Published online 14 November 2019

NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 1 1
doi: 10.1093/nargabllqz015

ELECTOR: evaluator for long reads correction

methods

Camille Marchet'%", Pierre Morisse? 1, Lolita Lecompte', Arnaud Lefebvre?,
Thierry Lecrog?, Pierre Peterlongo ! and Antoine Limasset*

"Univ Rennes, CNRS, Inria, IRISA—UMR 6074, F-35000 Rennes, France, 2Normandie Université, UNIROUEN,
INSA Rouen, LITIS, 76000 Rouen, France, *Normandie Univ, UNIROUEN, LITIS, 76000 Rouen, France and “Univ.
Lille, CNRS, UMR 9189 - CRIStAL, 59655 Villeneuve-d’Ascq, France

Received August 05, 2019; Revised September 24, 2019; Editorial Decision October 13, 2019; Accepted October 16, 2019

ABSTRACT

The error rates of third-generation sequencing data
have been capped >5%, mainly containing insertions
and deletions. Thereby, an increasing humber of di-
verse long reads correction methods have been pro-
posed. The quality of the correction has huge im-
pacts on downstream processes. Therefore, devel-
oping methods allowing to evaluate error correction
tools with precise and reliable statistics is a cru-
cial need. These evaluation methods rely on costly
alignments to evaluate the quality of the corrected
reads. Thus, key features must allow the fast com-
parison of different tools, and scale to the increasing
length of the long reads. Our tool, ELECTOR, evalu-
ates long reads correction and is directly compatible
with a wide range of error correction tools. As it is
based on multiple sequence alignment, we introduce
a new algorithmic strategy for alignment segmenta-
tion, which enables us to scale to large instances
using reasonable resources. To our knowledge, we
provide the unique method that allows producing re-
producible correction benchmarks on the latest ultra-
long reads (>100 k bases). It is also faster than the
current state-of-the-art on other datasets and pro-
vides a wider set of metrics to assess the read quality
improvement after correction. ELECTOR is available
on GitHub (https://github.com/kamimrcht/ELECTOR)
and Bioconda.

INTRODUCTION
Motivations

Pacific Biosciences (PB) and Oxford Nanopore Technolo-
gies (ONT) long reads, despite their high error rates and
complex error profiles, were rapidly adopted for various ap-

plications. An increasing number of projects, especially for
assembly (1), long-distance haplotyping or structural vari-
ant calling (2), indeed benefit from the long-range informa-
tion these reads provide. These reads display high error rates
(from 5% to 12%, according to technologies and libraries, to
as much as 30% for the oldest datasets), that largely surpass
those of Illumina reads. Given these high error rates, the
first step of many applications is error correction. However,
this stage can be a time bottleneck (2).

Moreover, contrary to Illumina, where the majority of er-
rors are substitutions, long reads mainly contain insertions
and deletions (indels) (ONT reads are more deletion-prone,
whereas PB reads contain more insertions). This combina-
tion of issues requires novel and specific algorithmic devel-
opments. To this extent, dozens of error correction meth-
ods directly targeting these long reads emerged in the last
5 years. The first range of error correction tools, called ‘hy-
brid correctors’, uses both short and long reads to perform
error correction, relying on the deep coverage and low er-
ror rate of the short reads to enhance long reads sequences.
The second group of methods, called ‘self-correctors’, in-
tends to correct long reads with the sole information con-
tained in their sequences (see (3) for a review of correctors).
Both paradigms include quite diverse algorithmic solutions,
which make it difficult to globally compare the correction
results (in terms of corrected bases, quality and perfor-
mances) without a proper benchmark. Besides, the quality
of the error correction has considerable impacts on down-
stream processes. Hence, it is interesting to know before-
hand which corrector is best suited for a particular dataset
(according to its coverage, its error rate, the sequenced
genome or the sequencing technology, for instance). Devel-
oping methods allowing to evaluate error correction tools
with precise and reliable statistics is, therefore, a crucial
need.

Methods for evaluating correctors should allow tracking
the novelties of the methods. Indeed, since long read tech-
nologies still evolve, current correctors implementations are

*To whom correspondence should be addressed. Tel: +33 3 28 77 85 41; Email: marchetcamille@gmail.com
tThe authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

© The Author(s) 2019. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

http://orcid.org/0000-0003-0776-6407
https://github.com/kamimrcht/ELECTOR

2 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 1

prone to many changes. Methods for evaluating correctors
must be usable on datasets of various complexity (from bac-
teria to eukaryotes) to reproduce a wide variety of possi-
ble scenarios. They should also be fast and lightweight, and
should not be orders of magnitude more resource and time
consuming than the actual correction methods they evalu-
ate. This aspect is particularly critical, since correction eval-
uators also stand in the perspective of new correction meth-
ods developments, as they can help to provide accurate and
quick comparisons to the state-of-the-art. For developers
as well as users, correction evaluators should describe with
precision the correction method’s behavior (i.e. the number
of corrected bases, introduced errors or read breakups) to
identify its potential pitfalls.

Previous works

Works introducing novel correction methods usually evalu-
ate the quality of their tools based on how well the corrected
long reads realign to the reference. Despite being useful, this
information remains incomplete. In particular, it is likely
not to mention poor quality reads, or regions to which it
is difficult to align.

In (6), La et al. introduced a new way to obtain metrics
describing the quality of the error correction that does not
solely present the similarities between the aligned corrected
reads and the reference genome. Relying on simulated data,
they proposed the idea of a three-way alignment between
the reference genome, the uncorrected reads and the cor-
rected reads. They presented results on PB data for hybrid
error correction tools, by introducing LRCstats, an evalua-
tion tool aiming at answering to the problematics above.

With its three-way alignment scheme, LRCstats provides
reads’ error rate before and after correction, as well as the
detailed count of every type of error. However, only study-
ing the reads’ error rate after correction is not a satisfying in-
dication of the corrector’s behavior. For instance, there is no
clue about the putative insertions of new errors by the cor-
rector. To perform such analysis of the method’s pros and
cons, we need additional metrics such as precision (relevant
corrected bases among all bases modified by the corrector)
and recall (correct bases that have been retrieved by the cor-
rector among all bases to be corrected). Such metrics have
already been proposed in earlier works dedicated to short
reads, such as the error correction evaluation toolkit intro-
duced in (7). However, this contribution is out of the scope
of this work. Indeed, algorithms to process short reads are
different from those at stake in our case, due to the length,
the high error rates and the complex error profiles of the
long reads.

Moreover, LRCstats relies on a multiple alignment
scheme that suffers from high resource needs when process-
ing large numbers of reads, i.e. when coverage or genome
sizes are large. For the same reason, LRCstats alignment
scheme becomes limited when sequences to process grow.
However, the sequencing depth and the length of the long
reads keep on increasing, especially with so-called ONT
ultra-long reads (up to 1 M bases) starting to appear in
recent works for larger genomes (8). Moreover, deep cov-
erages are expected to help the correction of very long se-
quences (2). Thus, novel methods must be proposed in order

to evaluate the correction of such datasets in a reasonable
amount of time.

