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ABSTRACT: The Sonic Hedgehog (Shh) signaling pathway
plays a critical role during embryonic development and cancer
progression. N-terminal palmitoylation of Shh by Hedgehog
acyltransferase (Hhat) is essential for efficient signaling, raising
interest in Hhat as a novel drug target. A recently identified
series of dihydrothienopyridines has been proposed to
function via this mode of action; however, the lead compound
in this series (RUSKI-43) was subsequently shown to possess
cytotoxic activity unrelated to canonical Shh signaling. To
identify a selective chemical probe for cellular studies, we
profiled three RUSKI compounds in orthogonal cell-based
assays. We found that RUSKI-43 exhibits off-target cytotox-
icity, masking its effect on Hhat-dependent signaling, hence results obtained with this compound in cells should be treated with
caution. In contrast, RUSKI-201 showed no off-target cytotoxicity, and quantitative whole-proteome palmitoylation profiling with
a bioorthogonal alkyne-palmitate reporter demonstrated specific inhibition of Hhat in cells. RUSKI-201 is the first selective Hhat
chemical probe in cells and should be used in future studies of Hhat catalytic function.

Hedgehog (Hh) signaling plays an essential role in the
normal development of vertebrate species and is involved

in processes such as organogenesis and tissue patterning,
including digit formation and ventral forebrain neuron
differentiation.1,2 In adult tissues, Hh signaling is normally
restricted to functions such as differentiation of human
thymocytes and bone remodeling,3,4 but is also aberrantly
activated in a variety of diseases. Various cancers exhibit active
Hh signaling, including medulloblastoma; basal cell carcinoma;
osteosarcoma; and pancreatic, lung, breast, and prostate
cancers.5,6 Aberrant Hh signaling is also observed in interstitial
lung diseases, such as idiopathic pulmonary fibrosis.7

Hh signaling is mediated by the Hh family of proteins, which
in humans comprises Sonic (Shh), Indian (Ihh), and Desert
Hedgehog (Dhh). The function of these secreted morphogens
is tightly regulated by the formation of morphogenic gradients
and multimeric complexes.2,8 Proper function of Hh proteins
requires dual post-translational lipidation via a cholesteryl ester
at the C-terminal carboxylate and a palmitoyl amide at the N-
terminal amine (Figure 1a).9 The full physiological role of these
lipid modifications remains elusive, but cholesterylation appears
to enhance activity and regulate the distance over which
signaling persists,10−12 while genetic knockout of the
palmitoylation site prevents signaling.2

Mature Shh can induce signaling in an autocrine, juxtacrine,
or paracrine fashion upon binding to the cognate receptor

Patched (Ptch), by relieving Ptch inhibition of the G-protein-
coupled receptor-like Smoothened (Smo). Smo is translocated
to the primary cilium to activate further downstream signaling
events, culminating in activation of Gli transcription factors and
subsequent initiation of Hh-mediated transcription events
(Figure 1a).5

Due to its activation in various cancers, Hh signaling has
attracted significant interest for therapeutic intervention. Small
molecule inhibitors of various components of the pathway have
been identified and explored as potential therapeutics, Smo
inhibitors in particular. One of the best characterized Smo
inhibitors, GDC-0449, has progressed to clinical trials, showing
some success;13 however, treatment is complicated by the
emergence of resistant clones harboring Smo gene mutations
leading to hyper-activated Hh signaling that is resistant to Smo
inhibitors.14

