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Genetic pleiotropy in complex traits and
diseases: implications for genomic
medicine
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Editorial summary
Several recent papers have used summary results from
genome-wide association studies to characterize genetic
overlap between human complex traits and common
diseases. The emerging evidence is that individual DNA
variants frequently influence multiple phenotypes, often
in unexpected ways. This has important implications for
genomic medicine and for the application of genome
editing.
Pervasive pleiotropy
Pleiotropy is the phenomenon in genetics whereby a
DNA variant influences multiple traits. We have known
for decades that pleiotropy is widespread because in
plant and animal breeding, and in laboratory selection
experiments, when selection is applied to one trait, the
mean of other traits also changes from generation to
generation. The response to selection reflects the genetic
correlation between traits, which summarizes the
genome-wide average effects of pleiotropy at shared loci.
In studies of human traits, estimates of the genetic cor-
relation can be obtained using traditional family-based
study designs [1], or high-dimensional genetic data from
genome-wide association studies (GWAS) [2, 3]. These
estimates provide no information on where in the gen-
ome DNA variants with pleiotropic effects exist, on
whether individual shared variants have concordant or
discordant effects across traits, or if the effects are caus-
ally related as opposed to operating through independ-
ent biological pathways. Several new papers have
described methods that address these questions using
GWAS summary data [4–6]. Here, we review key
advances from these papers that enable more in-depth
investigations of pleiotropy, and we discuss their impli-
cations for genomic medicine.
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Understanding pleiotropy using GWAS
GWAS have been applied to hundreds of complex traits
and common diseases, yielding thousands of genetic as-
sociations that surpass accepted standards for statistical
significance [7]. Several studies have used results from
GWAS to systematically identify genetic variants
associated with multiple traits, both across the breadth
of human biomedical traits and disorders [5, 8] and for
groups of related diseases with prior evidence for a
shared etiology (for example, immune-mediated diseases
[9]). As expected, pleiotropy is commonly found for
variants associated with traits in the same “domain”—for
example, Parkes and colleagues [9] identified 71
genome-wide significant variants associated with two or
more of six immune-mediated diseases—but there are
interesting subtleties to this genetic overlap. For in-
stance, although many shared variants have correlated
and concordant effects, a surprising number are discord-
ant, insomuch as they increase risk for one disorder
(such as ankylosing spondylitis) but are protective for
another (such as rheumatoid arthritis [9]). Conversely,
other studies have revealed unexpected associations be-
tween traits previously thought to be biologically unre-
lated. For example, in an analysis of GWAS summary
data for 42 traits, Pickrell and coworkers [5] reported
the identification of a variant (from among a total of
>300 pleiotropic loci) in the ABO gene, which deter-
mines blood group, that was associated with both coron-
ary artery disease (CAD) and tonsillectomy (among
other traits). A major strength of this approach is that
pleiotropy can be investigated without the need to meas-
ure phenotypes in the same individuals, meaning that
confounding by environmental factors is unlikely.
A genetic correlation between traits or diseases can

arise due to pleiotropy, as described above, or because of
heterogeneity, which refers to the situation in which a
proportion of cases for one disease have been misclassi-
fied as another. Han and colleagues [4] recently
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proposed a method, termed breaking up heterogeneous
mixture based on cross-locus correlations (BUHMBOX),
for distinguishing between these possibilities. In order to
detect heterogeneity involving the misdiagnosis of
disease B cases as disease A, the approach tests for an
excess of positive correlations between independent dis-
ease B risk alleles in individuals with disease A—some-
thing that is not expected under pleiotropy. Using this
approach, which requires GWAS summary data for indi-
viduals with disease B and genotype data for individuals
with disease A, the authors reported evidence for het-
erogeneity between seronegative and seropositive forms
of rheumatoid arthritis, presumably due to misclassifica-
tion of a subset of seropositive cases [4]. Heterogeneity
is likely to be widespread in complex traits and common
diseases, and may be one explanation for the dearth of
genetic associations identified for psychiatric disorders
such as major depression. BUHMBOX offers a promis-
ing tool to differentiate pleiotropy from heterogeneity,
although a caveat is that statistical power is limited when
the proportion of heterogeneity is low, and yet high
levels of heterogeneity may be more likely if pleiotropy
is extensive.
Pleiotropy can involve a genetic variant having effects

