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Simple Summary: Breast cancer emergencies have become a rapidly evolving field in medicine
during the last ten years. Carcinogenesis is a multiparametric process that involves diverse
factors such as genetic, environmental, or aging. Recent research that elucidates the tumor
biology and molecular pathways that mediate cancer progression and drug resistance has led
to the development of various molecular targeted therapies involving monoclonal antibodies,
small molecule receptor tyrosine kinase inhibitors, and agents that block downstream signaling
pathways in breast cancer.

Abstract: Triple negative breast cancer (TNBC) is a heterogeneous tumor characterized by early
recurrence, high invasion, and poor prognosis. Currently, its treatment includes chemotherapy,
which shows a suboptimal efficacy. However, with the increasing studies on TNBC subtypes and
tumor molecular biology, great progress has been made in targeted therapy for TNBC. The new
developments in the treatment of breast cancer include targeted therapy, which has the advantages
of accurate positioning, high efficiency, and low toxicity, as compared to surgery, radiotherapy,
and chemotherapy. Given its importance as cancer treatment, we review the latest research on the
subtypes of TNBC and relevant targeted therapies.

Keywords: breast cancer; target therapy; biomarkers; pathogenesis

1. Introduction

Breast cancer is the most common malignancy among women with an incidence
rate of 10,492 in 100,000 cases in 2015, according to reports of the Ministry of Health
and Welfare. The high morbidity and mortality rates cause a financial burden with
regards to health insurance [1]. Several risk factors for breast cancer were investigated,
including alcohol intake (relative risk: 1.10; 95% confidence interval: 1.06–1.14) [2], obe-
sity (hazard ratio: 1.58, 95% confidence interval: 1.40–1.79) [3], age (hazard ratio: 10.1,
95% confidence interval: 8.49–11.94) [4], early menarche, and late menopause. Despite
several years of bench to bedside investigations, breast cancer remains a challenge for all
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physicians, with the detailed mechanism of its tumorigenesis still unclear. Its molecular
and biological attributes were investigated in detail to better understand the develop-
ment and pathogenesis of breast cancer, including oncogenes, the tumor suppression
genes, and downstream pathways that promote tumor proliferation, differentiation,
and distant metastasis. The treatment of breast cancer requires a multidisciplinary
approach involving surgery, radiation, and medical oncology to control tumor cell pro-
liferation and metastasis. The new treatments for breast cancer are also discussed in
this article, including the use of PARP, MAPK, CHK1, CDK 4/6 inhibitor, anticytotoxic
T-lymphocyte-associated protein 4 (anti-CTLA4) antibodies, and anti-programmed cell
death protein 1 (anti-PD1)/ligand 1 (anti-PD-L1) antibodies. We believe that elucidating
the mechanism of breast cancer will provide an important foundation for therapeutic
intervention. This article provides an update on research and clinical results using the
molecular biology of tumorigenesis and summarizes current treatments to provide a
new strategy for physicians.

2. Clinical Features of Breast Cancer

The common clinical presentation of breast cancer is usually a palpable breast mass
observed upon on self-breast examination. Other associated symptoms included local
pain or nipple discharge. In metastasis, fever, weight loss, night sweats, or bone pain
may be present as a result of tumor progression. Imaging studies play an important
role in early detection and timely intervention. Three image detection modalities for
breast cancer were investigated, including breast ultrasound, mammography, and
magnetic resonance imaging (MRI). A breast ultrasound is effective for characterizing
malignant solid masses as an initial diagnostic evaluation with a sensitivity rate of 98.4%
and negative predictive value of 99.5% [5,6]. The mammogram was used for elderly
women to characterize soft tissue density, which may present with an irregular border,
spiculated pattern, and local calcifications. According to mammographic findings,
the radiologist will utilize the Breast Imaging Reporting and Data System (BI-RADS)
for further diagnostic assessment (Table 1). The breast MRI is an important tool in
preoperative survey and postoperative follow-up, especially to evaluate scar tissue.
The sensitivity is reported to be high at more than 90%, but the specificity is moderate
at about 72%. In high-risk breast cancer screening, breast MRI has an important role
in preventing missed diagnoses [7]. Several prognostic and predictive factors for
breast cancer were reported, including the tumor node metastasis (TNM) system, tumor
morphology, and tumor markers. The TNM system categorizes breast cancer by location
and invasion anatomy, including tumor size, lymph node involvement, and distant
metastasis. The eighth edition of the TNM system is shown in Table 2, reported from
the Union for International Cancer Control (UICC) in 2017.

Table 1. BI-RADS mammographic assessment categories.

Category Management Risk of Cancer

Category 0: Need additional evaluation Re-evaluation
Category 1: Negative finding Routine screening Essentially 0%

Category 2: Benign lesion Routine screening Essentially 0%
Category 3: Probably benign lesion Short-interval follow up 0–2%

Category 4A: Low suspicion of malignancy Tissue diagnosis 2–10%
Category 4B: Moderate suspicion of malignancy Tissue diagnosis 10–50%

Category 4C: High suspicion of malignancy Tissue diagnosis 50–95%
Category 5: Highly suggestive of malignancy Tissue diagnosis ≥95%

Category 6: Proven malignancy Surgical excision -
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Table 2. TNM system of breast cancer.

When T When N When M Clinical Stage

Tis N0 M0 0
T1 N0 M0 IA
T0 N1mi M0 IB
T1 N1mi M0 IB
T0 N1 M0 IIA
T1 N1 M0 IIA
T2 N0 M0 IIA
T2 N1 M0 IIB
T3 N0 M0 IIB
T0 N2 M0 IIIA
T1 N2 M0 IIIA
T2 N2 M0 IIIA
T3 N1 M0 IIIA
T3 N2 M0 IIIA
T4 N0 M0 IIIB
T4 N1 M0 IIIB
T4 N2 M0 IIIB

Any T N3 M0 IIIC
Any T Any N M1 IV

N1mi: nodal micrometastases.

