoy models used in the generation of the probabilistic
models revealed some common themes in potential modeling errors. The most common
connectivity issue seen was related to the termini, where noise and threshold perturba-
tions resulted in connectivity differences among the first two and last two pseudoatoms,
resulting in lower connectivity probabilities at the termini. Similarly, swapping the order
of connectivity among two or three amino acids was seen among the decoy models. This is
due to the noise and threshold perturbations altering the optimal order of local connectivity
among a small group of points. Interestingly, these local variations were not restricted to
secondary structure type, as this was seen throughout the models, including β-strands
in EMD-7770 [43], an α helix of EMD-22898 [44], and loops in EMD-30210 [45]. In all
cases, some of the models with these errors had a less “protein-like” path and a higher
potential for alternate connectivity between small groups of atoms, though the overall

https://model-compare.emdataresource.org/2021/cgi-bin/index.cgi
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fold of the protein was not changed. Regardless, the probabilistic models for each of the
datasets were accurate and provided a new measure of reliability for Pathwalking and
model connectivity.
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Figure 3. Probabilistic models for the 2021 CryoEM Ligand Challenge datasets. Probabilistic models
for unique individual protein subunit are shown for EMD-7770 (A), EMD-22898 (B) and EMD-
30210 (C). In (A), only one of the four β-galactosidase subunits is shown. In (C), each panel represents
one of the three protein chains (A, B and C) in the map. All models are colored based on connection
probability from 100% (blue) to 75% (white) and 50% or below (red). Additionally, atom diameter
reflects the reliability of connectivity with larger atom diameters having less confidence.

3.3. CryoEM Ligand Challenge Results

Once the models for the three 2021 CryoEM Ligand Challenge datasets were con-
structed, pw_ligands.py was used to locate potential ligands and waters in the corre-
sponding density maps. In EMD-7770, the density corresponding to the 2-phenylethyl
1-thio-beta-D-galactopyranoside (PTQ) molecule in the published structure (PDB ID: 6CVM)
was localized in each of the four subunits of the β-galactosidase density map. A single
PTQ model was then fit into the density and refined along with the Pathwalking model
into the density map. In Figure 4, the fit PTQ molecule can clearly be seen occupying
the same position as the PTQ molecule in the published structure. The resulting 0.2 Å
RMSD between the model and the known structure, as well as a Q-score of 0.85, further
reinforces the accuracy to which the ligand density was identified and modeled. Likewise,
pw_ligands.py identified 2608 potential water positions; the published structure contained
4194 potential water positions. Of the 2608 water positions, 1814 identified water positions
were within 1 Å of waters in the published structure and only 356 of the waters were further
than 5 Å away from a corresponding water position in the published structure.
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Figure 4. Pathwalking and ligand identification: EMD-7770. The complete Pathwalking model for
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As with EMD-7770, the structure of SARS-CoV-2 ORF3, a putative ion channel in
nanodisc (EMD-22898), was accurately modeled with Pathwalking; The RSMD between
the model and the known structure (PDB ID: 7KJR) was less than 1Å, and the LDDT score
was 1.00 (Figure 5A). pw_ligands.py also correctly identified the 1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine (PEE) site in the density map. Interestingly, additional density for
the tails of PEE was also identified with pw_ligands.py, and as a result, more of the PEE tails
could be modeled. Automated fitting and refinement of the ligand resulted in a Q-score
of 0.71 for the ligand; the fit of PEE is nearly identical between the published structure
and pw_ligands.py (Figure 5B,C). Additionally, 178 putative waters were localized in the
density, though only 122 were present in the published structure. Of the 178 waters, 71
were within 1 Å and 21 were greater than 5 Å away from a corresponding water position
when comparing waters identified by find_ligand.py and the published structure.