Hedgehog acyltransferase (Hhat) is a multipass trans-
membrane protein found in the endoplasmic reticulum15 and
is a member of the membrane bound O-acyltransferase
superfamily of proteins.16 Hhat is responsible for N-
palmitoylation of Hh proteins,17 and Hhat knockout mice
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display similar phenotypes to Shh knockouts, exhibiting
developmental defects and neonatal lethality.2 Given the critical
importance of palmitoylation for Hh ligand activity, it has been
proposed that Hhat inhibition could provide an alternative
means to block Hh signaling. A recent small molecule screen
against recombinant Hhat by Resh and co-workers identified a
series of 5-acyl-6,7-dihydrothieno[3,2-c]pyridines.18 Com-
pounds in this so-called “RUSKI” class represent the first
small molecule inhibitors of Hhat, of which RUSKI-43 (Figure
1b) has been used as a chemical probe for Hhat inhibition in
subsequent studies in cells.19,20 RUSKI-43 is claimed to be a
potent and specific inhibitor of Shh palmitoylation, thereby
arresting autocrine and paracrine Hh signaling, and is proposed
to have therapeutic potential for Hh-dependent cancers.19,20

Surprisingly, the cytotoxicity of RUSKI-43 did not correlate
with Hh signaling, and the authors attributed this phenotype to
an unspecified “hedgehog-independent” function of Hhat.
However, these observations are also consistent with non-
specific cellular toxicity in addition to inhibition of Hhat
activity, raising questions over the validity of this compound as
a probe in cellular studies.21 We concluded that further
evidence for on-target activity without generic toxicity is
required in order to validate the RUSKI series as probes for
Hhat activity.
We have previously reported the novel synthesis of a number

of RUSKI analogs and demonstrated their inhibitory activity
against recombinant Hhat.22−24 We therefore sought to employ
a combination of cell biology and chemical proteomic analysis
to assess the potency and specific target engagement by
selected RUSKI compounds (Figure 1b) in cells and character-
ize their mode of action.
Shh-Light2 cells are derived from NIH3T3 cells stably

transfected with a Gli-responsive firefly luciferase and a

constitutively expressed Renilla luciferase as an internal control
for cell density, and are widely used to study activation and
inhibition of canonical Hh signaling.25 HEK-293 cells stably
overexpressing Shh (HEK-293 Shh+)26 were treated with
RUSKI-41, RUSKI-43, or RUSKI-201 for 24 h. The
conditioned media from these cells containing secreted Shh
were incubated with Shh-Light2 cells for 48 h prior to
recording firefly and Renilla luciferase activity. All RUSKI
compounds inhibited firefly luciferase activity in a dose-
dependent manner (Figure 2a) consistent with activity against
Hhat in biochemical assays.18,23 However, a loss of firefly
luciferase signal is not unequivocal evidence for inhibition of
Shh palmitoylation, since inhibitors may target other processes
in the reporter cell line. To isolate such off-target effects from
Hhat inhibition, compounds were added to conditioned
medium from untreated HEK-293 Shh+ immediately prior to
incubation with reporter cells (Figure 2b). RUSKI-41 and
RUSKI-43 inhibited firefly luciferase activity despite the
presence of palmitoylated Shh in the conditioned media,
while RUSKI-201 had no effect under the same conditions. To
further probe off-pathway effects, Shh-Light2 cells were treated
with RUSKI compounds in the presence of a small molecule
Smo agonist (SAG), which activates Hh signaling downstream
of Ptch (Supporting Information Figure S1) rendering Gli
activation independent of Shh.27,28 Under these Shh-
independent conditions, RUSKI-41 and RUSKI-43 induced a
significant reduction in firefly luciferase activity, while RUSKI-
201 had no effect (Figure 2c). These findings clearly indicate
that RUSKI-41 and RUSKI-43 inhibit signaling independent of
Hhat inhibition, regardless of any corresponding reduction of
the palmitoylation state of Shh. Furthermore, inhibition cannot
be rescued by Smo-mediated stimulation of the pathway
downstream of Shh, indicating modes of action unrelated to
either Hhat or canonical Hh signaling. Cell survival in Shh-
Light2 cells is independent of the Hh pathway; however, cell
viability measurements showed a trend of substantial Shh-
Light2 cytotoxicity for RUSKI-41 and RUSKI-43 (EC50 = 21 ±
1.4 μM and 11 ± 2.5 μM, respectively), whereas RUSKI-201
had no effect on cell viability at concentrations >25 μM
(Supporting Information Figure S2). Furthermore, Renilla
luciferase activity was significantly inhibited by RUSKI-41 and
RUSKI-43 but unaffected by RUSKI-201 (Supporting
Information Figure S3). To further test the selectivity for
Hhat over the related MBOAT family member Porcupine
(PORCN, responsible for Wnt palmitoylation), we utilized a
Wnt cellular signaling assay. Mouse TM3 cells expressing
luciferase under control of a Wnt signaling promoter with
constitutive Renilla expression29 were treated with RUSKI-201
and RUSKI-43 (10 μM) alongside positive control PORCN
inhibitor LGK974 (100 nM).30 RUSKI-201 exhibited excellent
selectivity with no effect on Wnt signaling, whereas RUSKI-43
exhibited approximately 50% reduction in signaling (Support-
ing Information Figure S4). Since RUSKI-43 has previously
been demonstrated not to inhibit Wnt palmitoylation by
PORCN,18 it may be concluded that the observed inhibition of
Wnt signaling by RUSKI-43 also arises through an off-target
mode-of-action.
We next sought to probe on-target Shh palmitoylation

