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Abstract: Background: The authors previously developed deep-learning models for the prediction of
colorectal polyp histology (advanced colorectal cancer, early cancer/high-grade dysplasia, tubular
adenoma with or without low-grade dysplasia, or non-neoplasm) from endoscopic images. While the
model achieved 67.3% internal-test accuracy and 79.2% external-test accuracy, model development
was labour-intensive and required specialised programming expertise. Moreover, the 240-image
external-test dataset included only three advanced and eight early cancers, so it was difficult to gen-
eralise model performance. These limitations may be mitigated by deep-learning models developed
using no-code platforms. Objective: To establish no-code platform-based deep-learning models for
the prediction of colorectal polyp histology from white-light endoscopy images and compare their
diagnostic performance with traditional models. Methods: The same 3828 endoscopic images used to
establish previous models were used to establish new models based on no-code platforms Neuro-T,
VLAD, and Create ML-Image Classifier. A prospective multicentre validation study was then con-
ducted using 3818 novel images. The primary outcome was the accuracy of four-category prediction.
Results: The model established using Neuro-T achieved the highest internal-test accuracy (75.3%,
95% confidence interval: 71.0–79.6%) and external-test accuracy (80.2%, 76.9–83.5%) but required the
longest training time. In contrast, the model established using Create ML-Image Classifier required
only 3 min for training and still achieved 72.7% (70.8–74.6%) external-test accuracy. Attention map
analysis revealed that the imaging features used by the no-code deep-learning models were similar to
those used by endoscopists during visual inspection. Conclusion: No-code deep-learning tools allow
for the rapid development of models with high accuracy for predicting colorectal polyp histology.

Keywords: convolutional neural network; deep learning; no code; endoscopy; polyps; colonoscopy;
colonic neoplasms

1. Introduction

Endoscopists routinely remove all colorectal polyps identified during screening colonoscopy
for discriminating adenoma from hyperplastic polyp by histopathology [1], as this strategy
has been shown to prevent adenoma–carcinoma progression [2]. Further, surveillance
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colonoscopy also prevents the development of metachronous colorectal cancers or neo-
plasms through the removal of precursor lesions [3,4]. However, methods for the accurate
prediction of polyp histology based on visual inspection of gross morphology may be
advantageous under certain conditions. For instance, the current low level of certainty in
histological prediction by endoscopic visual inspection and the necessity of removing all
identified polyps increase the workload for both endoscopists and pathologists [5]. Further,
meticulous inspection, lesion detection, and histological prediction are essential [6], and
adenoma detection rates are known to decline with increasing practitioner workload [7].
Image-enhanced endoscopy, such as narrow-band imaging with magnification, can improve
the visualisation of lesion surface morphology and vascular structure for more accurate
classification. The Narrow-Band Imaging International Colorectal Endoscopic (NICE) clas-
sification or the Japan Narrow-Band Imaging Expert Team (JNET) classification has been
widely adopted in clinical practice and has shown promising diagnostic performance in a
clinical setting for both expert and nonexpert endoscopists [8,9]. However, experienced
endoscopists with high confidence appear to benefit from this optical technology [10].

As an alternative to visual inspection, computer-aided diagnosis using deep learn-
ing enables automatic detection, classification, and segmentation of images with high
accuracy [11,12]. Most importantly, these models provide consistent and accurate classifica-
tion regardless of endoscopist workload [13]. Further, identified polyps are analysed in real
time, and histology can be predicted for on-site determination of resection. Optical biopsy
using this technology thus allows for implementation of a ‘resect and discard or diagnose
and leave’ strategy, thereby improving tissue preservation and diagnostic performance [14].

