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Abstract

Background: We performed large-scale bacterial artificial chromosome (BAC) end-sequencing of
two BAC libraries (an EcoRI- and a BamHI-digested library) and conducted an in silico analysis to
characterize the obtained sequence data, to make them a useful resource for genomic research on
the silkworm (Bombyx mori).

Results: More than 94000 BAC end sequences (BESs), comprising more than 55 Mbp and covering
about 10.4% of the silkworm genome, were sequenced. Repeat-sequence analysis with known
repeat sequences indicated that the long interspersed nuclear elements (LINEs) were abundant in
BamHI BESs, whereas DNA-type elements were abundant in EcoRIl BESs. Repeat-sequence analysis
revealed that the abundance of LINEs might be due to a GC bias of the restriction sites and that
the GC content of silkworm LINEs was higher than that of mammalian LINEs. In a BLAST-based
sequence analysis of the BESs against two available whole-genome shotgun sequence data sets,
more than 70% of the BESs had a BLAST hit with an identity of > 99%. About 4% of EcoRI BESs
and about 8% of BamHI BESs were paired-end clones with unique sequences at both ends. Cluster
analysis of the BESs clarified the proportion of BESs containing protein-coding regions.

Conclusion: As a result of this characterization, the identified BESs will be a valuable resource for
genomic research on Bombyx mori, for example, as a base for construction of a BAC-based physical
map. The use of multiple complementary BAC libraries constructed with different restriction
enzymes also makes the BESs a more valuable genomic resource. The GenBank accession numbers
of the obtained end sequences are DE283657-DE378560.

Background production of recombinant proteins and biomaterials [1-
The silkworm (Bombyx mori) has been domesticated for  3]. Itis also an important model organism of the Lepidop-
more than 5000 years because of the industrial impor-  tera, the insect order that includes the majority of serious
tance of sericulture. Besides being used for silk produc-  agricultural pests. Therefore, the accumulation of silk-

tion, the silkworm is also an effective host for the  worm genome resources will be helpful for both the con-
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trol of agricultural pests and the development of the
silkworm as an industrial-scale resource of biomaterials or
bioreactors.

In silkworm, two individual whole-genome shotgun
(WGS) projects have been carried out, and draft genomic
sequences with 3x or 5.9x coverage have been generated
[4,5]. Databases of expressed sequence tags (ESTs) and a
single nucleotide polymorphism linkage map have also
been released [6,7]. Bacterial artificial chromosomes
(BACGs) [8], as well as fosmids [9], also constitute impor-
tant genomic resources. The main advantage of BACs,
compared with yeast artificial chromosomes [10] or cos-
mids [11] is their higher stability, simplicity of construc-
tion and screening, low frequency of chimeric clones, and
ease of DNA isolation. Therefore, BACs are one of the
main tools used for high-throughput genomic studies,
including for sequence-tagged connector (STC) strategies,
BAC-based physical maps, and DNA fingerprinting, in
various species [12-26].

BAC end sequences (BESs), single-pass sequence reads
from each end of a BAC clone, are a powerful tool that
enhances the value of BACs as a genomic resource [27-
31]. We conducted large-scale BAC end-sequencing of two
silkworm BAC libraries, the RPCI-96 Bombyx mori Silk-
worm P50 BAC Library [32] and the Texas A&M BAC
Library [33], and characterized 94904 BESs.

Results

Sequence coverage

Two groups of BESs were obtained, one from the EcoRI-
digested BAC library (EcoRI BESs) and the other from the
BamHI-digested BAC library (BamHI BESs) (Table 1). The
total length of the two BES groups was approximately 55
Mbp (Table 2). Given that the genome size of the silk-
worm is approximately 530 Mbp [34], the estimated
sequence coverage of the EcoRI BESs and BamHI BESs was
6.7% and 3.7%, respectively. Thus, by simple summation,
the total sequence coverage was 10.4%.

Repeat analysis of BESs

We estimated the transposable element (TE) content of
the two sets of BESs. First, to construct a custom silkworm
repeat database for use as a custom library file of the
RepeatMasker program [35], we extracted silkworm
repeat-related sequences enrolled in NCBI-GenBank
(Release 152.0) [36] with a custom Perl script. All com-
pletely redundant sequences in the library except for a sin-
gle representative sequence were then removed. The
number of TEs in this library was 233. To mask repetitive
sequences from each BES, we used RepeatMasker (version
open-3-1-3) with default settings. Detailed information
on the masked bases is provided in Table 3. The percent-
age of masked bases in the BamHI BES group (21.3%) was
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higher than that in the EcoRI BES group (13.6%). Long
interspersed nuclear elements (LINEs) predominantly
accounted for this difference. To explain this difference
between the two BES groups, we examined the bias of the
two restriction enzymes. The average interval of recogni-
tion sites of EcoRI and BamHI was 3.8 and 7.9 kbp, respec-
tively, suggesting that in the silkworm genome EcoRI
restriction sites were more abundant than BamHI restric-
tion sites. In addition, we estimated the GC% of the silk-
worm protein coding region to be 43.2%, based on
silkworm protein coding sequences collected from Gen-
Bank, whereas the reported overall GC content of the silk-
worm genome is 32.54% [4]. Therefore, the GC% of
BamHI recognition sites (67%) is closer to that of the pro-
tein coding regions than to that of the genome as a whole.
Conversely, the GC% of EcoRI recognition sites (33%) is
closer to that of the genome as a whole. These results sug-
gest the GC bias between the two restriction enzymes may
explain the difference in the abundance of TEs between
the two BES groups.