inhibition by RUSKI-201 in cells using bio-orthogonal tagging
technology.31 HEK-293 Shh+ cells were treated with RUSKI-
201 for 7 h, with the addition of alkyne-tagged palmitic acid
(YnPal) after 1 h to monitor protein palmitoylation. YnPal is
processed as the natural substrate and incorporated into the

Figure 1. Hh signaling pathway and RUSKI Hhat inhibitors. (a)
Canonical Hh signaling requires production of dually lipidated Shh
signaling protein. Shh is C-terminally autocholesterylated and N-
terminally palmitoylated by Hhat. Modified Shh is secreted and
recognized by its receptor Ptch, which releases inhibition of Smo,
thereby triggering downstream target expression under Gli promoter
control. (b) Hhat inhibitors used in the current study and their
reported IC50 values against recombinant Hhat.
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acylation sites of palmitoylated proteins, including Shh.11,32,33

YnPal-tagged proteins were ligated to azido-TAMRA-PEG3-
biotin (AzTB) trifunctional capture reagent (Supporting
Information Figure S5)34−36 via copper(I)-catalyzed azide−
alkyne cycloaddition (CuAAC). Ligation of AzTB to YnPal-Shh
results in a ∼2 kDa apparent mass increase compared to
untagged Shh by anti-Shh Western Blot (WB) (Figure 3a);11

WB analysis of tagged and nontagged Shh indicated that YnPal
was incorporated into ∼10% of total cellular Shh, comparable
to previous reports.11,32,33 The overall level of YnPal-tagged
proteins assessed by in-gel fluorescence was unchanged by
RUSKI-201 treatment, indicating global palmitoylation was
unaffected (Figure 3a). Inhibition of YnPal-tagging of Shh as
measured by tagging IC50 (TC50) was 0.87 ± 0.08 μM (Figure
3b), in good agreement with previous assays in Shh-Light2 cells
(IC50 = 2.3 ± 1.2 μM). In order to measure the impact of
RUSKI-201 across the palmitoyl proteome, we employed a
spike-in stable isotope labeling by amino acids in cell culture
(SILAC)-based quantitative proteomics approach.32 HEK-293
Shh+ cells labeled with heavy isotope amino acids (R10K8; L-
arginine-13C6,