To achieve greater classification accuracy and reduce endoscopist workload, the au-
thors established a deep-learning model to predict the histology of colorectal polyps from
endoscopic images [15] that demonstrated 67.3% internal-test accuracy and 79.2% external-
test accuracy for the histological prediction of four lesion classes (advanced colorectal
cancer (ACC), early cancers/high-grade dysplasia (ECC/HGD), tubular adenoma (TA)
with or without low-grade dysplasia, or non-neoplasm). However, model establishment
was labour-intensive and time-consuming, particularly when searching for the optimal
hyperparameters [13]. Additionally, the composition of the external-test dataset was not
suitable for performance generalisation because the number of images in specific categories
was too small (only three images with ACC and eight images of ECC/HGD among a
240-image external-test dataset) [15]. Moreover, the development of these models required
considerable computational expertise. To increase the accessibility of model development,
many new deep-learning models have been developed using no-code or low-code plat-
forms, which enable the rapid identification of optimal hyperparameters and achieve high
classification performance. No-code development platforms permit the building of deep-
learning models using simple commands on graphical user interface (GUI) software or
applications, such as ‘drag and drop way’ or icon clicks. Thus, users are able to establish
deep-learning models rapidly without traditional computer language-based coding. The
aim of this study was to establish deep-learning models with no-code platforms for the
prediction of colorectal polyp histology from white-light endoscopic images and to compare
their diagnostic performance with established models (whether the no-code platform-based
deep-learning model can achieve high diagnostic performance compared to the traditional
coding-based established model).

2. Materials and Methods
2.1. Datasets

This study extends a previous study [15] by establishing and evaluating deep-learning
models using no-code tools. For comparison of classification performance, the same
3828 white-light endoscopic images were used as input to build both the previous deep-
learning model and the new no-code deep-learning models. The data collection process was
described previously [15]. Briefly, patients diagnosed with and treated for colorectal lesions
between 2008 and 2017 were retrospectively enrolled from three hospitals (Chuncheon
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Sacred Heart Hospital, Dongtan Sacred Heart Hospital, and Hallym University Sacred
Heart Hospital), and histologically confirmed colonoscopic images were collected from the
in-hospital database in JPEG format with a minimum resolution of 640 × 480 pixels [15].
Comprehensive performance validation was then conducted using 3818 novel images from
consecutive patients undergoing colonoscopy between 2017 and 2021 at four university
hospitals (Chuncheon Sacred Heart Hospital, Kangdong Sacred Heart Hospital, Inje Uni-
versity Ilsan Paik Hospital, and Gangneung Asan Hospital). All images used for validation
(included in the external-test datasets) were different from those used for training (Table 1,
Figure S1).

Table 1. Distribution of histological classes within datasets used for the establishment and testing of
no-code tool-based deep-learning models.

Whole
Dataset

Training
Dataset for
No-Code

Tools 1 and 3

Internal-Test
Dataset for
No-Code

Tools 1 and 3

Training
Dataset for
No-Code

Tool 2

Internal-
Test Dataset
for No-Code

Tool 2

External-
Test

Dataset 1

External-
Test

Dataset 2

External-
Test

Dataset 3

External-
Test

Dataset 4

Overall 3828 3444 384 3638 190 575 752 603 1888
Advanced colorectal

cancer 810 729 81 760 50 184 53 65 328

Early colorectal
cancer/high-grade

dysplasia
806 725 81 768 38 79 212 178 776

Tubular adenoma with
or without low-grade

dysplasia
1316 1184 132 1254 62 144 254 232 512

Non-neoplasm 896 806 90 856 40 168 233 128 272

No-code deep-learning tool 1: Neuro-T; tool 2: Create-ML image classifier; tool 3: Vision Learning for Advanced
Detection OX. External-test dataset 1 was collected from Chuncheon Sacred Heart Hospital, dataset 2 was from
Kangdong Sacred Heart Hospital, dataset 3 was from Inje University Ilsan Paik Hospital, and dataset 4 was from
Gangneung Asan Hospital.

2.2. Image Labelling

All images were labelled according to pathological evaluation following endoscopic
or surgical removal. In the first labelling step, lesions were classified according to histology
into one of the four following categories [15]: (1) adenocarcinoma, (2) TA with HGD
(carcinoma in situ or intramucosal cancer), (3) TA with or without low-grade dysplasia,
and (4) hyperplastic polyp, inflammatory polyp, lymphoid polyp, leiomyoma, lipoma,
or non-neoplastic lesion. The clinical stage, including the invasion depth of the lesion,
determined the therapeutic strategy, such as surgery or endoscopic removal, so lesions
were then classified into four alternative classes: (1) ACC (stages T2, T3, and T4 cancers),
(2) ECC/HGD (stage T1 cancers and high-grade dysplasias), (3) TA, and (4) non-neoplasm.
No image was included in more than one histological class (i.e., all were mutually exclusive).
Representative lesions are illustrated in Figure 1.