The anatomic stage provides surgeons with important information needed for mak-
ing decisions about surgical intervention and preventing complications. After surgical
intervention, the target therapy and chemotherapy play a critical role in controlling tumor
proliferation, local recurrence, and distant metastasis. The tumor biology was investigated
and is important in prognosis and response to treatment. Biomarkers have been investi-
gated and taken into account in modified staging systems to accurately predict clinical
outcomes. The expression of estrogen receptor (ER), progesterone receptor (PR), and hu-
man epidermal growth factor receptor 2 (HER2) are generally used in clinical management.
The expression of hormone receptors, including ER and PR, are reflective of the response
to adjuvant endocrine therapy and are associated with better outcomes. Currently, the
expression of ER and PR levels is significantly related to the overall survival, disease-free
survival, and time to treatment failure [8]. The status of ER expression is associated with
the distant metastatic site. Bone and soft tissue are common distant metastatic sites of
ER-positive breast cancer, compared to ER-negative breast cancer, which usually occurs
in the brain and liver. The expression of the PR is independent of ER expression and also
significantly related to clinical outcome. PR-negative breast cancers have a more aggressive
prognosis. HER2 overexpression is a predictor of poor clinical outcomes if patients do not
receive chemotherapy and target therapy. Other biomarkers, including Ki-67, luminal A,
luminal B, and basal, are involved in clinical prognosis. In high-grade breast cancer with
rapid progression, the mitotic count and expression of Ki-67 are elevated, reflecting a high
proliferation rate, and this type of cancer may better respond to anthracycline treatment,
which inhibits DNA and RNA synthesis. The expression of luminal A and luminal B genes
is associated with ER-positive breast cancers. The luminal subtype tumors typically express
luminal cytokeratin 8 and 18. Luminal A tumors are usually associated with high expres-
sion of ER and lower expression of HER-2 genes. Luminal B tumors are associated with
lower expression of the ER gene and have poor prognosis, compared to the luminal A sub-
type. With the emergence of genomics and transcriptomics techniques, several thousands
of genes have been identified and investigated to predict clinical prognosis. The detailed
mechanisms of tumorigenesis and the interaction with the tumor microenvironment are
discussed below.
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3. Molecular Types of Triple Negative Breast Cancer

Breast tumor heterogeneity is one of the main reasons for the significant differences in
the therapeutic effects of breast cancer patients. In 2011, Lehmann’s team examined the ge-
netic sequence of TNBC patients through mRNA expression profiling clustering and found
that TNBC can be classified into six subtypes: basal cell-like type 1 (BL1), basal cell Like
type 2 (BL2), immunomodulatory subtype (IM), mesenchymal subtype (M), mesenchymal
stem cell-like subtype (MSL), and luminal androgen receptor subtype (LAR) [9]. These six
subtypes have different gene expression profiles and are involved in different signal trans-
duction pathways (Figure 1). The BL1 and BL2 subtypes account for about 50% of TNBC.
The BL1 subtype has high expression of cell proliferation-related genes, DNA damage
repair genes, and Ki-67 protein. The BL2 subtype has high expression of multiple growth
factor signal pathway genes and metabolic signal transduction genes. IM subtypes have
high expression of multiple immune-related signal pathways and cytokine-related signal
pathways. M and MSL subtypes have high expression of epithelial–mesenchymal transi-
tion (EMT) genes and cell differentiation-related genes, and are sensitive to PI3K/mTOR
inhibitors [10]. The difference between M-type and MSL-type TNBC is the low expression
of cell proliferation protein and tight junction protein in the MSL subtype, and the low
mitotic index. The M subtype is related to cell motility, cell differentiation, and extracel-
lular matrix receptors. LAR subtypes are rich in hormone-regulated signaling pathways,
including steroid synthesis and androgen receptor signaling pathways.

Further classification of TNBC can bring more accurate diagnosis and personalized
treatment to TNBC patients. In 2015, Burstein et al. performed a matrix analysis of gene ex-
pression in 198 TNBC patient microarrays at Baylor College of Medicine, USA, and grouped
80 core genes to obtain four more stable TNBC subtypes, namely basal like/immune sup-
pressed (BLIS), basal like/immune activated (BLIA), mesenchymal (MES), and LAR [11].
Liu et al. in their 2016 study stated that by typing analysis of 145 TNBC cases, the superior
typing method was obtained by classifying TNBC into four subtypes: BLIS, IM, MES,
and LAR [12]. Lehmann’s team again refined the TNBC molecular subtypes from six
(TNBCtype) to four (TNBCtype-4) tumor-specific subtypes (BL1, BL2, M, and LAR) in
2016 and demonstrated differences in diagnostic age, grading, local and distant disease
progression, and histopathology [13]. In addition, in 2019, Kim et al. first classified TNBC
into neutrophil-enriched subtype (NES) and macrophage-enriched subtype (MES), and
found that immune checkpoint blockage (ICB) therapy has different efficacy on these
two subtypes [14], providing a new idea for molecular typing of TNBC to guide clinical
treatment. The subtypes and classification of different TNBC tumors should provide im-
portant value for future clinical decision making and for TNBC patients with conventional
chemotherapy versus targeted and immunotherapy therapies currently in clinical trials.

Although the TNBC molecular classification defines four major subtypes, BL1 and
BL2, M, and LAR, with distinct ontologies and different responses to therapy, the LAR
definition seems to be one of the most reliable definitions among the different gene ontology-
based classification systems. There are different classification systems based on DNA and
RNA analysis that identify four molecularly defined TNBC subtypes: LAR, mesenchymal
(MES), basal-like immunosuppression (BLIS), and basal-like immune activation (BLIA),
characterized by different prognosis and potential therapeutic targets [11,15]. Interestingly,
DNA analysis revealed specific gene amplification and targetable molecular expression.
LAR was also found to be characterized by AR and MUC1 markers, suggesting the strategic
importance of anti-AR therapies and the potential role of MUC1 vaccines as an effective
treatment for this subtype [16]. Compared to other profiles, the LAR subtypes identified
by this new classification system share the same genetic and biological features as those
identified by Lehmann [9] and Pietenpol et al. [9,11].
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Figure 1. Association of different TNBC subtypes. TNBC gene expression subtypes are related to unique molecular
characteristics and different TNBCs. Subtypes of TNBC: BL1, basal-like 1; BL2, basal-like 2; IM, immunomodulatory; ML,
mesenchymal-like; MSL, mesenchymal stem-like; LAR, luminal androgen receptor.