15C4, L-lysine-
13C6,

15C2) were treated with YnPal
for 6 h to produce a lysate heavy standard that was mixed 1:1

with lysate from cells treated with RUSKI-201 and YnPal in
standard medium, and the mixed lysate ligated to the capture
reagent (Supporting Information Figure S5).37 Labeled
proteins were then enriched on NeutrAvidin resin, trypsin
digested, and light/heavy ratios of recovered peptides
determined by nanoLC-MS/MS to provide fold change values
for the palmitoylation state of 105 proteins across a series of
RUSKI-201 concentrations (Supporting Information Table 1).
Hh ligand palmitoylation was reduced in a dose-dependent
manner, while there was no significant change in the
modification state of all other proteins detected (Figure 3c).
This is as expected as Hh signaling proteins are the only known
substrates of Hhat,38 and the large majority of post-translational
protein S-palmitoylation is known to be undertaken by the
structurally unrelated DHHC family of palmitoyl transferases.
RUSKI-201 exhibited submicromolar potency (IC50 = 0.73 ±
0.09 μM, Figure 3d) in close agreement with the TC50 from
WB analysis. Taken together, these data are consistent with
selective inhibition of Shh palmitoylation by Hhat in cells by
RUSKI-201, and with Hhat-dependent inhibition of Shh-
dependent signaling in the Shh-Light2 assay. Our data strongly
suggest that Hhat inhibition does not affect global palmitoy-

Figure 2. Inhibition of canonical Hh signaling by RUSKI compounds. The effects of RUSKI-41 (blue), RUSKI-43 (red), and RUSKI-201 (green) on
Shh signaling were characterized as described in the Materials and Methods. (a) Addition of inhibitors to HEK-293 Shh+ and subsequent transfer of
conditioned medium to reporter cells; under these conditions, all compounds inhibit the firefly luciferase reporter signal. (b) Addition of inhibitors
to preconditioned medium and immediate transfer to reporter cells indicates RUSKI-41 and RUSKI-43 inhibit the firefly reporter regardless of Shh
palmitoylation status. (c) Addition of inhibitors to SAG-containing medium prior to transfer to reporter cells indicates RUSKI-41 and RUSKI-43
inhibition cannot be rescued by downstream pathway stimulation. In each case, RUSKI-201 behaves as a canonical Hhat inhibitor. Renilla luciferase
activity was inhibited by RUSKI-41 and RUSKI-43 and unaffected by RUSKI-201 (Supporting Information Figure S3). Response is normalized to
vehicle control, and data represent mean ± SEM of experiments performed in triplicate (n ≥ 3).
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lation levels, for example by inhibiting other palmitoyl
transferases or acyl-protein thioesterases,32 and is consistent
with a mutually specific enzyme−substrate relationship between
Hhat and Hh ligands.38 RUSKI-41 also inhibited only Hh
palmitoylation (Supporting Information Figure S6, Table S2),
strongly suggesting that these inhibitors do not inhibit some
putative alternative Hhat-mediated palmitoylation event, and
further supporting the proposed off-target activity of these
compounds.
Having validated RUSKI-201 as a potent and selective

inhibitor of Hhat in cells, capable of blocking Hh signaling from
Shh overexpressing cells, we next sought to investigate the
arrest of Hh signaling from tumor cells. Transcript analyses
were used to confirm Hhat and Shh expression in a panel of
one breast cancer, four pancreatic ductal adenocarcinoma
(PDAC), and seven nonsmall cell lung cancer (NSCLC) cell
lines (Supporting Information Figure S7). Measurement of
Gli1 activation in coculture with Shh-Light2 cells indicated that
H520 (NSCLC), Panc-1 (PDAC), and MCF-7 (breast) secrete
active Shh (Supporting Information Figure S8). Dose−
response studies using Smo inhibitor GDC-0449 confirmed
that Hh signaling in these cell lines occurred in a canonical
manner, with inhibition in the low nanomolar range
(Supporting Information Figure S8). RUSKI-201 also inhibited
signaling in H520, Panc-1, and MCF-7 coculture with Shh-
Light2 cells (IC50 = 4.8 ± 0.60 μM, 7.8 ± 1.3 μM, and 8.5 ±
0.65 μM, respectively; Figure 4a). Cell viability assays have
previously shown Panc-1 and MCF-7 cells to be growth
sensitive to RUSKI-43.19,20 We therefore tested the effect of