2.3. No-Code Deep-Learning Tools for the Model Establishment

Three no-code deep-learning building tools were used in this study: Neuro-T version
2.1.3 (Neurocle Inc., Seoul, Republic of Korea), Create ML Image Classifier (Apple Inc.,
Cupertino, CA, US), and Vision Learning for Advanced Detection (VLAD) OX training
tool (Linkgenesis Co., Ltd., Anyang, Korea). These tools were chosen based on their
user-friendly GUIs.

Neuro-T (no-code tool 1) can establish deep-learning models for image recognition
and classification using a software algorithm that analyses the features of the dataset and
self-discovers optimal hyperparameters, thus making it easy for nonexperts to build the
best models [13]. Create ML Image Classifier (no-code tool 2) also uses deep-learning
models without coding but is specialised for the Mac operating system. The settings
and functions can be accessed by GUI or Swift language code, and deep-learning models
can be established using image datasets through self-learning of specific features [13].
Finally, VLAD OX (no-code tool 3) can build deep-learning models with automatic neural
architecture searching and feature extraction.
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Figure 1. Representative lesions in each histological category used for deep-learning model construction.

2.4. Data Preprocessing and Training Options

Each no-code deep-learning tool has unique preprocessing functions and training
options, but all were designed to be user-friendly. No-code tool 1 provides an image
resizing transformation function for input images. Users can select multiple modes for
the resizing transformation of input data, such as ‘nearest’, ‘linear’, ‘cubic’, or ‘area’. In
this study, all images were resized to a resolution of 512 × 480 pixels before training.
No-code tool 1 also offers options for selecting the level of training time based on the
available graphic processing units (with four categories: fast and levels 1, 2, and 3) and
a range of inference speeds based on batch size (3 categories: levels 1, 2, and 3). No-
code tool 2 offers data augmentation functions such as ‘add noise’, ‘blur’, ‘crop’, ‘expose’,
‘flip’, and ‘rotate’. The number of iterations in training can also be selected for no-code
tool 2. To find the best performance model, the authors conducted multiple experiments
with this tool using different settings (with or without data augmentation, using single
or combination data augmentation, and with a variable number of iterations). Users of
no-code tool 3 can select the type of backbone convolutional neural network structure
for transfer learning, such as Inception, Resnet, and Mobilenet. Multiple experiments
were conducted to identify the best-performing deep-learning models based on various
convolutional neural network structures.
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2.5. Training of Deep-Learning Models

The same 3828 endoscopic images used to establish the previous deep-learning
models13 were used as input for the new no-code platform-based deep-learning mod-
els. All three no-code tools were used as on-premise software. The input images were
manually uploaded to each tool by simple clicking of an icon or by drag and drop. Im-
ages were then randomly divided into training and internal-test sets at a ratio of 9:1 by
Neuro-T and VLAD OX software. Therefore, 384 images were allocated to the internal-test
dataset. Alternatively, Create ML Image Classifier automatically split input images at a
9.5: 0.5 ratio, thereby allocating 190 images to the internal-test dataset. After the selection of
data preprocessing options, including ‘image resize transformation’ in Neuro-T and ‘image
augmentation’ in Create ML, each tool was trained with specific setting configurations for
self-learning. Multiple experiments were then conducted using various training options to
determine the model with the best performance.

The hardware system used for training Neuro-T- and VLAD OX-based models in-
cluded four RTX 2080 Ti GPUs, dual Xeon CPUs, and 256 GB RAM, while Create ML-based
models were established using a Mac Pro workstation (2019 version, Radeon Pro Vega II
GPU, Xeon W CPU, and 192 GB RAM).