Contribution

To cope with the identified limits of LRCstats, we propose
ELECTOR, a new evaluation tool for long read error cor-
rection methods. ELECTOR can evaluate the correction of
simulated as well as real long read datasets, provided a ref-
erence genome that is available for the sequenced species. It
takes as input a reference genome in FASTA format, a set
of corrected reads in FASTA format, and the correspond-
ing uncorrected reads, either via a FASTA format file in the
case of real data or via the suite of files provided by the sim-
ulator in case of simulated data. In its output, ELECTOR
provides a broader range of metrics than LRCstats, which
evaluates the actual quality of the correction. In particular,
it measures recall, precision and error rate for each read.
ELECTOR also informs about typical difficulties long read
correctors can encounter, such as homopolymers, and reads
that have been trimmed, split or extended during the correc-
tion. Finally, it also provides reads remapping and assembly
metrics.

In order for ELECTOR to provide these additional
metrics, we propose a novel multiple sequence alignment
(MSA) strategy. This new algorithmic approach is designed
to allow the MSA computation to scale to ultra-long reads
and to large datasets of several billions of base-pairs. It com-
pares in a fast way three different versions of each read: the
‘corrected’ version, the “‘uncorrected’ version and the ‘refer-
ence’ version, which is a substring of the reference genome.
For each read, we perform a MSA of its triplet. A key idea
of this strategy is a divide-and-conquer approach that di-
vides the reads into smaller sequences with an anchoring
process, and thus allows to compute several smaller MSAs.
These multiple, smaller MSAs, are then combined to ob-
tain the final MSA, of the whole length of the sequences.
The anchoring process is designed to work with erroneous
sequences and takes into account gapped alignment due to
truncated corrected reads. We believe that the interests of
this novelty are not limited to the ELECTOR framework.
Indeed, it may be a useful strategy for any domain requiring
MSAs of long and highly erroneous sequences.

For simulated reads, ELECTOR is compatible with state-
of-the-art long reads simulation tools, such as NanoSim
(9) or SimLoRD (10), on which introduced errors are pre-
cisely known. Moreover, it is meant to be a user-friendly
tool, which delivers its results through different output for-
mats, such as graphics that can be directly integrated into
the users’ projects. This tool was designed to be directly
compatible with a wide range of state-of-the-art error cor-
rection tools without requiring any pre-processing by the
user. In particular, ELECTOR is compatible with the latest
self-correction methods, and we thus present novel results
on such tools, which were not tackled by LRCstats.

MATERIALS AND METHODS

Input sequences

ELECTOR is compatible with long reads simulators Sim-
LoRD and NanoSim, and real read sequences (see Figure

1 for an overview of ELECTOR). When using long reads
simulated with one of these tools, the reference sequences
are directly retrieved by ELECTOR, by parsing the files
generated during the simulation. When using these state-
of-the-art long reads simulation tools, we ensure to take as
input sequences that closely simulate the actual character-
istics of the long reads. However, it is possible to use other
long reads simulation tools. In this case, the user must pro-
vide the ‘reference’ sequences itself. The genome used for
the simulation, the files generated by the simulator and the
corrected reads, output by the desired correction method,
are then provided as an input. ELECTOR then compares
three different versions of each read: the ‘uncorrected’ ver-
sion, as provided by the sequencing experiment or by the
read simulator, the ‘corrected’ version, as provided by the
error correction method and the ‘reference’ version, which
is a portion of the reference genome, representing a perfect
version of the original read, without any error. For real data,
the ‘reference’ sequences are retrieved by aligning the “un-
corrected’ reads to the reference genome, using Minimap2
(4). Only the best hit for each read is kept and used to deter-
mine the corresponding ‘reference’ sequence. In the case a
read cannot align to the reference genome, and thus cannot
produce a ‘reference’ sequence, the read is excluded from
the analysis.

Scalable triplet multiple alignment

With real or simulated reads, the core of the algorithmic
novelty is to propose the comparison of the three differ-
ent versions of each read (reference, uncorrected and cor-
rected) in a triplet multiple alignment. These three versions
of each read undergo a multiple sequence alignment, to col-
lect their differences and similarities at each position of the
alignment.

Principle. 'With the three versions of each read, our triplet
multiple alignment strategy computes an MSA, using a par-
tial order alignment algorithm. The MSA is initialized with
the ‘reference’ sequence, and the ‘corrected’ and ‘uncor-
rected’ sequences are then sequentially added. This step
yields a multiple alignment matrix that is output in pseudo
FASTA (PIR) format for each triplet. The triplet multi-
ple alignments are computed using an implementation of
partial order alignment graphs (11). Partial order align-
ment graphs are used as structures containing the infor-
mation of the multiple aligned sequences. To this extent, a
directed acyclic graph (DAG) contains the previous multi-
ple sequence alignment result. The vertices store consecu-
tive nucleotides from the sequences. Each new sequence is
aligned to this DAG in a generalization of the Needleman-—
Waunsch algorithm. Paths in the DAG represent the succes-
sive alignments.

However, such a procedure can be time-consuming when
applied to noisy long reads (see Table 2). Thus, we pro-
pose a novel multiple sequence alignment heuristic. We re-
call the values of all the parameters mentioned in the fol-
lowing paragraphs in Supplementary Table S1.

Segmentation strategy for the MSA. To reduce the com-
putation time of our approach, we propose a segmentation

NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 1 3

strategy, as sketched in Figure 2. It consists of dividing the
global multiple alignment into several smaller instances.
Drawing inspiration from MUMmer’s (12) and Minimap’s
(5) longest increasing subsequence approaches, we select a
sequence of seeds S, ... Sy that can be found (in the given
order) within the three sequences. From this sequence of
seeds, we extract the N + 1 substrings (W, Wy, ..., Wy) de-
limited by the seeds in the three versions of the read. We thus
extract str[0: position_Si], str[position_Sy + length_S; :
position_$%], ..., str[position_S; + length_S; :
position_S;1], ..., str[position_Sy : str_size], with
str being the sequence of the ‘reference’, ‘corrected’ or ‘un-
corrected’ version, and call these substrings ‘windows’. We,
therefore, compute independent MSAs for each window
triplet (W reference, W;_corrected, W;_uncorrected),
and then reconstitute the global multiple alignment by
concatenation. We now describe the procedure more in
detail. For each triplet, we compute the k-mers that will
be used as seeds (called ‘seed’ k-mers) so that they comply
with the following properties:

(1) They appear in each of the three versions of the se-
quence.
(i) They are not repeated across any of the versions of the
sequence.
(iii) They are not overlapping in any of the versions of the
sequence.

Using dynamic programming, the longest increasing sub-
sequence of seed k-mers, Si, ...Sy is computed. Pairs of
successive seed k-mers, S;, S; + | delineate windows. The size
of these seed k-mers is adapted according to the current ob-
served error rates (5,13), and ranges between 9 and 15 nu-
cleotides. As it is difficult to a priori select a k-mer size, we
designed a quick iterative strategy that tries several values
of k to choose the most suitable for a given triplet. Starting
from k = kpax (set to 15 by default), we keep on decreasing
k until the size of the largest window no longer decreases.
Whenever the largest window’s size no longer decreases, or
kmin (set to 9 by default) is reached, the process stops. Min-
imizing the size of the largest window as such allows us to
ensure that we compute MSAs on the smallest possible win-
dows, in order to reduce the computational costs as much
as possible.