4. Prognostic Biomarkers of TNBC
4.1. BRCA 1/2

BRCA1 and BRCA2 are human tumor suppressor genes located on the long arm of
chromosomes 17 and 13, respectively. The structures of BRCA1 and BRCA2 are different,
but their roles are related and important in the DNA repair process [17]. BRCA2 binds to
a DNA single strand and directly affects the regulation of recombinase, whereas RAD51
localizes to DNA double-strand cleavage, which requires the formation of the BRCA1–
PALB2–BRCA2 complex. Therefore, BRCA1/BRCA2 encodes a protein that maintains human
genome stability and prevents mutant genes. The rearrangement is significant [18,19].
BRCA1/BRCA2 plays an important role in DNA double-strand break repair. BRCA1/BRCA2
is involved in the repair of damaged DNA. If the repair of DNA is inhibited, it will
induce apoptosis to clear the cells that may be mutated; however, once BRCA1/BRCA2 is
mutated, DNA repair cannot be completed, and the progression of tumor development
is promoted [20]. Mutations in BRCA1/BRCA2 are recognized as risk factors for breast
cancer induction, but the role in breast cancer prognosis is still controversial. Existing
studies seem to favor BRCA1/BRCA2 as having little effect on the prognosis of breast cancer.
Previous studies have indicated that there is no difference in overall survival between
BRCA-associated breast cancer and sporadic breast cancer [21]. Similarly, there is a meta-
analysis showing that the evidence from 66 studies does not support the poor prognosis
of BRCA1/BRCA2 mutation carriers. The study analyzed the relationship between BRCA1
and BRCA2 single mutation carrying and double mutation carrying with recurrence-free
survival, metastasis-free survival, and overall survival in breast cancer patients, which
were not associated with clinical factors after adjustment [22]. Therefore, the role of BRCA
mutations in breast cancer progression and BRCA mutation-targeted treatment effects
remain to be confirmed by large-scale, multicenter, prospective studies.

4.2. ALDH1A1

The protein encoded by ALDH1A1 (aldehyde dehydrogenase 1 family member A1)
belongs to the aldehyde dehydrogenase family [18]. Aldehyde dehydrogenase is a poly-
morphic enzyme responsible for the oxidation of aldehydes to carboxylic acids, which
leave the liver and are metabolized by the body’s muscle and heart [23]. ALDH1A1 is also
an important component of corneal lens protein, which helps maintain the transparency of
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the cornea. In the face of cancer, ALDH1A1 is regarded as a marker of breast cancer stem
cells, and cancer stem cells have strong carcinogenicity and self-renewal ability, and play
an important role in tumorigenesis, development, and prognosis [24]. Tan et al. showed
that ALDH1A1 is highly expressed in breast cancer tissues, but it is not associated with
prognosis. ALDH1 is expressed in 25% of tumors, and the ALDH1-positive rate in young
patients is almost 14 times higher than that in elderly patients. ALDH1A1 is considered to
be an independent ER-negative factor, but it is not associated with breast cancer recurrence
and associated death [25]. Numerous studies suggest that the expression of ALDH1A1
suggests a poor prognosis for breast cancer [24,26]. Japanese studies have found that 26%
of patients with invasive ductal carcinoma have ALDH1 expression, which is associated
with larger tumors, higher histological grades, later TNM stage, HER2 overexpression, and
hormone receptor negative status. The recurrence-free survival time and overall survival
time of the ALDH1A1 expression group were shorter than those of the non-expression
group [27]. The results of a meta-analysis of a total of 3274 breast cancer patients enrolled
in 15 studies were consistent with those of the Japanese study. In addition, cases with
ALDH1A1 expression are more likely to show development of lymph node metastasis,
confirming that ALDH1A1 is a marker of poor tumor progression and prognosis [24].

A previous study pointed out that Ma et al. [28] showed shorter recurrence-free
survival (RFS) and overall survival (OS) in survival analysis of ALDH1-expressing patients
in 158 cases of TNBC. Ying et al. [24] reported that ALDH1 expression is a biomarker for
predicting poor survival in breast cancer patients. However, Morimoto et al. [29] found no
statistical difference in disease-free survival (DFS) and OS between ALDH1+ and ALDH1-

cases in TNBC patients. Meanwhile, Resetkova et al. [30] showed that stromal expression of
ALDH1 rather than tumor expression was associated with TNBC survival. Although there
are differences and controversies between these studies, this may be due to different case
characteristics, and assay sensitivity and assessment criteria, and sample size. The small
number of relevant studies may also explain the lack of consistency in results. Regardless
of the reasons for the discrepancies, further studies involving larger cohorts and using
standardized and well-matched controls are needed to validate these results.

4.3. CXCR4

CXCR4 (C-X-C chemokine receptor type 4) is expressed in most tissues and parenchy-
mal organs in the body and is a G protein-coupled receptor (GPCR) consisting of 352 amino
acids. The chemokine receptor CXCR4 is a specific receptor for chemokine (C-X-C) ligand
12 (CXCL12, also known as chemokine stromal cell-derived factor-1) [31]. CXCL12 has a
strong chemotactic effect on lymphocytes, and CXCR4 plays an important role in various
physiological functions, such as the dynamic balance of immune cells, including T cells.
In tissue regeneration, the CXCL12/CXCR4 system plays an important role in promoting
stem cell homing [32].

CXCR4 has a clear suggestive effect on breast cancer metastasis and prognosis, and
is highly expressed in a variety of tumor cells and involved in chemotaxis, invasion,
angiogenesis, and cell proliferation. It has been shown that breast cancer patients with
high CXCR4 expression have poor prognosis [33,34]. In breast cancer patients, CXCR4
overexpression is associated with lymph node status and poor prognosis [33]. In addition,
almost 75% of TNBC patients exhibit high CXCR4 expression [34]. Furthermore, there
is a strong association between CXCR4 overexpression and histological cancer grade in
menopausal and TNBC patients. The five-year DFS and five-year OS rates were 57.7%
and 58.3% for the low CXCR4 group and 42.1% and 44.7% for the high CXCR4 group,
respectively [35]. Patients with high CXCR4 overexpression (≥6-fold) in TNBC had a
significantly higher incidence of cancer recurrence and cancer-related death than the low
CXCR4 group (<6-fold) [34]. This result indicates that overexpression of CXCR4 in cancer
specimens predicts a poor prognosis for TNBC and may be a predictor of poor prognosis.