2.6. Primary Outcome and Statistics

The primary outcome measures were internal- and external-test accuracies. Additional
performance metrics were as follows: precision or positive predictive value (defined as [true
positive/true positive + false positive]), recall or sensitivity (defined as [true positive/true
positive + false negative]), and F1 score (2 × precision × recall/precision + recall). Diag-
nostic performance metrics were compared among no-code models and a previous model13

using Fisher’s exact test. A p < 0.05 (two-tailed) was defined as statistically significant for
all tests. The secondary outcome was the training time required to establish a deep-learning
model using each no-code tool. This study was approved by the Institutional Review Board
of Chuncheon Sacred Heart Hospital (2018-05). The requirement for written informed
patient consent was waived due to the retrospective study design and anonymisation
of images.

3. Results
3.1. Clinical Class Distributions of Datasets

The detailed characteristics of the training dataset are provided in a previous pub-
lication describing the traditional deep-learning model used to evaluate the relative per-
formance of the novel no-code deep-learning models developed in the current study [15].
In brief, the greatest proportion of images (34.4%, 1316/3828) were of TA, whereas the re-
maining images were roughly equally distributed among the other three clinical categories
(810 ACCs, 806 ECC/HGDs, and 896 non-neoplasms). The external test was conducted
using four separate datasets. In external-test datasets 2 and 3, the greatest proportion of im-
ages were also of TA (33.8%, 254/752 and 38.5%, 232/603, respectively), while external-test
dataset 1 included a greater proportion of ACC images (32%, 184/575) than other categories,
and dataset 4 included a greater proportion of ECC/HGD images (41.1%, 776/1888) than
other categories. The category distributions of these external-test datasets are shown in
Table 1.

3.2. Diagnostic Performance of the No-Code Tool-Based Deep-Learning Models

The deep-learning model established using no-code tool 1 showed the highest accuracy
for the categorisation of internal-test dataset images at 75.3% [95% confidence interval:
71.0–79.6%], significantly better than the best performance of the previous model [67.3%
(62.7–71.8%)] (p = 0.02). Internal-test accuracies of the deep-learning models established by
no-code tools 2 and 3 were 66.8% (60.1–73.5%) and 64.6% (59.8–69.4%), respectively, not
significantly different from the best performance of the previous model (p > 0.99 and 0.49,
respectively) (Table 2).
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Table 2. Summary of internal-test performance metrics.

Accuracy (%) Precision (%) Recall (%) F1 Score (%) AUC (%)

Model established by no-code
deep-learning establishment tool 1

Internal test (n = 384) 75.3 (71.0–79.6) 77.9 (73.8–82.0) 78.1 (74.0–82.2) 78.0 (73.9–82.1)

Per class performance for advanced
colorectal cancers 97.3 (93.6–99.9) 88.9 (82.1–95.7) 92.6 (90.7–94.5)

Per class performance for
early colorectal

cancers/high-grade dysplasias
75.6 (66.5–84.7) 80.2 (71.5–88.9) 83.6 (80.9–86.3)

Per class performance for
tubular adenomas 78.5 (70.1–86.9) 55.3 (46.8–63.8) 74.0 (71.5–76.5)

Per class performance for
non-neoplasms 56.8 (48.3–65.3) 87.8 (81.0–94.6) 77.2 (74.3–80.1)

Model established by no-code
deep-learning establishment tool 2

Internal test (n = 190) 66.8 (60.1–73.5) 70.0 (63.5–76.5) 63.5 (56.7–70.3) 66.6 (59.9–73.3)

Per class performance for advanced
colorectal cancers 87.0 (77.7–96.3) 80.0 (68.9–91.1)

Per class performance for
early colorectal

cancers/high-grade dysplasias
73.1 (59.0–87.2) 50.0 (34.1–65.9)

Per class performance for
tubular adenomas 55.9 (43.5–68.3) 83.9 (74.7–93.1)

Per class performance for
non-neoplasms 64.0 (52.1–75.9) 40.0 (27.8–52.2)

Model established by no-code
deep-learning establishment tool 3

Internal test (n = 384) 64.6 (59.8–69.4) 68.2 (63.5–72.9) 63.0 (58.2–67.8) 65.5 (60.7–70.3)

Per class performance for advanced
colorectal cancers 88.9 (82.1–95.7) 88.9 (82.1–95.7)

Per class performance for
early colorectal

cancers/high-grade dysplasias
69.6 (58.7–80.5) 59.3 (48.6–70.0)

Per class performance for
tubular adenomas 53.7 (46.8–60.6) 81.8 (75.2–88.4)

Per class performance for
non-neoplasms 60.6 (43.9–77.3) 22.2 (13.6–30.8)

No-code deep-learning establishment tool 1: Neuro-T; tool 2: Create-ML image classifier; tool 3: Vision Learning
for Advanced Detection OX. Values with 95% confidence intervals are described.