Once windows are computed, we pro-
duce MSAs of each window triplet
(W reference, Wi_corrected, Wi _uncorrected) inde-

pendently, as described in the previous paragraph, using
subsequently smaller alignment graphs. Finally, the mul-
tiple small MSAs are concatenated, along with the seed
k-mers, to obtain a single MSA of the whole length of the
read triplet.

If we were able to bound the size of the windows, we could
guarantee an asymptotic time linear to the read length for
the alignment computation. In practice, our implementa-
tion can produce large windows, but we observe a running
time almost linear in the length of the reads, as shown in
our experimental results.

To avoid computing metrics on poorly corrected reads,
we filter out corrected reads whose length is below a given
parameter (see Supplementary Table S1 for its default

4 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 1

input
reference eNOMe m—— triplet
reads multiple
— alignment

corrected read’)

additionnal metrics: remapping & assembly

output
—p SUMMary
homopolymers... ——— -pdf
—p -PNE

general metrics:

=—p recall, precision,

Figure 1. Overview of ELECTOR. Inputs are the sequences at different stages: without errors (from the reference genome), with errors (simulated or real
uncorrected reads) and corrected (after running a correction method). We compute a multiple sequence alignment of the three versions of each sequence
and analyze the results to provide correction quality measures. In order to provide additional information, reads are assembled using Minimap2 and
Miniasm and both the reads and the contigs are aligned to the reference genome. A text summary, plots and a pdf summary are output.

reference R {ACTGTTTG JCH

uncorrected U ?CTTGTTG m-
corrected C ECCTGTTTG\“
segmentation | i ;

{ACT-GTTTG)
smaller MSAs -CTTGTT-G
CCT-GTTTG

reconstruction J l
ACT - GTTTG[e]V:Nxele

-CTTGTT - G[e:YNKed
CCT-GTTTG[Y:NNefd

full MSA

Figure 2. Segmentation strategy to compute a multiple sequence alignment for a triplet of ‘reference’, “‘uncorrected” and ‘corrected’ versions of a read.
Instead of computing an MSA on the whole length of the sequences, we rather divide this problem into smaller instances. As each version is different,
to decide where to start and end the alignments, we look for seed k-mers (in black) that are exact local matches between the three sequences. We then
compute individual, separate MSAs, for subsequences bordered by seeds (or located at the extremities of the sequences). These multiple MSAs are finally
concatenated, along with the seed k-mers, to obtain a single, full MSA, of the whole length of the sequences.

value) and triplets for which no seed k-mers can be found.
These two types of filtered reads are tagged and reported
apartin ELECTOR’s outputs to inform the user about their
numbers.

Handle reads of different sizes in the segmentation strategy.
In the case of a truncated corrected read (trimmed/split),
the ‘corrected’ version is shortened in comparison to the
two other versions. A part of the ‘reference’ and ‘uncor-
rected’ sequences is thus missing in the ‘corrected’ sequence.
A prefix, a suffix or both can be missing depending on
the case. Trimmed and split scenarios are outlined in Fig-
ure 4. As we only use anchors shared among the three se-
quences, in the case of a missing prefix in the corrected ver-
sion, Wy_reference and Wy_uncorrected will, therefore, be
larger than W_corrected (see an example of a missing suf-
fix in Figure 3). Computing an MSA between those three
sequences would thus be irrelevant. Furthermore comput-
ing an MSA on two possibly long sequences (as a large se-
quence may be missing) is pricey. As corrected reads can be
truncated at the beginning, at the end, or both, the symmet-
rical scenario can occur for suffixes.

To cope with this problem, we detect such cases by check-
ing the length of the first windows. If Wyreference and
Wy_uncorrected are large (>1000 nucleotide) and at least
two times larger than Wg_corrected, we use a segmentation
scheme only with k-mers from ‘reference’ and “uncorrected’,
and only align their two prefixes.

This way, we can efficiently compute an MSA when
the corrected reads do not cover the whole genome re-
gion they originally come from, avoiding to run a MSA
on large/unrelated sequences. The procedure is symmetri-
cal for suffixes.

This procedure is essential for correctors that output nu-
merous split reads, which would induce extremely long run-
time due to large sequence MSA computations described
before.

Inference of quality evaluation metrics from MSA

Classification of corrected reads. ELECTOR reports
different categories of ‘corrected’ reads: regular reads,
trimmed /split reads, extended reads, soft-clipped reads, bad
quality reads and short reads. Figure 4 shows how we de-
duce the trimmed, split and extended categories from the
MSA result.

Regular reads are neither trimmed, split, extended nor
soft-clipped.

Trimmed reads are reads that lack a part of their prefix,
suffix or both (first scenario in Figure 4).

Split reads are reads composed of several fragments that
come from a single original read, which could only be cor-
rected on several distinct parts (second scenario in Figure
4). Split reads are aligned as trimmed reads are. However,
in the case of split reads, we gather all fragments that come
from a single initial read, in order to build a single MSA
from the several, distinct MSAs induced by the different
fragments. Supplementary Figure S1 illustrates this process.

We thus report how many reads were trimmed or split
during the correction. Moreover, for each trimmed or split
corrected read, we report the total uncorrected length of its
associated ‘reference’ read (i.e. the length that is not covered
by any fragment).

Extended reads are reads that have a prefix and/or a suf-
fix that was not present in the ‘reference’ sequence (third
scenario in Figure 4). These reads can be chimeras from the
correction step, and can, for instance, come from chimeric

R
u
C

segmentation
smaller MSAs
reconstruction l

full MSA

NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 1 5

Figure 3. Segmentation strategy when the ‘corrected’ read is smaller. As in Figure 2, R,U,C stand for the reference, uncorrected and corrected read triplet.
Here, the ‘corrected’ read is shortened on its right end. To avoid passing subsequences starting from seed 2 to the end of each sequence to the MSA, which
would be costly to compute, we perform a second segmentation strategy. This strategy allows us to retrieve a new set of seeds (gray seeds 3 and 4). This new
set of seeds divides the remaining subsequences (suffixes in this case) in ‘reference’ and “‘uncorrected’ into windows on which we compute MSA separately.
The full MSA is reconstructed by concatenation, and dots are added to complete the ‘corrected’ MSA line.

Trimmed
reference R [ACCTGTA-TC-TG
uncorrected U (A-CTTTAATCCTG
corrected C

ATTGTCTGAT
AT-GICT--T)
ATTGTCAGAT)

Split
reference R
uncorrected U
corrected C_1 (part 1)

ACT-GTTTG ATTGTCTGAT

reference R ACT-GTTTG ATTGTCTGAT,
uncorrected U [CTTeIT6

AT-GTCT--T)
corrected C_2 (part 2) (S ————————

. ATTGTCAGAT)

Extended
reference R

uncorrected U AT-GICT--T)
corrected C (TCTCTGGTATTAGTTAACT-TTTTG .o TTGICAGAT)

ATTGTCTGAT

Soft-clipped
reference R
uncorrected U (TTAACGTGC-TAG-GT
corrected C (TT-AC-TGCCTAGGGT

ATTGTCTGAT

AT-GICT--T)

ATTGTCAGAT)

Figure 4. Three scenarios of corrected read categories in MSA results.
Trimmed reads have a ‘corrected’ version with a missing prefix and/or suf-
fix (gray region). Split reads have been fragmented into several parts dur-
ing the correction, and subsequences can be missing between consecutive
fragments (gray regions). Extended corrected reads have a ‘corrected’ ver-
sion with an additional prefix and/or suffix which is (are) not present in
the two other versions (missing regions in gray). Soft-clipped reads have a
‘reference’ version with a missing prefix and/or suffix (gray region).

connections between unrelated parts of the graph (14) or
the assembly of unrelated short reads (15).