A meta-analysis of the results of 15 studies (3104 patients in total) found that the
expression of CXCR4 in breast cancer tissues was significantly higher than that in adjacent
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tissues, and high expression of CXCR4 in whole cells or the cytoplasm often indicated poor
prognosis of breast cancer [36]. Another systematic review confirms these findings and
shows that CXCR4 overexpression is significantly associated with lymph node metastasis
and distant metastasis, with lower overall survival and disease-free survival. There is no
correlation with clinical features of breast cancer, tumor stage, ER, and PR [32]. However,
because of the inevitable omission of the meta-analysis literature search process and the
differences among different research populations, understanding the specific mechanism
of action of CXCR4 and whether it can be changed by radiotherapy and chemotherapy still
needs further research.

4.4. p16INK4a

Inactivation of multiple tumor suppressor genes plays a role in the transformation of
normal breast tissue into cancer. According to the multiangle analysis of tumor pathological
type, grade of malignancy, efficacy, and prognosis, p16INK4a also plays an important role.
There is a high deletion rate of p16INK4a in breast cancer cell lines. The main inactivation
modes are deletion, point mutation, abnormal expression, and CpG island methylation in
the promoter region [37,38]. Tumor suppressor genes often exhibit high frequency deletions
and mutations in tumor cells. It was previously thought that abnormal changes in the
p16INK4a gene were dominated by gene deletion, and point mutations were not the main
cause of genetic changes. The overexpression rate of p16INK4a is more prominent in tumors
with higher malignancy, and it is more overexpressed in breast cancer [39]. Conversely,
there have been reports of p16INK4a downregulation in breast cancer [40].

The p16INK4a gene often has low expression in normal human tissue cells, and p16INK4a

protein is generally not detected. The abnormal expression of p16INK4a may be related
to the occurrence and development of breast cancer. However, whether it can become
an independent prognostic factor or a high specificity marker for breast cancer remains
to be confirmed by further large-scale clinical analysis and prospective studies. Recent
studies have indicated that the methylation of CpG islands in the p16INK4a promoter region
is more frequent than that of point mutations and homozygous deletions, and may be more
valuable for the mechanism of p16 methylation induction and reversal. The methylation
rate of the p16INK4a in breast cancer was found to be 30%, which is consistent with the results
of two different research teams. It was also suggested that the methylation rate of breast
cancer tissue was significantly higher than that of normal tissues and correlated with lymph
node metastasis. The difference was statistically significant, but it was not significantly
associated with the degree of differentiation of breast cancer [41,42]. These studies have
shown that the higher methylation rate of the p16INK4a has important significance for breast
cancer. The detection of the methylation rate of the p16INK4a may have high clinical value
for early diagnosis of breast cancer. Moreover, the inhibition of tumor growth by the
p16INK4a may play a role in anti-angiogenesis and induction of tumor cell apoptosis, in
addition to mediating the arrest function of the cell proliferation cycle [43].

In addition, high p16INK4a expression has been shown to be associated with aggressive
behavior and poor outcome in TNBC in studies of TNBC; thus, p16INK4a has potential
prognostic utility and predictive value. High expression of p16INK4a predicts progression
from in situ ductal carcinoma to basal-like invasive breast cancer [44]. It was also reported
that p16INK4a overexpression was positively correlated with Ki67 expression in p53-negative
TNBC but not in p53-positive tumors, suggesting that patients with p53-negative TNBC
with high p16INK4a expression have a poorer prognosis [45]. Moreover, diffuse p16INK4a im-
munostaining in most cases of basal-like breast cancer and TNBC and a positive correlation
between Rb negativity and diffuse p16INK4a expression was found [44]. Previous studies
have found a better prognostic correlation for low p16INK4a expression in tumor tissues
of TNBC cancer patients [46]. However, there was no prognostic significance between
p16INK4a and overall survival and recurrence-free survival, in 60 TNBC patients [47]. As
evidenced by these findings, there are conflicting data regarding the correlation between
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p16INK4a and prognosis, and more studies are needed to fully define the role of p16INK4a in
TNBC clinical outcomes and survival.

4.5. ATM

ATM is a gene that is mutated in ataxia telangiectasia (A-T) and has been associated
with cancer since its discovery. Swift et al. found that patients heterozygous for ATM
genes are more likely to develop breast cancer; ATM genes are being explored widely for
their role in gene function [48]. Although many studies in homozygous patients have
failed to find links between ATM genes and tumors, this association has been confirmed in
ATM heterozygotes, particularly the link between ATM heterozygotes and breast cancer.
Western women have a 10% to 12% risk of breast cancer in their lifetime. The family history
of breast cancer plays a key role in the pathogenesis. In addition, 5–10% of breast cancer
patients have high penetrance germline gene mutations. The most important of these are
the breast cancer susceptibility genes BRCA1 and BRCA2, and ATM and CHK2 are also
important risk factors [49]. The role of the ATM gene in familial breast cancer is based on
the exclusion of the susceptibility genes BRCA1, BRCA2, and CHK2. The detection rate of
mutations in the ATM gene was 12/443 in the case group and 2/521 in the control group.
This result suggests that mutations in the ATM gene may increase the incidence of breast
cancer [50]. In addition to studies of ATM polymorphisms and gene mutations, recent
studies have suggested that ATM mRNA levels are associated with lower metastasis-free
survival (MFS), and low-level expression of ATM protein results in a shorter MFS. miR-203
is a dominant indicator of downregulation of the ATM gene in breast cancer. ATM gene
mRNA and ATM protein levels are independent prognostic factors for sporadic breast
cancer and play a good guiding role in treatment [51].