In multicentre external tests, the deep-learning model established using no-code
tool 1 achieved 80.2% (76.9–83.5%) accuracy, 78.5% (75.1–81.9%) average precision, 78.8%
(75.5–2.1%) average recall, and 78.6% (75.3–81.9%) F1 score for dataset 1, which was the
best performance among these newly established models. The confusion matrix for the
no-code tool-1-based deep-learning model with the best performance is illustrated in
Figure 2. Application of the model established by no-code tool 1 for external-test datasets
2–4 yielded similar accuracies, ranging from 73.0% to 76.2% (p = 0.24). The F1 score is the
harmonic mean of the precision and recall and is a more robust metric than accuracy for
an imbalanced class distribution dataset. The F1 scores of the model established using
no-code tool 1 for external-test datasets 1–4 ranged from 75.3% to 78.6% without significant
differences among values (p = 0.56), indicating robust performance (Table 3).
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Table 3. Summary of external-test performance metrics.

Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Model established by no-code
deep-learning establishment tool 1

External test 1 (n = 575) 80.2 (76.9–83.5) 78.5 (75.1–81.9) 78.8 (75.5–82.1) 78.6 (75.3–81.9)

External test 2 (n = 752) 73.0 (69.8–76.2) 76.4 (73.4–79.4) 74.2 (71.1–77.3) 75.3 (72.2–78.4)

External test 3 (n = 603) 75.1 (71.6–78.6) 75.3 (71.9–78.7) 78.8 (75.5–82.1) 77.0 (73.6–80.4)

External test 4 (n = 1888) 76.2 (74.3–78.1) 74.5 (72.5–76.5) 78.9 (77.1–80.7) 76.7 (74.8–78.6)

Model established by no-code
deep-learning establishment tool 2

External test 1 (n = 575) 72.7 (70.8–74.6) 76.5 (73.0–80.0) 66.0 (62.1–69.9) 70.9 (67.2–74.6)

External test 2 (n = 752) 63.8 (60.4–67.2) 66.4 (63.0–69.8) 69.8 (66.5–73.1) 68.0 (64.7–71.3)

External test 3 (n = 603) 57.0 (53.0–61.0) 59.0 (55.1–62.9) 62.0 (58.1–65.9) 60.5 (56.6–64.4)

External test 4 (n = 1888) 49.9 (47.6–52.2) 57.8 (43.5–68.3) 57.0 (55.6–60.0) 57.4 (55.2–59.6)

Model established by no-code
deep-learning establishment tool 3

External test 1 (n = 575) 73.6 (70.0–77.2) 74.1 (70.5–77.7) 72.4 (68.7–76.1) 73.2 (69.6–76.8)

External test 2 (n = 752) 68.2 (64.9–71.5) 71.3 (68.1–74.5) 71.3 (68.1–74.5) 71.3 (68.1–74.5)

External test 3 (n = 603) 68.2 (64.5–71.9) 69.1 (65.4–72.8) 69.6 (65.9–73.3) 69.3 (65.6–73.0)

External test 4 (n = 1888) 65.3 (63.2–67.4) 64.7 (62.5–66.9) 81.8 (75.2–88.4) 68.3 (66.2–70.4)

No-code deep-learning establishment tool 1: Neuro-T; tool 2: Create-ML image classifier; tool 3: Vision Learning
for Advanced Detection OX. External-test dataset 1: from Chuncheon Sacred Heart hospital; 2: from Kangdong
Sacred Heart hospital; 3: from Inje University Ilsan Paik Hospital; 4: from Gangneung Asan Hospital. Values with
95% confidence intervals are described.
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3.3. Training Times

The aim of this study was to establish deep-learning models using more efficient tools,
so the training time was also compared among models to evaluate performance. The total
training time for the model established using no-code tool 1 was 26 h and 43 min (level of
training time against graphics processing units: 3; range of inference speed against batch
size: 3), by far the longest among the four model types. In contrast, the model established
using no-code tool 2 with no data augmentation provided the best performance after
10 iterations, and the total training time was only about 3 min, by far the fastest among
models, while the training time for the best model established using no-code tool 3 was
about 90 min.