However, they can also be reads that were over-corrected
by a graph-based correction method, which kept on travers-
ing the graph after reaching the ‘uncorrected’ reads’ extrem-
ities. We do not compute quality evaluation metrics on the
extended regions, but we report the number of extended
reads, as well as their mean extension size, with respect to
the ‘reference’ reads.

We define a split/trimmed/extended region as the prefix
or suffix (or both) of the MSA in which no ‘corrected’ nu-
cleotide appears (for split and trimmed), or no ‘uncorrected’
and ‘reference’ nucleotide appear (for extended). These re-
gions are represented in gray in Figure 4.

Soft-clipped reads are reads for which the extremities were
soft clipped during the alignment to the reference genome

(last scenario in Figure 4). This category only arises in real
data mode, as we only retrieve ‘reference’ reads by aligning
the ‘uncorrected’ reads to the reference genome in this case.
For such reads, we do not compute quality evaluation met-
rics on the soft clipped regions, as they could not be appro-
priately aligned to the reference genome, and were therefore
not used to determine the ‘reference’ read.

Bad quality reads are low-quality reads that were re-
moved before the MSA step to avoid computing metrics on
poorly corrected reads. As mentioned previously, these are
the reads for which no seed k-mers were found during the
segmentation process. These reads are tagged and reported
apart in ELECTOR’s output to inform the user about their
number. We only report their number as no metric can be
computed since they are not aligned.

Short reads are reads that are shorter than €% of the ‘ref-
erence’ sequence length (¢ being a parameter set to 10 by
default). As for the bad quality reads, these reads are also
removed before the MSA step, and only the number of such
reads is reported.

Recall, precision, error rate. Once the MSA is computed,
we have access to information about the differences and
similarities in nucleotide content for each position of the
three versions of a sequence. Insertions and deletions are
represented by a ‘" in the deleted parts, and by the cor-
responding nucleotide (2, C, T or G) in the inserted parts.
Let us denote, respectively, by nt(R, p;), nt(C, p;), nt(U, p;)
the characters of ‘reference’, ‘corrected’ and ‘uncorrected’
versions in {4, C, G, T, .}, at position p; (0 < i < N), in
an MSA of size N. Figure 5 shows how recall and pre-
cision are computed. The set P of positions to correct is
composed of positions p; such as nt(R, p;) # nt(U, p;). The
set £ of existing positions in the corrected version is de-
fined by including any position p, from the ‘corrected’ ver-
sion that is not counted in a trimmed/split/extended/soft-
clipped region. The processed positions set C is defined as
PU{p;/nt(C, p;) # nt(R, pj)} NE. The correct positions
set Co is defined as C N {p;/nt(C, p;) = nt(R, p;)}. The re-
call, precision and error rate are computed as follows:

__card(CNP)
Recall = card(P) (1)

6 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 1

reference R [GECTIRIGECUG
uncorrected U | GTHTGEAC TEEGICAG
corrected C | G GTCAG

W positions to correct (nt(R) # nt(U))

[Tprocessed positions such that nt(C) = nt(R)
I processed positions such that nt(C) # nt(R)

N
—

Recall = Precision =

|
Figure 5. Computation of recall and precision using triple base-wise com-
parison at each MSA's position. n#(R) (respectively nt(U), nt(C)) represents

the character in ‘reference’ (respectively ‘uncorrected’, ‘corrected’) line of
the MSA at a given position.

d(Co N
Precision = % (2)
Errorrate =1 — w (3)
>
i=0

with ¢ the length of the corrected read.

Additional metrics. ELECTOR provides the number of
trimmed or split corrected reads, and the mean missing size
of these reads, as well as the number of extended reads, and
the mean extension size of these reads. The size distribution
of the sequences, before and after correction, is reported
graphically.

In the case of split reads, we report the length of each frag-
ment in the distribution. The %GC of the ‘corrected’ and
‘reference’ reads is also output, as well as the total num-
ber of insertions, deletion and substitution, in the ‘uncor-
rected’ and ‘corrected’” reads. ONT reads are known to be
more error-prone than PB reads in homopolymers. Thus,
we propose metrics to examine these particular regions. We
show the ratio of homopolymer sizes in the ‘corrected’ ver-
sion over the ‘reference’ version. The closer it is to one, the
better the corrector overcame possible systematic errors in
ONT reads.

More details on the computation of the insertions, dele-
tions, substitutions counts, and on the ratio of homopoly-
mer sizes are shown, respectively, in Supplementary Figures
S2 and S3.

Remapping of corrected reads. In addition to all previ-
ously presented metric computations, we also take advan-
tage of the presence of the reference genome to evaluate cor-
rected reads quality. We perform remapping of the corrected
reads to the reference genome using Minimap2. We report
the number of corrected reads, the total number of bases,
the average length of the reads, the percentage of aligned
reads, the mean identity of the alignments, as well as the
genome coverage, i.e. the percentage of bases of the refer-
ence genome to which at least a nucleotide aligned.

Post-correction assembly metrics. Again, in addition to
metrics obtained thanks to our MSA strategy, we assess

the correction quality through its consequences on the as-
sembly quality of the corrected reads. We perform the as-
sembly of the corrected reads using Miniasm (5), as we
mainly seek to develop a pipeline providing fast results. We
acknowledge that assemblers such as Smartdenovo (https:
/lgithub.com/ruanjue/smartdenovo) or Canu (16) are more
sensitive, but as they display much larger runtimes, Miniasm
provides a satisfying compromise.

As for the metrics of the assembly, we output the over-
all number of contigs, the number of contigs that could be
aligned, the number of breakpoints of the aligned contigs,
the NGAS0 and NGAT7S sizes of the aligned contigs, as
well as the genome coverage. Using the assemblies that we
provide, further analyses can be performed using dedicated
software such as QUAST-LG (17).

We also perform the alignment of the contigs with Min-
imap2. The computation of the different metrics, for remap-
ping and assembly assessment, is then performed by parsing
the generated SAM file.

RESULTS
Validation of the segmentation strategy for MSA

To validate our segmentation strategy for MSA, we show
to which extent its results differ from the classical MSA ap-
proach. In particular, we expect that recall, precision and
error rate hardly differ, thus showing that both behaviors
produce very similar results. Conversely, we expect a deci-
sive gain in time with our segmentation strategy compared
to the original algorithm. We thus compared multiple align-
ment results obtained with our strategy to results obtained
with the regular implementation of partial order alignment
graphs on multiple datasets of different read lengths, which
affects the run-time of the alignments. Results are presented
in Table 2. We observe that while the two strategies provide
very similar metrics, the segmentation strategy can reduce
the runtime by orders of magnitude compared to the regu-
lar approach, especially when the reads grow longer.