The ATM gene encodes a phosphatidylinositol 3-kinase (PI3K) that regulates and
participates in the repair of DNA damage and a key substrate for cell cycle control. Previous
studies analyzing the ATM gene in European women (42,671 cases and 42,164 controls)
found an association between ATM mutations (c.7271 T > G) and overall breast cancer
risk; however, a specific association with TNBC could not be determined because the
tumors were not stratified by subtype [52]. In addition, 158 women with TNBC were
recruited for analysis among Polish women, one of whom carried an ATM mutation, while
no ATM mutation was detected in 44 women with non-TNBC hereditary breast cancer [53].
Other studies have observed an enrichment of ATM mutations in patients with ER-positive
tumors [54,55], with a five-fold increase in ATM mutations in non-TNBC patients compared
to TNBC tumors [56]. At present, the discussion regarding the ATM gene is of great value
in the diagnosis, treatment, and prognosis of breast cancer. Determining whether it is a
biomarker of breast cancer susceptibility like BRCA1 and BACA2 is worth investigating.

4.6. PTEN

The PTEN gene is an important tumor suppressor gene and plays a key regulatory role
in breast cancer. In animals, it was found that 49% of female mice developed breast cancer
six months after PTEN gene knockout (PTEN+/−) [57]. The effect of stable transfection of
exogenous PTEN on the proliferation of endogenous PTEN-deficient human breast cancer
cells confirmed that PTEN significantly inhibited the proliferation of breast cancer cells [58].
Therefore, determining whether the PTEN gene can inhibit the proliferation of tumor cells
when artificially introduced into the cells of breast cancer patients could provide a new
avenue for treatment. Through high-resolution fluorescence microsatellite analysis, it was
found that AKT activation was positively correlated with PTEN gene deletion and HER-2
overexpression in breast cancer patients and negatively correlated with PR. Simultaneous
deletion of PTEN and HER-2 overexpression results in enhanced activation of AKT, leading
to the possibility of PR-negative expression [59]. The total positive expression rate of the
PTEN gene in breast cancer was 69%, and the expression level in invasive breast cancer was
significantly lower than that in breast carcinoma in situ and benign proliferative lesions.
The positive expression rate of PTEN gradually decreases as the tumor progresses [60].
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Breast cancer with downregulated PTEN protein has a strong invasiveness and is prone to
infiltration and metastasis [61]. The expression of the PTEN gene can be used as a potential
prognostic indicator.

PTEN mutations are common in TNBC, with gene-mediated loss of function occurring
in 15% of cases [62] PTEN has recently been shown to protect the genome from instability
by maintaining chromosomal integrity. Although women with Cowden syndrome carrying
PTEN germline mutations have a 50% lifetime risk of developing breast cancer [63], there
is no consistent phenotype of breast cancer associated with PTEN mutations. Most PTEN-
associated tumors are more likely to be tubulointerstitial than TNBC. Observations suggest
that (1) there is no significant difference in the incidence of PTEN-causing mutations
between women with TNBC (n = 692) and women with non-TNBC tumors (n = 2696) [56];
and (2) the observation of only one deleterious mutation in 267 women [64] supports the
view that PTEN mutations are not associated with an increased risk of TNBC. Preclinical
AKT inhibition has higher activity in PTEN-deficient models of cancer [65], but there
are significant challenges in determining which PTEN mutations confer sufficient loss of
function to be targetable and the best way to identify such loss of function.

5. Therapeutic Strategy for TNBC
5.1. HER2 Inhibitor

Since the first discovery of HER-2 in breast cancer, its importance in the occurrence
and development of breast cancer has gradually been recognized. Current targeted therapy
research focuses on blocking the HER-2 signaling pathway. Trastuzumab, a recombi-
nant DNA-derived humanized monoclonal antibody, is a novel drug for the treatment of
metastatic breast cancer. Trastuzumab has achieved good results in both HER-2-positive
early and late-stage breast cancer treatments. Trastuzumab is used alone or in combination
with chemotherapy for patients with advanced breast cancer. Trastuzumab treatment can
prolong patient survival with low side effects. In a further in-depth study, the results of a
combination chemotherapy regimen using trastuzumab with docetaxel or taxane resulted
in overall survival of patients that was higher than that obtained using chemotherapy
alone [66]. Therefore, trastuzumab combined with paclitaxel is the first-line treatment for
HER-2 positive breast cancer patients. The investigators conducted a four-year follow-up
study showing that patients who received trastuzumab in the observation group were more
likely to have a higher survival rate (including disease-free survival) than those who did
not receive treatment [67]. Since the patient’s treatment depends on his or her personal will,
it is impossible to carry out rigorous statistical analysis, but patients receiving treatment
have increases in disease-free survival and overall survival.

HER-2-targeted therapy has not benefited patients with low HER-2 expression in
TNBC treatment strategies; however, combination therapy may be efficacious. The primary
analysis of a phase IIb trial investigating the HER2-derived vaccine nelipepimut-S (NPS)
did not benefit the intention-to-treat population (NPS; n = 55 vs. placebo; n = 44), but a
subgroup analysis showed benefit in patients with TNBC [68]. Another study enrolled
136 people receiving NPS/GM-CSF and 139 people receiving placebo/GM-CSF. The results
of the study confirmed that concomitant administration of trastuzumab and NPS with
GM-CSF was safe and had no additional overall toxicity. The combination of HER-2-
targeted NPS and trastuzumab was safe. In HER-2 low-expressing breast cancer, no
significant differences in DFS were observed in the intention-to-treat analysis [69]; however,
significant clinical benefits were observed in TNBC patients. These findings warrant further
investigation in a phase III randomized trial.

Targeting RTK Signaling

Lapatinib is an RTKI that reversibly blocks EGFR and HER-2 [70], inhibits downstream
MAPK/Erk1/2 and PI3K/AKT pathways [71], and enhances trastuzumab-dependent cell-
mediated cytotoxicity [72]. In March 2007, the FDA approved lapatinib in combination
with capecitabine for HER-2-positive breast cancer previously treated with anthracyclines,
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paclitaxel, and trastuzumab [73] In February 2010, the FDA approved lapatinib in combi-
nation with letrozole for the first-line treatment of hormone receptor (HR)-positive and
HER-2 overexpressing postmenopausal metastatic breast cancer [74].