The third dataset from the 2021 CryoEM Ligand Challenge was the SARS-CoV-2
RNA-dependent RNA polymerase, EMD-30210, which contained F86 (remdesivir) and
RNA. At this time, Pathwalking does not model nucleic acids and, as such, construction of
the RNA was carried out manually using Coot. As with the other two challenge datasets,
Pathwalking was used to build a model of the protein components, followed by ligand
identification with pw_ligands.py (Figure 6A). The overall model had an RMSD of 0.37 Å
and an LDDT score of 0.96 when compared with the published model (PDB ID: 7BV2),
indicating the model was constructed with high fidelity. pw_ligands.py identified the F86
site in the density map correctly and the ligand was automatically fit to the ligand density
and refined with the full model (Figure 6B,C). The resulting fit of the ligand had a Q-score
of 0.79 and almost perfectly replicated the reference fit of F86 into the density map. A total
of 266 putative waters were identified on the map, though only 5 were reported in the
published structure. All five of the published water locations were within 1 Å of a water
location identified using pw_ligands.py.
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Figure 5. Pathwalking and ligand identification: EMD-22898. The complete Pathwalking model for
SARS-CoV-2 ORF3a putative ion channel in nanodisc, including waters (blue) and ligands (gray)
is shown in (A). A zoomed-in view of the identified ligand location, marked by a square in (A), by
pw_ligands.py is shown as a cage in (B). The fitted and refined ligand, along with the water (blue)
and protein models (colored by chain) are shown as well. In (C), the published model (magenta) is
shown superimposed on the Pathwalking model.
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Figure 6. Pathwalking and ligand identification: EMD-30210. The complete Pathwalking model
for SARS-CoV-2 RNA-dependent RNA polymerase, including waters (blue) and ligands (gray) is
shown in (A). A zoomed-in view of the identified ligand location, marked by a square in (A), by
pw_ligands.py is shown as a cage in (B). The fitted and refined ligand, along with the water (blue)
and protein models (colored by chain) are shown as well. In (C), the published model (magenta) is
shown superimposed on the Pathwalking model.
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3.4. Ligand Identification at Lower Resolutions

Beyond the 2021 CryoEM Ligand Challenge datasets, three ligand-bound datasets
of IP3R1 at various resolutions were also used to assess the effectiveness of the ligand
identification. In the 3.3 Å and 2.96 Å resolution IP3R1 density maps, pw_ligands.py was
able to clearly identify seven unique regions per subunit that were not modeled as part
of the protein components (Figure 7A,B). Each of the seven regions contained a globular
region accounting for the head group of a lipid and at least one protruding tail-like density.
Seven phosphatidylcholine molecules were docked into the identified ligand densities and
refined with phenix.real_space_refine. All seven of the automatically identified ligands
in these two density maps matched up well with the ligands found in the corresponding
published structures, suggesting that our automated ligand identification tool works well
in ~3 Å resolution maps.
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Figure 7. Ligand Identification in IP3R1. The Pathwalking models with ligands identified using
pw_ligands.py from three different IP3R1 reconstructions are shown, Results from the 3.3 Å and
2.96 Å IP3R1 reconstructions are shown in (A) and (B), respectively. In (C), the 4.1 Å reconstruction of
IP3R1 contains the ligand, adenophostin A (ADA). The identified ligand density and lipids are shown
in the middle panel, while the model for the published structure (magenta) is shown in the lower
panel. A zoomed-in view of the identified ligand region, marked with a square in the top row, can be
seen in the middle panel. In all three of the models, only a single set of lipids are shown per tetramer.

While phosphatidylcholine molecules were not previously detected in the 4.1 Å resolu-
tion density map of IP3R1, the reconstruction did contain adenophostin A (ADA) in the IP3
binding pocket between the ARM1 and β-TF1/β-TF2 domains. As with the previous exam-
ples, pw_ligands.py was used to localize the ligands in this density map. The ADA density
was clearly identified in the IP3 binding pocket and docking of the ADA molecule produced
a nearly identical fit of ADA when compared with the published structure (Figure 7C).
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Additionally, some potential ligand density was observed in the region corresponding to
the phosphatidylcholine in the other maps. However, no clear tail and only partial density
for the head groups were observed, and as such, these densities were not modeled.