Validation on synthetic datasets

In this section, we present the results of ELECTOR and
LRCstats on several simulated datasets from different
species. Further details about these datasets are given in Ta-
ble 1. The choice of synthetic data was motivated by the
need to know the ‘reference’ sequences (which are portions
of the reference genome, representing perfect versions of the
original reads, on which no error would have been intro-
duced) to precisely control the results brought by the as-
sessed correction method.

ELECTOR sample output. As previously mentioned,
ELECTOR computes general metrics: recall, precision, er-
ror rate, among other metrics, and provides a graphic rep-
resentation of their distributions.

A subset of the metrics produced by ELECTOR using
reads corrected by the following tools: HALC (18), HG-
CoLoR (19), LoORDEC (20), Canu (16), Daccord (Tischler,
G., & Myers, E. W. (2017). Non-hybrid long read consen-
sus using local de Bruijn graph assembly. bioRxiv, 106252.)
and MECAT (21) is presented in Table 3. These metrics are

https://github.com/ruanjue/smartdenovo

Table 1. Description of the datasets used in our experiments

NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 1 7

Dataset E. coli S. cerevisiae C. elegans H. sapiens
Reference organism

Strain K-12 substr. MG1655 W303 Bristol N2 GRCh38
Reference sequence NC_000913* scf7180000000{084-13}P GCA_000002985.3¢ NC_000001.114
Genome size 4.6 Mbp 12.2 Mbp 100 Mbp 249 Mbp
Simulated Pacific Biosciences data

Number of reads 11 306 30132 244 277 -

Average length (bases) 8226 8204 8204 -
Number of bases (M bases) 93 247 2004 -
Coverage 20x 20x 20x -

Error rate (%) 18.6 18.6 18.6 -

Real Oxford Nanopore data

Accession - - - PRIJEB23027¢
Number of reads - - - 1075867
Average length (bases) - - - 6744
Number of bases (M bases) - - - 7256
Coverage - - - 29x%

Error rate (%) - - - 17.60
#https://www.ncbi.nlm.nih.gov/nuccore/NC_000913.

bwww.genoscope.cns.fr/externe/nas/references/yeast/W303_pacbio_assembly.fa.gz.

Chttps://www.ebi.ac.uk/ena/data/view/GCA _000002985.3.

d0nly chromosome 1 was used. https://www.ncbi.nlm.nih.gov/nuccore/NC_000001.11.

¢Only reads from chromosome 1 were used.

Table 2. Comparison of the two multiple alignment strategies on simulated E. coli datasets

Experiment Recall (%) Precision (%) Error rate (%) Time

‘1k* MSA 99.712 98.996 1.02 2 h 05 min

‘1k” segmentation +MSA 99.769 98.992 1.021 28 min

‘10k” MSA 99.921 99.781 0.206 20 h 50 min
‘10k’ segmentation + MSA 99.921 99.795 0.207 29 min

‘100k” MSA 99.913 99.925 0.044 8 days 18 h 38 min
100k’ segmentation + MSA 99.924 99.903 0.098 1 h 11 min

Three datasets were simulated, with a 10% error rate, a coverage of 100x and a fixed read length of 1 k bases, 10 k bases and 100 k bases, respectively. The

reads were corrected using Canu with default parameters.

consistent with the results presented in the respective tools’
publications. The whole set of metrics, including remapping
and assembly assessment, are presented in Supplementary
Tables S3 and S4.

Comparison to state-of-the-art. Recently, several bench-
mark analysis were proposed for long reads (comparison of
hybrid correction methods (22), comparison of hybrid and
self-correction methods (Zhang, H. et al. (2019). A com-
prehensive evaluation of long read error correction meth-
ods. (BioRxiv, 519330.), analysis of long read correction on
transcriptomic reads (23)). In this work, we focus on the
methodological basis allowing to efficiently perform and
reproduce such benchmarks, rather than highlighting the
pros and cons of available correction methods. The pre-
sented correction performances are thus showed for vali-
dation purposes and are not intended to be a benchmark
of existing correction methods. In the rest of the result sec-
tion, we report comparisons to the only other automated
evaluation tool for long reads correction: LRCstats.

In Table 4, we compare the metrics displayed by ELEC-
TOR and LRCstats. Corrections of the S. cerevisiae dataset
by HALC (a hybrid correction method) and Canu (self-
correction method) are evaluated and reported as an exam-
ple output. The complete results provided by LCRstats and

ELECTOR, for each correction tool, and on each dataset,
are presented in Supplementary Tables S2 and S3.

Both LRCstats and ELECTOR compute metrics on
‘corrected’ reads and the corresponding ‘uncorrected’ se-
quences of those reads (reported respectively as ‘corrected’
and ‘uncorrected’).

The first result to notice in Table 4 is that the error rates
and the amount of processed bases announced in the “un-
corrected’ reads can differ from one correction method to
the other, both for ELECTOR and LRCstats. Such differ-
ences can be explained by the fact that HALC and Canu do
not correct the same set of reads, which leads to different
set of ‘uncorrected’ reads to evaluate.

As ELECTOR and LRCstats rely on different rules to
exclude reads from the analysis, and do not align split reads
in the same way, we observe that they do not process the
same quantity of reads.

LRCstats concatenates the different parts of a split read
before aligning the concatenation, even if a missing region
can exist between two consecutive fragments. This behavior
can complicate the alignment task and introduce a bias in
the output metrics. On the contrary, ELECTOR processes
the different fragments separately before reconstituting the
whole alignment and thus takes into account missing re-
gions. These differences thus have an impact on the metrics
displayed for corrected reads. ELECTOR processes slightly

https://www.ncbi.nlm.nih.gov/nuccore/NC_000913
file:www.genoscope.cns.fr/externe/nas/references/yeast/W303_pacbio_assembly.fa.gz
https://www.ebi.ac.uk/ena/data/view/GCA_000002985.3
https://www.ncbi.nlm.nih.gov/nuccore/NC_000001.11