3.4. Attention Map Analysis of Feature Selection for Learning

No-code tool 1 provides a class activation mapping function to identify the discrimina-
tive regions and features used by the deep-learning model for class determination. Figure 3
shows representative images from external-test datasets with correct classification using
no-code tool-1-based models. For accurate discrimination, endoscopists must pay close
attention to the surface morphology of the detected lesions, such as surface mucosal irreg-
ularity, mucosal colour changes, and depressed or protruded regions [16]. The attention
map in Figure 3 reveals that the discrimination regions (features) used by the no-code tool-
1-based deep-learning models were similar to those used by endoscopists during visual
inspection, including surface mucosal irregularity and colour changes in ACC, depressed
region in ECC, and protruded regions in TA or non-neoplasm.
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ing no-code tool 1. Left: gradient-weighted class activation mapping image. Right: white-light
endoscopic image.

However, there were images in the external-test datasets that were not correctly
classified by the deep-learning model established using no-code tool 1 (Figure 4). Possible
reasons for misclassification were evaluated using external-test dataset 2 (Table 4). Among
the 203 lesions incorrectly classified by the no-code deep-learning models, a large minority
(46.3%, 94/203) were also judged by the authors as difficult to classify by visual inspection.
For instance, model performance was poorest for distinguishing ECC/HGD from TA,
followed by TA from non-neoplasm and ACC from ECC/HGD. Normal mucosal folds and
blood vessels were also misidentified as lesions in 13.3% of incorrectly classified images.
In one misclassified image, only a part of the lesion was visible, while three misclassified
images captured multiple lesions. Additionally, there were two misclassified images for
which residual food or a bubble was recognised as a lesion.
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Table 4. Potential reasons for incorrect classification of external-test dataset 2 images by the estab-
lished no-code tool-based deep-learning models.

Unknown
(Difficult Cases

Even for
Endoscopists)

Multiple
Attention or

Partial Attention
Even Though the

Image Was
Appropriate

Normal Mucosal
Folds or Blood

Vessels
Recognised as

Lesions

Inappropriate
Images (Only a

Part of the Lesion
Can Be Observed)

Inappropriate
Images (Multiple

Lesions Were
Observed in One

Image)

Inappropriate
Images (Residual
Food or a Bubble
Was Recognised

as a Lesion)

Advanced colorectal
cancers

Incorrectly diagnosed as
early colorectal

cancers/high-grade
dysplasias (n = 10)

4 5 1

Incorrectly diagnosed as
non-neoplasm (n = 1) 1

Early colorectal
cancers/high-

grade dysplasias

Incorrectly diagnosed as
tubular adenoma (n = 56) 47 9

Incorrectly diagnosed as
non-neoplasm (n = 15) 1 14

Incorrectly diagnosed as
advanced colorectal

cancers (n = 7)
3 4

Tubular adenomas

Incorrectly diagnosed as
non-neoplasm (n = 70) 27 35 6 2
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Table 4. Cont.

Unknown
(Difficult Cases

Even for
Endoscopists)

Multiple
Attention or

Partial Attention
Even Though the

Image Was
Appropriate

Normal Mucosal
Folds or Blood

Vessels
Recognised as

Lesions

Inappropriate
Images (Only a

Part of the Lesion
Can Be Observed)

Inappropriate
Images (Multiple

Lesions Were
Observed in One

Image)

Inappropriate
Images (Residual
Food or a Bubble
Was Recognised

as a Lesion)

Incorrectly diagnosed as
early colorectal

cancers/high-grade
dysplasias (n = 20)

12 5 1 1 1

Non-neoplasms

Incorrectly diagnosed as
tubular adenoma (n = 24) 3 20 1

Total 94 (46.3%) 76 (37.4%) 27 (13.3%) 1 (0.5%) 3 (1.5%) 2 (1%)

External-test dataset 2: from Kangdong Sacred Heart Hospital.