3.5. Computing Times and Environment

As described, one of the major advantages of Pathwalking is its ability to quickly obtain
high-quality models. For all aforementioned maps, Pathwalking and ligand identification
were carried out on a 6-core 3.2GHz Intel Core i7 Apple Mac Mini with 32GB of DDR4
RAM (2018), though any relatively modern desktop or laptop computer running Windows,
Linux, or macOS is capable of running the software. Automated model generation using
default Pathwalking options for the three CryoEM Ligand Challenge datasets took ~0.5–1 h
per subunit. The addition of probabilistic models added between 5 and 30 min to the
computing of the final, refined Pathwalking model. Ligand identification, docking, and
refinement required an additional ~0.5–1 h of computing time. These times are fairly typical
in our experience on these and a variety of other maps.

Diving deeper into the compute times, the major bottlenecks are actually in setting up
the TSP search and final model refinement. With Google OR tools, the default TSP solver in
the latest version of Pathwalking, the maximum path search time is capped at 30 s though
optimal solutions are usually found much quicker. Depending on the number and which
pseudoatom method is specified, seeding pseudoatoms in the map takes between 30 s
and 5 min for most proteins. Real-space refinement of the entire model is the most time-
consuming step and is largely dependent on map size but typically averages 10–15 min
when utilizing the default options.

4. Discussion

In an effort to provide the most robust set of modeling tools for all near-atomic
resolution density maps, we have continued to innovate and improve our Pathwalking
utilities. These improvements, which include a number of algorithmic updates, as well
as options for generating a more statistical approach for assessing model reliability, have
allowed for an almost completely automated approach to modeling protein structures.
Moreover, these new improvements, while adding a small amount of computational time,
also allowed us to incorporate water and ligand identification into the Pathwalking model
building pipeline. As seen in the evaluation of our tools with the 2021 Ligand Modeling
Challenge datasets, model building, assessment, and ligand identification required only
limited computational resources to generate highly accurate models. A summary of the
results in Table 3 indicated that all models had the same fold and low RMSDs (<1 Å) when
compared with their corresponding published structures.

4.1. Probabilistic Models

The new probabilistic models use a simple mechanism to assess the connectivity
of neighboring pseudoatoms across multiple models. The simple and straightforward
approach of generating multiple models across a series of thresholds and noise levels
leverages the speed of the TSP solver, which can effectively compute an optimal path
through a large set of points in a few seconds. As such, generating a large gallery of
potential models and assessing their agreement for constructing a probabilistic model is
easy and requires only several minutes to an hour to generate hundreds of possible models.
While the generation of a large number of decoy models would likely improve statistical
sampling, our empirical results suggest that only 50–100 models are required to gain a
meaningful estimation of connectivity probability for a typically sized protein.

It should be noted that the models generated from the three CryoEM Ligand Challenge
datasets using Pathwalking with and without probabilistic models were nearly identical
after real-space refinement. While the probabilistic models do not necessarily guarantee an
improvement in final model accuracy, they provide a simple mechanism for identifying
and tracking potential modeling issues, from the initial path tracing through final model
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refinement. As shown in Figure 3B (EMD-22898), several of the decoy models had pseu-
doatoms placed in bulky sidechain density along one of the major helices, resulting in poor
geometry and degenerate models along the helix. While easily fixed during subsequent
all-atom refinements, the probabilistic model for EMD-22898 provided a visual means to
assess path quality, spot the potential issue, and monitor refinement results.

In future versions of Pathwalking, the identification of alternate paths with probabilis-
tic models could play a more direct role in pseudoatom reseeding and model generation,
as well as a potential mechanism for local rebuilding in predictive modeling with cryoEM
density maps. As there are new options in Pathwalking to load a precomputed set of
pseudoatoms, our probabilistic modeling could easily be applied to models generated
using other cryoEM modeling tools. The only caveats to this would be that the input model
would need to be a Cα-only model and be in the same coordinate system as the correspond-
ing map. As such, the probabilistic models could be used as a common metric for assessing
the reliability of any cryoEM model, regardless of the program used to generate the model.