8 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 1

more bases than LRCstats on the two studied datasets.
z| 2 g g However, reads falling into particular categories (very short
8| 2383 Zg.8 fggs reads and low-quality reads) are not taken into account in
2|8 w332 €232 gs5323 ELECTOR’s redcounts, and are reported apart, while they
é are absent from LRCstats’s output.
s o 2 Different alignment strategies in both tools also have im-
gl = e 2 pacts on the results, which explains the differences seen in
5| 28 83 g8 indels and substitutions counts. However, ELECTOR and
Pl =11 "o =S LRCstats globally report the same trends of two successful
corrections that decreased the error rates.
A o« = Additional metrics, specific to ELECTOR, point out
8 - noteworthy differences between the two correction meth-
5 E ;% § § § § § % o ods, such as the high quantity of trimmed or split reads
g when using HALC in comparison to Canu. These metrics
8 are essential for further steps such as assembly since less
Bl e 2 advantage is taken from shortened reads to resolve repeats.
R g They also help to understand more in-depth the correc-
2z, 82 o tors’ behavior. In this example, Canu corrects with lower re-
call and precision than HALC, but this is nuanced because
. 5 ELECTOR reports it produces less trimmed/split reads.
3| 2 A I =
. g é § g g g § 28 é § Xk g Performance comparison
% U Tttt T TTTo B In this section, we compare LRCstats and ELECTOR run-
- o s time and memory consumption on several datasets chosen
gl = 2 P g to represent different use cases. Results are presented in Ta-
= 5l =g g3 S 3 bles 5 and 6. For the experiments presented in Table 5, both
2 g - = 3= S = § . .
2 5| 3= &30 25 0| & tools were ran on a 20-core cluster node equipped with 250
3 by GB of RAM. For experiments presented in Table 6, we used
g - 2 £ a 16-core computer equipped with 64 GB of RAM. In order
5 1 3 g g to compare similar operations, ELECTOR’s runtime and
Slol g 258% UZg3 =I%%| 3 memory consumption do not consider the remapping and
2|2 °| TeSS Tees ~SeS] s assembly steps. We present the metrics and resource con-
MG = sumption of this module apart, in Supplementary Table S4.
3 1 . o g 3 We first assess, in Table 5, the performances of both
g I 2. & 3 tools on several simulated E. coli datasets with different
S| 8 3 - read lengths, ranging from 1 k bases to 1 M bases. As ex-
v E pected, the runtime and memory consumption of both tools
E - 5 grow with the read length. However, ELECTOR can han-
I 5| = g 3 8 dle reads >10 k bases better than LRCstats, thanks to its
g 3l 25 2 F.a=- Saossel segmentation strategy. In particular, ELECTOR is several
g § S| 3223 2533 £33% ; orders of magnitude faster than LRCstats on the 10 k bases
3 S 5 experiment, and can also handle longer reads, up to 1 M
= 2l " = E bases, using moderate resources. LRCstats was much more
K g g < é g memory consuming and was thus unable to run on reads
2 gl 28 c3 2 2 2 longer than 10 k bases, despite having access to 250 GB of
2 S| s dcS 0 =S| g RAM. These results underline that ELECTOR can scale to
% £ extremely long reads. Considering the gver-growing length
= B o 2 § of the long reads and the tremendous impact of such very
2 BB Sae. 8. z long sequences, we believe that this ability is a significant
g 5| 2528 9238 #2583 advantage of ELECTOR obtained thanks to its segmenta-
213 N A tion technique.
§ = ~ : We also observe, in Supplementary Table S5, that the er-
= 3 2 3 E ror rate of the input reads has a negligible impact on the
° £l 2. g S s performances of the tools.
<l |8 22, &2 . B2 |3 In Table 6, we compare the performances of different
£ 5 correctors with the time needed to evaluate their outputs,
i g - B - B |z using ELECTOR and LRCstats. Interestingly, we observe
o 3essizestezess z that LRCstats is mostly slower than the correction step it-
2| glsbi=diii=235i=2|% self, which is not desirable. ELECTOR is often faster than
£ Slafbeiaiiatdiags < or comparable to the corrector itself, except for MECAT

Table 4. Comparison of ELECTOR’s and LRCstats’s outputs

NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 1 9

Uncorrected Corrected
Metric ELECTOR LRCstats ELECTOR LRCstats
Corrected by HALC
Processed bases 238 309 333 237 655 341 212266 193 214152119
Error rate 0.1403 0.1751 0.0042 0.0023
Insertions 28 772 841 32589970 100 874 215507
Deletions 5235890 8991 984 1035978 120 743
Substitutions 4058953 1633123 198 853 221 646
Recall (%) - - 0.9997 X
Precision (%) - - 0.9959 X
Trimmed/split - - 12.043 X
Mean missing size - - 571.5 X
Extended - - 71 X
Mean extension size - - 53.2 X
Low quality reads - - 160 X
Small reads - - 3436 X
Corrected by Canu

ELECTOR LRCstats ELECTOR LRCstats
Processed bases 244 560 743 244 633 066 229 555492 229 825 812
Error rate 0.1425 0.1781 0.0506 0.0694
Insertions 30 090 583 34105075 12252413 12942 568
Deletions 5483119 9489 618 2574 320 3134 365
Substitutions 4375017 1748 302 2197172 1591 650
Recall (%) - - 0.9515 X
Precision (%) - - 0.9495 X
Trimmed/split - - 2.216 X
Mean missing size - - 35.1 X
Extended - - 178 X
Mean extension size - - 30.7 X
Low quality reads - - 43.0 X
Small reads - - 0.0 X

Both tools were evaluated on the S. cerevisiae dataset, using a hybrid corrector (HALC) and a self corrector (Canu). A dash in the Uncorrected columns
indicates that the metric is not computed for the ‘uncorrected’ reads. A cross indicates that LRCstats does not provide the metric.

Table 5. Evolution of ELECTOR and LRCstats runtime and memory consumption according to the read length.

Tool Read length (bases) Memory (MB) Elapsed time CPU time
LRCstats 1k 1803 42 min 8 h 18 min
ELECTOR 1k 1030 12 min 28 min
LRCstats 10 k 13 484 4h 51 min 70 h 38 min
ELECTOR 10 k 3091 13 min 29 min
LRCstats 100 k - - -
ELECTOR 100 k 12 231 28 min 1 h 11 min
LRCstats 1M - - -
ELECTOR 1M 24 881 2 h 44 min 11 h 05 min

The datasets were simulated from the E. coli genome, with a 100x coverage, a 10% error rate and fixed read length of 1 k bases, 10 k bases, 100 k bases
and 1 M bases. The reads were corrected by Canu, using default parameters.

Table 6. Runtimes of ELECTOR and LRCstats on different datasets and different correction tools

Method HALC HG-CoLoR LoRDEC Canu Daccord MECAT
E. coli

Corrector 24 min 45 min 8 min 12 min 27 min 52s
LRCstats 4h 58 min 5h 02 min 4 h 37 min 4 h 05 min 4 h 20 min 2 h 30 min
ELECTOR 28 min 13 min 1 h 17 min 11 min 12 min 11 min

S. cerevisiae

Corrector 1 h 19 min 4h32s 28 min 31 min 1 h 15 min 2 min
LRCstats 10 h 56 min 12 h 26 min 12 h 14 min 10 h 46 min 12 h 04 min 6 h 59 min
ELECTOR 1 h 55 min 1 h 07 min 4 h 59 min 32 min 44 min 32 min

C. elegans

Corrector 5h 59 min 88 h 56 min 6 h 01 min 4 h 33 min - 22 min
LRCstats 83 h 29 min 81 h 05 min 70 h 85 h 08 min - —
ELECTOR 32 h 35 min 10 h 30 min 29 h 48 min 4h 19 min - 3 h 12 min

Both ELECTOR and LRCstats were launched with 9 threads. The different correction methods were launched with 16 threads. The runtimes of the
correctors are also included as a matter of comparison. The fastest evaluation method is shown in bold for each case. When the evaluation method is also
quicker than the correction method itself, it is underlined. Daccord could not be run on the C. elegans dataset, and reported an error. LRCstats crashed

while assessing the C. elegans dataset corrected by MECAT.