Lenatinib is a TKI that irreversibly inhibits HER-1, HER-2, and HER-4. Early clinical
studies have shown that lenatinib exerts more effective inhibition than lapatinib in possible
resistance pathways in HER-2-positive patients previously treated with trastuzumab or
anti-HER-2. In July 2017, the FDA approved lenatinib for extended postoperative treatment
with trastuzumab adjuvant therapy in patients with early-stage HER-2-positive breast
cancer [75].

Tucatinib is a new oral selective TKI that is more selective for HER-2 than EGFR [76].
Recently, the FDA announced the granting of a New Drug Priority Approval Application
(NDA) for tucatinib in combination with trastuzumab and capecitabine for the treatment
of locally advanced unresectable or metastatic HER-2-positive breast cancer, including
patients with brain metastases.

Pazopanib is a novel multitarget TKI that targets VEGFR-1, VEGFR-2, VEGFR-3,
PDGFR/β, and c-Kit, and has been shown to inhibit tumor growth and angiogenesis in
in vitro studies [77].

5.2. VEGF Inhibitor

TNBC is a highly proliferating tumor that requires the involvement of angiogenesis
in its development, invasion, and metastasis processes. The expression level of vascular
endothelial growth factor (VEGF) is an independent prognostic factor in early breast cancer.
High expression of VEGF suggests high tumor malignancy, easy recurrence and metastasis,
short disease-free survival, and low overall survival. VEGF-A is highly expressed in TNBC
cells, so TNBC is generally considered to be sensitive to VEGF-targeting drugs [78]. Platelet-
derived growth factor (PDGF) is one of the angiogenic factors. Abnormal activation of
PDGF or PDGFR induces tumor angiogenesis and promotes migration and invasion of
tumor cells. Overexpression of VEGF in tumor tissues can promote the migration and
proliferation of vascular endothelial cells, promote angiogenesis, increase tumor growth,
and significantly increase vascular permeability, allowing tumor cells to enter the blood
vessels for tumor invasion and metastasis, providing more favorable conditions [79].
Currently, antiangiogenic drugs include bevacizumab and ramucirumab, and tyrosine
kinase inhibitors such as sunitinib and sorafenib. These antiangiogenic drugs are likely to
have higher antitumor activity in TNBC. In a phase II study of paclitaxel, bevacizumab,
and gemcitabine in the treatment of HER2-negative breast cancer, the clinical benefit rate
in the TNBC subgroup was 84.6%, and approximately 82.5% of patients achieved a total
survival of 18 months [80]. In another phase III trial, RIBBON-2 in the TNBC subgroup,
the bevacizumab combination group, and the chemotherapy group showed a reduction
in the risk of disease progression by 51%. It also increased progression-free survival by
3.3 months and overall survival by 5.3 months [81]. These results demonstrate the efficacy
of antiangiogenic drugs in inhibiting tumors in TNBC.

5.3. PARP Inhibitor

PARP is a key enzyme for repairing broken DNA single strands, and in wild-type
cells containing BRCA1/2, broken DNA double strands can be repaired by homologous
recombination. However, in BRCA1/2-deficient cells, the homologous recombination
function fails and therefore PARP is relied upon to repair the broken DNA single strand.
Therefore, PARP inhibitors have the ability to prevent self-repair in BRCA1/2 mutated
breast cancer cells and accelerate apoptosis of tumor cells, thereby enhancing the efficacy
of chemotherapy as well as radiotherapy [82].

As a novel drug, PARP inhibitors can cause double-strand breaks in BRCA-mutant
breast cancer cells, leading to cell death due to synthetic lethality [83]. Olaparib is an
effective PARP-1 and PARP-2 inhibitor [84] and was the first to be used by the FDA and the
European Medicines Agency (EMEA) (Table 3). A PARP inhibitor was clinically approved
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for treatment of relapsed high-grade serous ovarian cancer. Olapani was first used in the
clinical study of BRCA-related breast cancer, ClinicalTrials.gov Identifier: NCT00494234.
Patients received olaparib (100 mg/time, 2 times/d (n = 27) and 400 mg/time, twice/d
(n = 27)), and the results indicated a dose-dependent objective response rate (ORR) of 22%
(100 mg group) and 41% (400 mg group). The 400 mg group had a median progression-free
survival of 5.7 months (95% CI: 4.6–7.4), and that of the 100 mg group was 3.8 months
(95% CI: 1.9–5.5) [85]. After a preliminary determination of the therapeutically effective
dose, the OlympiAD study became the latest basis for FDA-approved olrapani, which
included BRCA-mutant HER2-negative advanced breast cancer patients. The study group
(n = 205) received olaparib (300 mg/second, 2 times/d monotherapy) while the control
group (n = 97) only received capecitabine, eribulin, or vinorelbine in three cycle regimen
single-agent chemotherapy. The study showed that the study group and the control group
were 7.0 and 4.2 months (HR = 0.58, 95% CI: 0.33 to 0.80, p < 0.001). Therefore, the study
indicated that olaparib has significant advantages in terms of efficacy and safety compared
to other chemotherapeutic drugs [86].

Intractable TNBC requires more effective treatment strategies, so new drugs are being
developed to sensitize sporadic TNBC to PARP inhibition. A clinical trial (ClinicalTrials.gov
Identifier: NCT01623349) is evaluating olaparib and BKM120 (buparlisib) or BYL719 (PI3
kinase inhibitor) in advanced sporadic TNBC and high-grade plasma ovarian cancer [87].
Another clinical trial (ClinicalTrials.gov Identifier: NCT01434316) combined veliparib and
dinaciclib (CDK inhibitor), in which CDK inhibition was assumed to sensitize TNBC to
PARP inhibition [88]. After the phase I dose ascertainment portion, the study will enroll
patients with BRCA-mutated and nonmutated advanced breast cancer in a dose expansion
cohort. Another PARP inhibitor, talazoparib (BMN 673), effectively modulates PARP tran-
scription. In addition, veriparib (veliparib), a novel potent PARP-1 and PARP-2 inhibitor,
had a 51% partial remission rate in the treatment group in a clinical phase II trial of breast
cancer treatment, which was significantly higher than the standard chemotherapy group
(26%) [89]. This study suggests that veriparib is more effective than standard therapy for
TNBC with a high risk of recurrence. In addition, multicenter clinical trials are evaluating
the efficacy and safety of PARP inhibitors in combination with chemotherapy, immuno-
suppressants, and inhibitors of other targets (e.g., VEGFR, HSP90, P13K/AKT/mTOR, etc.)
for the treatment of TNBC [90]. Regimens such as olaparib in combination with VEGFR or
P13K inhibitors can effectively inhibit the rapid proliferation and growth of TNBC cells by
affecting the blood oxygen supply to tumor cells and blocking molecules required for cell
growth [91].