4. Discussion

This study established several deep-learning models using no-code tools able to
classify white-light colonoscopic images into four histological classes without the need for
computer language coding by clinicians. All three no-code on-premise software packages
used are GUI-based and controllable by the simple clicking of icons, thereby facilitating
efficient training by non-specialists. In fact, one model could be trained in about 3 min with
only moderately lower classification accuracy than another model requiring more than 26 h.
Further, all no-code models demonstrated classification accuracies equivalent to or higher
than models established by traditional methods, with the best no-code model significantly
outperforming the best-performing traditional model (Tables 2 and 3). Considering that it
takes weeks to months to find the optimal hyperparameters using traditional methods, these
no-code tools also substantially increase modelling efficiency while providing comparable
performance. Furthermore, the no-code deep-learning tools showed robust and consistent
performance values, including accuracy or F1 scores, on multiple external-test datasets
with highly variable lesion class distributions. To the best of our knowledge, this is the first
study to establish and validate deep-learning classification models for colonoscopy images
using no-code tools.

Clinicians and other healthcare professionals have made substantial contributions to
the development of deep-learning applications by providing accurately labelled images
for training and validation [17]. However, medical practitioners often lack the technical
expertise and time to establish deep-learning models [13], necessitating collaborations with
deep-learning experts. While these collaborations have yielded successful applications, they
do not always address the unmet needs of clinical practice [13]. In contrast, deep-learning
models with no-code tools (called automated deep learning or automated machine learning)
can remove this technical barrier and allow clinicians to create deep-learning models for
specific challenges arising in clinical practice [18]. Moreover, these no-code models require
considerably less time to establish compared to traditionally built models. In this study, a
model for predicting histopathological lesion class was trained using no-code tool 2 in only
about 3 min with an accuracy comparable to a previously established model based on the
Pytorch platform.

Another important aspect of this study is the use of gradient-weighted class activation
mapping (Grad-CAM) to identify the imaging features (regions) used by the deep-learning
models for classification. Grad-CAM uses the gradient information in the last convolutional
layer of the convolutional neural network to reveal the importance of each neuron for the
determination of interest [19]. Through this Grad-CAM analysis, we found that these no-
code deep-learning models used the same regions and features considered by endoscopists
during visual image inspection, including surface mucosal irregularity, colour changes,
and depressed or protruded regions in the detected lesions (Figure 3).

Nonetheless, there were still a substantial number of images that were difficult to
classify even by expert endoscopists, and these images were also incorrectly classified by
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the deep-learning models. Additionally, normal mucosal folds, blood vessels, residual
food, and bubbles were occasionally recognised as lesions by the deep-learning models
(Figure 4). Other images were misclassified when only a part of the lesion was visible or
when multiple lesions were visible. These findings underscore the importance of dataset
preparation for training. Endoscopists usually acquire an image of the fully expanded
lumen without residual food or remnant stool while withdrawing the endoscope. However,
real-time endoscopic inspection is not always perfect, and a partially inflated lumen or
unclean mucosa may be captured on occasion. If these cases are not appropriately labelled
in the training dataset, classification by deep-learning models will be erroneous. Thus,
data preparation is still a critical responsibility of clinicians supplying input datasets for
deep-learning models, even those constructed using no-code tools.

Although the current study established deep-learning models with rigorous valida-
tion of performance and efficiency using multiple external-test datasets, there are several
inevitable limitations. First, the number of training images was limited to those used to
establish the traditional model [15]. In further studies, larger image datasets can be used
to improve feature selection during training. Second, although the deep-learning model
established by no-code tool 1 showed consistently good performance on both internal-test
and external-test datasets, the training time was prolonged, while those established using
no-code tools 2 or 3 were more efficient but demonstrated lower classification accuracy.
There are always efficiency–effectiveness trade-offs, and the ultimate choice of no-code
tool should be based on the intended application. Thus, no-code tool 1 could be useful for
creating models with high accuracy, while no-code tool 2 or 3 may be more suitable for
tasks that require fast model creation and quick application.

In conclusion, no-code deep-learning tools are useful for the prediction of colorectal
polyp histology due to their rapid building time and high accuracy.
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