10 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 1

that is distinctly efficient. These reduced runtimes could be
a beneficial gain for benchmark analysis, and could also
be critical for the development of new correction meth-
ods. Another observation from Table 6 is that we can no-
tice large divergence in ELECTOR runtimes on the same
dataset corrected by different tools. This behavior can be
due to two factors. On the one hand, ELECTOR’s runtime
optimization is prone to be more or less pronounced accord-
ing to the read length (segmentation is expected to be easier
with larger reads) and quality of the correction (more er-
rors make it more difficult to find common seeds). On the
other, ELECTOR’s runtime is also related to the number
of split corrected reads output by the corrector. Indeed, a
larger number of split reads imply a more significant num-
ber of triplet multiple alignments, and thus an increased
runtime. In particular, in the experiments presented here,
the largest runtimes can be observed for the evaluation of
LoRDEC and HALC on the C. elegans dataset. As shown
in Supplementary Table S3, these tools are also those that
produced the most considerable amount of trimmed/split
reads on this dataset. A way to accelerate ELECTOR anal-
ysis would be to adapt its parameters to avoid small read
fragments.

Simulations for the validation of ELECTOR’s real data mode

In order to validate ELECTOR’s real data mode, we ran
the following experiment. We used a simulated dataset, and
we assessed its correction using the two different modes of
ELECTOR: simulated and real data. First, we ran it classi-
cally, by providing the simulation files as an input so that
ELECTOR could retrieve the actual ‘reference’ reads by
parsing the files. Second, we ran it by only providing the
FASTA file of simulated reads as an input, so ELECTOR
had to retrieve the ‘reference’ reads by aligning the uncor-
rected long reads to the reference genome, as if they were
not simulated. We ran this experiment on the S. cerevisiae
dataset. To further validate ELECTOR’s behavior on real
data, we assessed the correction of both a hybrid corrector,
HALC and a self-corrector, Canu. Results of these experi-
ments are shown in Table 7.

We observe that ELECTOR’s results are consistent, both
in simulated and real data mode. In particular, recall and
precision are very similar. The two modes display some dif-
ferences in the input uncorrected reads (as shown by the
amount of processed bases), which have an impact on the
differences observed between their results. This behavior is
due to the bias induced by the additional alignment step
that the real data mode requires. The main differences that
appear occur on metrics that are highly dependent on the
alignment results, such as the number of trimmed, split and
extended reads, and the sizes of these events, as well as in-
dels and substitutions counts.

Results on a real human dataset

To demonstrate ELECTOR’s results in a realistic scenario
for large genomes, we evaluate the correction of a real
human dataset. We report results, as well as runtime of
the evaluation, in Table 8. The reads were corrected with
MECAT, using default parameters, before running ELEC-
TOR. Using 20 threads, we were able to obtain the results

for the 650 771 corrected reads of the dataset in <19 h. Re-
sults reported by ELECTOR show that MECAT can cor-
rect human reads with a 20% error rate with >90% of recall
and precision, which is consistent with the published results.

DISCUSSION

In ELECTOR, we propose a novel efficient algorithmic
approach of segmentation strategy for multiple sequence
alignment. We adapted this task for this original and spe-
cific application of long reads comparison. New segmenta-
tion strategies for MSA were recently proposed (Nogales,
E. G. et al (2018). Fast and accurate large multiple se-
quence alignments using root-to-leave regressive computa-
tion. (bioRxiv, 490235.). However, these methods are not
specifically designed for noisy long reads. On such data,
both the high error rates and lengths are troublesome fac-
tors for the multiple sequence alignment computation. In
such a perspective, a generalization of our segmentation
strategy, allowing long reads multiple sequence alignments
of more than three sequences would be very interesting.
Such a generalization could indeed be relevant for critical
applications such as assembly, consensus or variant detec-
tion.

ELECTOR s real data mode uses a prior alignment of the
reads to a reference genome, in order to retrieve the ‘refer-
ence’ versions of the reads. We demonstrated that ELEC-
TOR’s metrics in its real data mode remain highly similar
to what would be obtained in its simulated mode. How-
ever, we can point out two limitations of ELECTOR. First,
even if the data can come from an actual sequencing exper-
iment, a reference genome needs to exist for the sequenced
species, in order to retrieve the ‘reference’ reads, and thus
perform the evaluation. Second, we encourage users to be
very cautious about ELECTOR’s results on real data, es-
pecially when looking at the number of trimmed, split or
extended reads and at the sizes of such events. Indeed, these
metrics are highly dependent on the result of the alignment
of the ‘uncorrected’ reads to the reference. These metrics
can thus be subject to errors, especially when aligning rel-
atively short or highly erroneous/chimeric reads, or reads
coming from repeated regions.

A future application is the evaluation of correction meth-
ods directly targeted at RNA long reads sequencing. As
shown in a recent study (23), RNA long reads have specific
requirements that are not met by current methods, which
calls for new correctors in the future. ELECTOR could be
coupled with a reference transcriptome or a RNA long read
simulator, although, currently, such a simulation software
does not exist to our knowledge.

CONCLUSION

We presented ELECTOR, a tool that enables the evaluation
of self and hybrid long reads correction methods, and that
allows evaluating the behavior of a given correction tool in
a controlled situation. ELECTOR provides a wide range of
metrics that include base-wise computation of recall, preci-
sion, error rates of corrected and uncorrected reads as well
as insertions, deletions and substitutions counts, and ho-
mopolymers correction. In particular, we believe that recall

NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 1 11

Table 7. Comparison of the results output by ELECTOR, using simulated and real data modes

Uncorrected Corrected

Metric Simulated Real Simulated Real
Corrected by Halc
Processed bases 238 309 333 238 119 170 212266 193 212 141 319
Error rate 0.1403 0.1449 0.0042 0.0104
Recall (%) - - 0.9997 0.9938
Precision (%) - - 0.9959 0.9897
Insertions 28 772 841 26 796 500 100 874 90 737
Deletions 5235890 5042 365 1035978 1 490 680
Substitutions 4058953 3682863 198 853 182 590
Trimmed/split - - 12043 13320
Mean missing size - - 5717.5 896.0
Extended - - 71.0 39.0
Mean extension size - - 53.2 72.0
Low quality reads - - 160.0 152.0
Small reads - - 3436.0 3438.0
Corrected by Canu

Processed bases 244 560 743 244 402 568 229 555492 229 403 697
Error rate 0.1425 0.1442 0.0506 0.052
Recall (%) - - 0.9515 0.9499
Precision (%) - - 0.9495 0.9481
Insertions 30 090 583 28 452 967 12252413 10 965 458
Deletions 5483119 5800 286 2574 320 2916 564
Substitutions 4375017 4081 445 2197172 1940 888
Trimmed/split - - 2216.0 4943.0
Mean missing size - - 35.1 74.7
Extended - - 178.0 169.0
Mean extension size - - 30.7 31.9
Low quality reads - - 43.0 42.0
Small reads - - 0.0 0.0

The two experiments were run on the same S. cerevisiae dataset, using a hybrid corrector (HALC) and a self corrector (Canu).