5.4. CHK1 Inhibitor

Checkpoint kinase 1 (CHK1) belongs to the serine/threonine protein kinase family
and plays an important role in the regulation of cell cycle arrest by checkpoints caused by
DNA damage or the presence of un-replicated DNA. The CHK1 inhibitor UNC01 abolished
the production of G2 checkpoints dependent on DNA damage in cisplatin treatment and
increased the sensitivity of cisplatin by nearly 60-fold. In addition, the TCGA database
analysis found that the p53 mutation rate was very high in TNBC. The CHK1 inhibitor
(UCN01 or AZD7762) increases the sensitivity of TNBC xenografts with p53 mutations to
chemotherapy and achieves good preclinical effects [92]. These all indicate that CHK1 is a
very promising target in patients with p53 mutations in TNBC. Based on the recognition
that CHK1 is a drug target, other CHK1 inhibitors, AZD7762, PF-477736, SCH900776, and
LY2606368, are undergoing phase I and II clinical trials.

ClinicalTrials.gov
ClinicalTrials.gov
ClinicalTrials.gov
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Table 3. Targets and targeted drugs for triple negative breast cancer.

Signaling Pathway Target Target Drugs Ref.

DNA repair pathway PARP Olaparib, Veliparib, Rucaparib, Niraparib, Talazoparib [93]
EGF signaling EGFR Cetuximab, Panitumumab, Erlotinib, Gefitinib [94,95]

Angiogenesis pathway VEGF Bevacizumab, Ramucirumab, Sunitinib, Sorafenib [80,95,96]
PI3K/AKT/mTOR signaling PDGF, PI3K, mTOR Sunitinib, Sorafenib, BEZ235, Everolimus, Bez235 [96,97]

MAPK signaling ERK, mTOR Bez235, MEK162 [98]
JAK/STAT signaling JAK2 Ruxolitinib [99]
Cell cycle pathway CHK1 UNC01, AZD7762, PF477736, SCH900776, LY2606368 [92]

Src tyrosine kinase signaling Src Dasatinib [100,101]
Human epidermal growth

factor receptor 2 HER2 Lapatinib, Neratinib, Tucatinib, Poziotinib, Pyrotinib,
Trastuzumab, Pertuzumab [102–106]

Fibroblast growth factor
receptor signaling FGFR Gefinitib, Afanitib, Erlotinib [107–109]

5.5. EGFR Inhibitor

EGFR is a transmembrane tyrosine kinase growth factor receptor involved in cell
proliferation and differentiation in normal tissues. It also participates in the adhesion
and movement of normal tissue cells and initiates many downstream cell signal trans-
duction pathways [110,111]. EGFR is a member of the ErbB family of membrane tyrosine
kinase receptors. Studies have shown that most TNBCs have overexpressed EGFR, and
early TNBC patients with EGFR overexpression usually have worse overall survival and
disease-free survival than normal expression patients. Therefore, EGFR overexpression
is often associated with poor prognosis in TNBC [112,113]. Currently, the targeted thera-
peutic drugs that block the EGFR signaling pathway in breast cancer research are mainly
anti-EGFR monoclonal antibodies (cetuximab). A phase II open randomized clinical trial
evaluated the efficacy of platinum citrate cetuximab in patients with TNBC. The combi-
nation group had a 10% increase in complete release rate compared with the single-agent
group, progression-free survival was extended by 2.2 months, and overall survival was
extended by 3.5 months, but cetuximab may cause adverse reactions [95]. These cytological
and clinical trials have demonstrated the enormous potential of EGFR inhibitors in the
targeted therapy of TNBC.

5.6. Targeting Based on Cell Proliferation and Survival-Dependent Pathways in TNBC
5.6.1. Targeting of the PI3K/AKT/mTOR Signaling Pathway

Distortion of the PI3K/AKT/mTOR signaling pathway is common in TNBC and has
become a potential pathway for TNBC resistance to chemotherapy; phosphorylation of
mTOR often suggests a poor prognosis in early TNBC [114,115]. Everolimus is an oral
mTOR inhibitor that inhibits the downstream signaling of mTOR molecules in cells and
arrests the cell cycle in the G1 or S phase, thereby inhibiting PI3K/AKT/mTOR pathway
activity. A phase II clinical trial was performed in patients with TNBC (n = 50) treated with
paclitaxel fluorouracil + epirubicin + cyclophosphamide (T-FEC), followed by random-
ization into the everolimus group (n = 23) and blank control group (n = 27). The results
showed that the recurrence rate in the two groups was 47.8% and 29.6%, respectively,
and the pCR rate was 30.4% and 25.9%, respectively [96]. Therefore, the study concluded
that the pCR rate in patients with TNBC after combined treatment with everolimus did
not improve significantly. In addition to monotherapy studies, a phase II neoadjuvant
clinical study published in 2017 randomized TNBC patients into two groups; the study
group (n = 96) was administered everolimus combined with cisplatin + paclitaxel, while
the control group (n = 49) was administered placebo treatment. The results showed that
the combination of everolimus with TNBC neoadjuvant therapy did not improve pCR or
clinical response rates, but increased the incidence of adverse events [116]. Thus, inhibition
of RTK upstream of mTOR leads to rebound activation of AKT [117]; conversely, inhibi-
tion of AKT activity initiates FOXO-dependent transcription and RTK activation [118].
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Although blocking PI3K activity reduces AKT activation, it also leads to enhanced MAPK
signaling [119]. In conclusion, this evidence is a good theoretical basis for studying dual
inhibitors of the PI3K/AKT/mTOR pathway, which can control the activation of the target
pathway and respond to its feedback loop, thereby preventing or delaying resistance. For
example, combined mTOR and AKT inhibitors have shown synergistic efficacy in allograft
models of basal-like patient origin [120]. A number of PI3K/mTOR inhibitors continue to
be developed clinically, including gedatolisib (PF-05212384), which has therapeutic activity
in breast cancer and acceptable safety and tumorigenic activity [121].