on two or more traits via independent biological path-
ways, for instance due to effects in different tissues, or
because the effect of the variant on one trait is causally
related to variation in another trait. Pickrell and col-
leagues [5] recently put forward an innovative method
to tease apart these possibilities, by testing if variants as-
sociated with an increase in one trait are always associ-
ated with a proportional increase in the other trait, but
not the other way around. Using this approach they con-
firmed the widely accepted causal relationship between
low-density lipoprotein cholesterol and CAD, and identi-
fied several other plausible causative relationships, in-
cluding between body mass index (BMI) and both
triglyceride level and risk of type 2 diabetes (that is,
BMI-increasing alleles have correlated effects on triglyc-
erides and type 2 diabetes risk, but not vice versa). These
are exciting developments because they imply that causal
relationships can be uncovered more cheaply and rapidly
through statistical analysis of genetic data than by per-
forming randomized controlled trials. However, as the
authors note, caution is needed in interpretation because
the observed phenotype, which is presumed to be causal,
may in fact be genetically correlated with another, unob-
served phenotype that is the true causal factor.
A form of pleiotropy commonly encountered in

GWAS is that trait- or disease-associated single nucleo-
tide polymorphisms (SNPs) are frequently also associ-
ated with variation in gene expression (expression
quantitative trait loci (eQTLs)) and/or DNA methylation
(methylation quantitative trait loci (meQTLs)). Recently,
Zhu and coworkers [6] proposed a novel method termed
summary-data-based Mendelian randomization (SMR)
for combining GWAS summary data with eQTL and
meQTL data in order to isolate the most likely func-
tional gene or regulatory element underlying statistical
associations for complex traits and common diseases.
They also proposed a method (heterogeneity in
dependent instruments (HEIDI)) that can distinguish
pleiotropy from linkage, since the observation that a
trait- or disease-associated SNP is also a cis-eQTL may
actually be due to linkage disequilibrium between the
sentinel SNP and other SNPs that are independently
causally related to gene expression and the trait or dis-
ease under investigation.
We have emphasized evidence for pleiotropy from

GWAS here, but pleiotropy is also evident for rare mu-
tations underlying Mendelian disorders. Indeed, specific
“syndromes” can be diagnosed on the basis of the com-
bination of phenotypes that arise from the same causal
mutation. For example, Rett syndrome, caused by muta-
tions in the MECP2 gene, which encodes a protein im-
portant for nerve cell function, is a neurological disorder
characterized by intellectual disability and apraxia that
frequently presents with short stature and gastrointes-
tinal problems. Another example of a mutation with
phenotypic effects spanning different biological “do-
mains” is the cystic fibrosis transmembrane conductance
regulator gene (CFTR) ΔF508 mutation causing cystic fi-
brosis, a disease of the lung that is also associated with
male infertility.

Implications for genomic medicine
Pervasive pleiotropy has important implications for gen-
omic medicine, particularly as we move into the era of
personalized medicine and genome editing. One issue is
that focusing on the effect of a mutation or polymorph-
ism on a single disease may be inadequate, since specific
genetic variants may show strong associations with mul-
tiple traits but in opposite directions [9]. This is espe-
cially salient in the context of identifying molecular
targets for drug development [8], and when contemplat-
ing “fixing” mutations using genome editing approaches
such as the CRISPR-Cas system, since this might have
unexpected genetic, and therefore phenotypic, side ef-
fects. We find more evidence for pleiotropy the more we
look, and yet the vast majority of phenotypes are never
measured. Indeed, one could ask, given the enormous
dimensionality of the phenome, how likely it is that
functional variants exist without pleiotropic effects.
Herein lies a major challenge for the field, as the possi-
bility of detrimental effects (for example, as a conse-
quence of genome editing) may be hard to rule out.
To some extent, this problem will be ameliorated by

the availability of GWAS data from very large studies,
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such as the UK Biobank and US National Institutes of
Health Precision Medicine Initiative, in which partici-
pants are measured for a large number of phenotypes. In
parallel, large-scale genome sequencing studies matching
data on rare mutations with deep phenotyping (for ex-
ample, [10]) will help to characterize the phenotypic
spectrum of gene-disrupting mutations in specific genes,
and thus clarify if such events are associated solely with
deleterious phenotypic outcomes as opposed to a mix of
detrimental and beneficial consequences. We can expect
these studies to deliver many new and unexpected dis-
coveries on genome–phenome associations, including
plausible causal trait relationships. We anticipate that
pleiotropy will come to be recognized as a (near) univer-
sal property of genetic variants contributing to human
phenotypic variation. The limiting factor in progress to-
wards a more complete understanding of the relation-
ship between genome and phenome will be the
availability of high-dimensional phenotype data.
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