Table 8. Evaluation of the correction of a real human dataset with
ELECTOR

Corrected with MECAT
5451767 836

Uncorrected

5605 157 590

Processed bases

Recall (%) - 92.70
Precision (%) - 91.50

Error rate 0.1974 0.0861
Trimmed/split - 570 635
Mean missing size - 362.0
Extended - 275

Mean extension size ~ — 62.4

Low quality reads - 4279

Small reads - 356
Insertions 247953 086 10 144 736
Deletions 746 165 024 473 239 036
Substitutions 162 822923 7521389
Homopolymer ratio — 0.7570
Runtime - 18 h 27 min

The reads were corrected with MECAT, using default parameters, before
the evaluation. ELECTOR evaluated a total of 650 771 reads. Small reads
are corrected reads whose length is <10% of the original read. Low qual-
ity corrected reads are reads for which an insufficient number of seeds was
found during the segmentation process. Homopolymer ratio is the ratio
of homopolymer sizes in corrected versus reference. We reported the wall-
clock time of the run, using 20 threads.

and precision are of prime interest to characterize a cor-
rection tool behavior. Indeed, this metrics allows spotting
specific pitfalls, or undesired effects, which remain unclear
when only looking at the error rates of the corrected reads.
ELECTOR reports a text summary of its different metrics,

along with pdf and png versions, including plots of the key
figures. This allows users to easily integrate ELECTOR’s
outputs into reports.

Even though ELECTOR relies on multiple sequence
alignment techniques that can be very resource-consuming,
we were able to evaluate the behavior of a representative list
of state-of-the-art hybrid and self-correctors, ran on reads
from small bacterial to large mammal genomes. We also
showed that ELECTOR’s performances allow it to scale to
very long reads, displaying lengths up to 1 M bases, with
moderate resource needs.

In particular, ELECTOR is typically faster than most
error correction methods. ELECTOR’s ability to quickly
handle real-world datasets with low memory consumption
is pre-eminently valuable when working on long read ex-
ploitation routines, and represents a significant improve-
ment in comparison to the state-of-the-art.

The efficiency of ELECTOR relies on an innovative and
promising segmentation algorithm for multiple sequence
alignment of noisy long reads. This procedure drastically re-
duces the time footprint of the multiple sequence alignment,
making it able to scale to very long sequences. We believe
this algorithm could be improved and applied to a broad
range of applications implying multiple sequence alignment
of long, noisy sequences.

SUPPLEMENTARY DATA
Supplementary Data are available at NARGAB Online.

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqz015#supplementary-data

12 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 1

ACKNOWLEDGEMENTS

We thank Pierre Marijon for his help with the Bioconda in-
tegration. Part of this work was performed using the com-
puting resources of CRIANN (Normandy, France).

FUNDING

Inria - Department of Scientific Affairs.
Conflict of interest statement. None declared.

REFERENCES

1

. Gordon,D., Huddleston,J., Chaisson,M.J., Hill, C.M.,

Kronenberg,Z.N., Munson,K.M., Malig,M., Raja,A., Fiddes,I.,
Hillier,L.W. et al. (2016) Long-read sequence assembly of the gorilla
genome. Science, 352, aae0344.

. Sedlazeck,F.J., Lee,H., Darby,C.A. and Schatz,M.C. (2018) Piercing

the dark matter: bioinformatics of long-range sequencing and
mapping. Nat. Rev. Genet., 19, 329-346.

. Lachnemann,D., Borkhardt,A. and McHardy,A.C. (2015) Denoising

DNA deep sequencing data-high-throughput sequencing errors and
their correction. Brief. Bioinform., 17, 154-179.

. Li,H. (2018) Minimap?2: pairwise alignment for nucleotide sequences.

Bioinformatics, 34, 3094-3100.

. Li,H. (2016) Minimap and miniasm: fast mapping and de novo

assembly for noisy long sequences. Bioinformatics, 32, 2103-2110.

. La,S., Haghshenas,E. and Chauve,C. (2017) LRCstats, a tool for

evaluating long reads correction methods. Bioinformatics, 33,
3652-3654.

. Yang,X., Chockalingam,S.P. and Aluru,S. (2012) A survey of

error-correction methods for next-generation sequencing. Brief.
Bioinform., 14, 56-66.

. Jain,M., Koren,S., Miga,K.H., Quick,J., Rand,A.C., Sasani,T.A.,

Tyson,JR., Beggs,A.D., Dilthey,A.T., Fiddes,L.T. ez al. (2018)
Nanopore sequencing and assembly of a human genome with
ultra-long reads. Nat. Biotechnol., 36, 338-345 .

. Yang,C., Chu,J., Warren,R.L. and Birol,I. (2017) NanoSim:

nanopore sequence read simulator based on statistical
characterization. GigaScience, 6, 1-6.

. Stocker,B.K., Koster,J. and Rahmann,S. (2016) Simlord: Simulation

of long read data. Bioinformatics, 32, 2704-2706.

20.

21.

22.

23.

. Lee,C., Grasso,C. and Sharlow,M.F. (2002) Multiple sequence

alignment using partial order graphs. Bioinformatics, 18, 452-464.

. Delcher,A., Salzberg,S. and Phillippy,A. (2003) Using MUMmer to

identify similar regions in large sequence sets. Curr. Protoc.
Bioinform., doi:10.1002/0471250953.b11003s00.

. Chaisson,M.J. and Tesler,G. (2012) Mapping single molecule

sequencing reads using basic local alignment with successive
refinement (BLASR): application and theory. BMC Bioinform., 13,
238.

. Miclotte,G., Heydari,M., Demeester,P., Rombauts,S., Van de Peer,Y.,

Audenaert,P. and Fostier,J. (2016) Jabba: hybrid error correction for
long sequencing reads. Algorithm. Mol. Biol., 11, 10.

. Madoui,M.-A., Engelen,S., Cruaud,C., Belser,C., Bertrand,L.,

Alberti,A., Lemainque,A., Wincker,P. and Aury,J.-M. (2015)
Genome assembly using Nanopore-guided long and error-free DNA
reads. BMC Genom., 16, 327.

. Koren,S., Walenz,B.P., Berlin, K., Miller,J.R., Bergman,N.H. and

Phillippy,A.M. (2017) Canu: scalable and accurate long-read
assembly via adaptive k-mer weighting and repeat separation.
Genome Res., 27, 722-736.

. Mikheenko,A., Prjibelski,A., Saveliev,V., Antipov,D. and

Gurevich,A. (2018) Versatile genome assembly evaluation with
QUAST-LG. Bioinformatics, 34, 1142-1150.

. Bao,E. and Lan,L. (2017) HALC: High throughput algorithm for

long read error correction. BM C Bioinform., 18, 204.

. Morisse,P., Lecroq,T. and Lefebvre,A. (2018) Hybrid correction of

highly noisy long reads using a variable-order de Bruijn graph.
Bioinformatics, 34, 4213-4222.

Salmela,L. and Rivals,E. (2014) LoRDEC: accurate and efficient
long read error correction. Bioinformatics, 30, 3506-3514.
Xiao,C.-L., Chen,Y., Xie,S.-Q., Chen,K.-N., Wang,Y., Han,Y., Luo,F.
and Xie,Z. (2017) MECAT: fast mapping, error correction, and de
novo assembly for single-molecule sequencing reads. Nat. Methods,
14, 1072.

Fu,S., Wang,A. and Au,K.F. (2019) A comparative evaluation of
hybrid error correction methods for error-prone long reads. Genome
Biol., 20, 26.

Lima,L., Marchet,C., Caboche,S., Da Silva,C., Istace,B., Aury,J.-M.,
Touzet,H. and Chikhi,R. (2019) Comparative assessment of
long-read error correction software applied to Nanopore
RNA-sequencing data. Brief. Bioinform., doi:10.1093/bib/bbz058.