4.2. Ligand Identification

While not as automated as Pathwalking, the ligand identification tool, pw_ligands.py,
provides a semi-automated approach for accurately detecting ligand density in near-
atomic resolution density maps. Based on a comparison with the published structures,
pw_ligands.py was able to correctly detect the location of various ligands in the aforemen-
tioned density maps. For the 2021 Ligand Modeling Challenge datasets, pw_ligands.py
performed similarly, and in some cases better than other more computationally intensive
ligand identification and fitting tools. Beyond the ~2 Å resolution Ligand Modeling Chal-
lenge datasets, ligand identification was successful in the 3–4 Å resolution maps of IP3R1.
We believe the maps presented here are typical examples of their reported resolutions and,
as such, pw_ligands.py should perform equally well on similar resolution maps. As part of
ongoing work, we are further automating the fitting and refinement of the ligand into the
density map; future updates of the software with this feature will appear in Phenix.

An important point to consider in the identification of waters and ligands with
pw_ligands.py is the relationship between resolution and resolvability. Our tool for finding
ligand density is limited by the ability to distinguish ligands from protein density. As such,
ligand identification is an issue of resolvability and not necessarily resolution. While we
tested various datasets from 1.9 to 4.1 Å resolution, the success of pw_ligands.py was based
on the fact that density associated with putative ligands could be reliably observed and
quantified. Poorly resolved maps, anisotropic resolution, noisy density maps, and partial
ligand occupancy could all lead to inaccurate ligand assignments. As such, it is difficult to
assign an exact resolution range for the pw_ligand.py tool without considering all factors
that go into the reconstruction.

Having said that, due to the expected size of the corresponding density, the identi-
fication of waters based on size and shape may not be reliable at resolutions worse than
3 Å. In maps better than 3 Å resolution, it is sometimes possible to see coordinated or
bulk waters in the reconstructions, at which point our pw_ligands.py tool can localize the
putative waters. It should be noted that pw_ligands.py did locate several potential water
sites in the IP3R1 reconstructions, though at the reported resolutions, these sites were not
distinguishable from noise in the reconstruction and thus, not reported in the final models.

In the 2021 Ligand Modeling Challenge datasets, all of which had resolutions better
than 3 Å, our pw_ligands.py tool identified more waters than were present in two of the
three published structures. In the third dataset, pw_ligands.py identified nearly two-thirds
of the waters present in the published structure. What accounts for the discrepancies in
the number of waters between the published models and those found by pw_ligands.py?
Our ligand identification tool attempts to find un-modeled, non-protein density in the
map, and part of this is achieved by examining the consistency of the voxel values between
density half-maps computed during the reconstruction process. We surmise that this step
is responsible for eliminating the bulk of potential waters. As an example, pw_ligands.py
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seeds over 8000 initial sites in EMD-7770, which were pruned to ~3000 putative ligand
sites after filtering against the half-maps and proximity to the model. It is also interesting
to note that pw_ligands.py does not explicitly use any chemical constraints to identify
waters, ions, or ligands. Rather, identification is accomplished using statistical, geometrical,
and shape constraints. Only at the time of refinement are modeled ligands subjected to
chemical constraints. As such, regions with favorable ligand binding chemistry may be
missed if the ligand density is poorly resolved. Given these constraints, the number of
waters/ions may vary between our ligand identification tool and others. Interestingly, none
of the submitted models for the 2021 Ligand Modeling Challenge reproduced the exact
number of waters in the published structure. However, the vast majority of waters in the
published structure agreed with those identified by pw_ligands.py. With the incorporation
of Pathwalking and pw_ligands.py into Phenix, the addition of chemical constraints is the
subject of ongoing work and will hopefully result in improved water identification and
localization in cryoEM models.

5. Conclusions

The latest version of Pathwalking and its companion ligand identification tool,
pw_ligands.py, have provided an improved approach to modeling large macromolec-
ular complexes from near-atomic resolution density maps. Like its predecessors, these tools
require minimal computational hardware while providing best-in-class performance. The
inclusion of additional statistical measures of model accuracy and ligand identification
fills a number of gaps in the previous version of the software and now provides a nearly
completely automated system for cryoEM modeling.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/biom12060773/s1, Figure S1: Comparison of pseudoatom
generation methods; Figure S2: Comparison of TSP solvers. References [25,30,33,36,46–48] are cited
in the supplementary materials.
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