RUSKI-43 on Panc-1 and MCF-7 viability alongside on-target
inhibitors of Smo (GDC-0449) and Hhat (RUSKI-201).
Neither on-target inhibitor affected viability, whereas RUSKI-
43 displayed significant cytotoxic effects against Panc-1 and
MCF-7 cells (EC50 = 7.4 ± 0.49 μM and 13 ± 0.27 μM,
respectively; Supporting Information Figure S9). Additionally,
RUSKI-201 and GDC-0449 had no impact on either Renilla
luciferase expression in Shh-Light2 cells (Supporting Informa-
tion Figures S8 and S10), or viability in either tumor or Shh-
Light2 cells (Supporting Information Figure S11); this is
consistent with a lack of cell-autonomous dependence on Hh
signaling in these lines and confirms that on-target inhibitors of
Hhat or of canonical Hh signaling do not induce cell-
autonomous cytotoxic effects (Supporting Information Figures
S2 and S3). Finally, RUSKI-201 inhibition of signaling by Shh
in H520 cells cocultured with Shh-Light2 cells was efficiently
rescued by SAG pathway stimulation (Figure 4b).
These data demonstrate that RUSKI-201 can inhibit

endogenous Hh signaling from tumor cell lines, which has
been proposed as a potential treatment for various cancers.20,26

Instead of blocking Hh signaling at large numbers of receiving
cells (as would occur with a Smo inhibitor), Hhat inhibition
would disrupt paracrine signaling at its source in Shh-producing
tumor cells. Stromal desmoplasia resulting from tumor-
promoted Hh signaling is thought to offer a protective
environment for tumors that limits access of chemotherapeutic
drugs.39,40 The therapeutic benefit of disruption of stromal
desmoplasia is currently debated;41,42 however, complete
inhibition of Hh signaling has been shown to block tumor

Figure 3. Selective inhibition of Shh palmitoylation by RUSKI-201. HEK-293 Shh+ cells were treated with RUSKI-201 followed by YnPal and
functionalized with AzTB as described in the Materials and Methods. (a) In-gel fluorescence and Shh and tubulin WB indicates selective inhibition of
Shh palmitoylation by RUSKI-201. Images representative of six biological replicates. (b) TC50 dose−response curve of α-Shh blot shown in a (TC50
= 0.87 ± 0.08 μM, n = 6). (c) Change in L/H ratio upon RUSKI-201 treatment from spike-in SILAC quantitative proteomics. Each line represents a
protein known to be palmitoylated, normalized to inhibitor vehicle control. Green line represents Hh proteins (Shh, Dhh, Ihh; n ≥ 2). (d) IC50
dose−response curve of quantitative proteomics data shown in c (IC50 0.73 ± 0.09 μM, n ≥ 2). Data represent mean ± SEM of experiments
performed in duplicate.
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promotion.43 This complex outcome of Hh inhibition high-
lights the need for improved understanding of this pathway on
the biochemical, cellular, and whole-organism level. Chemical
biology has the potential to greatly expedite such studies;
however, as with any investigation, the selection of appropriate
(chemical) tools is of critical importance.21,44−47 The on-target
mode of action of RUSKI-201 makes it the optimal tool
molecule currently available to study Hhat function. Our
previous reports provide straightforward synthetic access to this
class of inhibitors,22,24 which will facilitate investigation of
structure−activity relationships and pharmacophore determi-
nation and enable their continued development as chemical
tools or therapeutics.
In summary, we have used a range of cellular assays to

demonstrate that the commonly employed Hhat inhibitor
RUSKI-43 possesses significant cytotoxicity at concentrations
relevant to Hhat inhibition and that this results from Hhat- and
Hh-independent activity that cannot be rescued via Hh
pathway stimulation. However, RUSKI-201 was shown to
induce Hhat- and Hh-dependent inhibition in a range of cell
lines, including tumor cells, and selectively inhibits Hh
palmitoylation over a panel of >100 palmitoylated substrates
in cells. These data strongly suggest that RUSKI-201 is the
superior and preferred chemical probe for small molecule
inhibition of Hhat catalytic function.21,44−47
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