5.6.2. Targeting of MAPK Signaling Pathway

Excessive activation of MAPK is involved in abnormal proliferation and apoptosis
of cancer cells, which in turn contributes to TNBC malignancy. Ras and Raf mutations
are infrequent in TNBC; instead, activation of MAPK signaling pathways is often thought
to be caused by multiple mechanisms of upstream receptor tyrosine kinase activation
or by activation or mutation of upstream proteins, such as PI3K/AKT/mTOR and related
proteins [122]. Previous studies have shown that flutamide and C1-1040 have synergistic
effects in the trastuzumab model, causing a decrease in ERK phosphorylation levels during
combination therapy with trastuzumab [123]. One study found that ERK inhibitor in
combination with Forskoli increased the sensitivity of TNBC cells to adriamycin [124]. In
addition, PAD1 is used to treat metastatic breast cancer by regulating MEK1–ERKl/2–MMP2
signaling in TNBC [125]. A growing body of preclinical evidence supports targeting the
Ras/MAPK cell signaling pathway in TNBC subtypes, although large genomic surveys
(TCGA public database) suggest that typical mutations in this pathway are rare [126,127].
Because of the early spread of TNBC, targeted treatment in the neoadjuvant setting may
offer the effective therapeutic punch needed to eliminate micrometastatic disease and
reduce mortality.

5.6.3. Targeting the JAK2/STAT3 Signaling Pathway

In patients with TNBC, JAK1, and JAK2 are usually overexpressed. The JAK/STAT
pathway is involved in important biological processes such as cell proliferation, differenti-
ation, apoptosis, and immune regulation. Phosphorylated STAT3 is found in more than
50% of breast tumors and is associated with invasive phenotypes and poor prognosis [128].
Previous studies have found that abnormalities in the IL-6/JAK2/STAT3 pathway play a
crucial role in TNBC [129]. This suggests JAK2/STAT3 to be a potential therapeutic target.
The JAK1/2 inhibitor ruxolitinib is now approved for the treatment of myelofibrosis and is
expected to improve the treatment of TNBC as a single-targeted drug [130].

5.6.4. Targeting of the Src Signaling Pathway

Src tyrosine kinase is overexpressed in TNBC and is involved in disease progres-
sion. Preclinical studies have shown that the combination of Dasatinib and cisplatin, a
combination of Src, c-kit, and PDGFRβ, can inhibit the growth of basal-like tumor cells
or TNBC tumor cells [131–133]. In a phase II clinical trial using Dasatinib, anthracyclines,
and paclitaxel in combination for treatment of metastatic TNBC, disease control rates were
found to be 9.3%, partial response rates were 4.3%, and progression-free survival was
around 8.3 weeks [100,101]. (Figure 2)
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Figure 2. Schematic drawing presents the detail signaling pathways of breast carcinogenesis. All signaling pathways
represented in this diagram have been found to be operative in the breast cancer cell context, whereas evidence to date
supports a predominant role of HER2 in BRCA1/2 signaling and EGFR–PARP cross-talk in breast cancer cells. CR:
cytokine receptor.

6. Immune Checkpoint Blockade

The tumor microenvironment is important for TNBC to achieve its biological behavior.
It is not only the battlefield of immune surveillance and immune escape between tumor cells
and the organism, but also the site where many prognosis-related effector cells, cytokines,
and inflammatory mediators function, and the site of host immune killing and tumor
immune tolerance [134,135]. Immune checkpoint inhibitors (ICBs) can inhibit the activity
of immune checkpoint molecules to release the activity of T cells and restore the killing
effect on tumor cells for antitumor purpose. Currently, there are two main types of ICBs:
CTLA-4 receptor inhibitors and PD-1/PD-L1 inhibitors. Expression of PD-L1 on tumor
cells and on immune cells surrounding the tumor indicates that an antitumor immune
response has originally occurred [136]. High expression of immunosuppressive molecules
such as PD-L1, CTLA4, TIM-3, and IDO by cells in the tumor cell microenvironment is one
of the mechanisms of immune escape from tumor cells [137,138]. PD-L1 and CTLA-4 are
immune checkpoints expressed on the surface of antigen-presenting cells in the initiation
and effector phases of T-cell activation, respectively. Previous studies have shown that
approximately 50% of PD-L1 transmembrane proteins in breast cancer with androgen
receptor (AR)-negative prevalence and TNBC cells express PD-L1, whose receptor is PD-1,
and also bind PD-L2 as other ligands, and express CTLA-4. Both may coexpress PIK3A and
PTEN, which may allow dual blockade of these pathways for the chance of a more effective
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tumor response [137–139]. Showing that PD-L1 upregulation is more common in basal
breast cancer and is associated with a higher T-cell cytotoxic immune response. PD-L1
upregulation is associated with better survival and chemotherapy response. Reactivation
of inactive TIL by PD-L1 inhibitors suggests that PD-L1 upregulation may be a promising
strategy for breast cancer [140].

7. Conclusions and Future Perspective

In this review, we describe some of the main strategies for addressing the challenges
in TNBC treatment. TNBC is a high-risk type of breast cancer with a high invasiveness,
malignancy, recurrence rate, and heterogeneity. TNBC has unique molecular biological
characteristics, and multiple signaling pathways are involved in the development of the
disease. Research on TNBC has been extensive, and both in vitro investigations and clinical
trials have yielded good results. However, no targeted drugs have been used in clinical
treatment. The use of clinical medications requires more innovation, such as selecting
drugs based on medical, genetic, and clinical factors specific to the patient, and making
clinical medications more targeted, safe, and effective. There are still many obstacles left
to overcome in the area of TNBC-targeted therapy in order to achieve personalized drug
treatments for patients with TNBC.
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