To find novel repeat sequences in the BESs, we analyzed
the repeat-masked BESs with RECON (version 1.05) [37],
which automatically identifies de novo repeats. Only
detected repeat families with 50 or more members were
retained for further analysis. As a result, 31 and 15 repeat
families with 50 or more members were detected in the
EcoRI and BamHI BESs, respectively. We then used
BLASTX [38] to compare each repeat sequence against the
nr (non-redundant protein) database, and found that
34.0% of the sequences had similarity to TE-related pro-
teins. We used representative sequences of the repeat fam-
ilies for a BLAST search of silkworm whole-genome
shotgun (WGS) data [4] to confirm whether they were
really dispersed throughout the genome. The estimated
copy number ranged from 9 to 2431; therefore, a large
proportion of the detected sequences could be regarded as
repetitive. However, a few sequences showed a much
lower copy number than that estimated by RECON. It was
recently reported that the great majority of silkworm
transposon insertions are 5' -truncated, so most of the
detected repeat sequences may be "transposon fossils"
with no activity [4]. Further analysis of the detected
sequences might reveal novel transposons in silkworm.

BLAST search against whole-genome shotgun data

All BESs were used as queries in a BLAST similarity search
of the two available sets of WGS data: the WGS data set
deposited by the Silkworm Genomic Research Program
[4] (abbreviated as "SGP data" in this paper) and the data
set deposited by the Beijing Genomics Institute [5]
(abbreviated as "BGI data"). In this search, the expecta-
tion value (-e option, a probability cutoff value) was set to
1le-5 and the -b option (number of database sequences to
show) was set to 1000.
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Table I: Summary of two bacterial artificial chromosome (BAC)
libraries

EcoRI-digested library =~ BamHI-digested library

Vector pBACe3.6 [52] pBeloBACI | [53]
Cloning site EcoRI BamHlI
Number of 36000 (96 x 384 wells) 21120 (55 x 384 wells)
clones

Mean insert size 168 165

(kbp)

Clone coverage x |1.4 X 6.6

Strain p50T (mixed insects) p50T (mixed insects)

To calculate the percentage of the silkworm genome covered by the
clones (clone coverage) in the EcoRI- and BamHI-digested libraries,
we assumed that the silkworm genome size was 530 Mb [34].
Detailed information on the EcoRI-digested library, such as the size
distribution of BAC inserts, is available in the paper cited [49] and at
the RPCI-96 BAC Library website [32]. Detailed information on the
BamHlI-digested library can be obtained from the website of Texas
A&M BAC Libraries [33].

The percent identity distributions of BLAST hits (matched
bases/aligned bases) between the BESs and the WGS data
sets are summarized in Fig. 1. Although, the percent iden-
tity of the BLAST hits ranged from 80 to 100, the majority
of BLAST hits (270%) showed > 99% identity. Moreover,
the BLAST hits of EcoRI BESs tended to have higher per-
cent identity values than those of BamHI BESs. This
detected difference may reflect the higher abundance of
repetitive sequences, which cause misassembly, in BamHI
BESs. The percent identity of BLAST hits against the SGP
data also tended to be slightly higher than that against the
BGI data. One possible cause of this difference may be
strain divergence, because the BGI data were derived from
an inbred domesticated silkworm variety, p50 (Dazao),
whereas the SGP data were from strain p50T (Daizo),
which diverged from p50 about 30 years ago and has been
maintained at the University of Tokyo. To estimate the
sequence divergence between the two data sets, the com-
mon and unique sequences were extracted from the two
repeat-masked WGS data sets by BLAST-searching
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between them (e-value: 1e-50). BLAST hits containing
bases within 200 bp of either end of WGS contigs were
removed because the quality of sequences near the end of
contigs can be relatively low. The percent sequence diver-
gence calculated was too low to determine whether it was
polymorphism-derived, considering that the estimated
sequence error of the SGP and BGI WGS contigs is 0.08%
and 0.045%, respectively [4,5]. Therefore, other factors
such as sequencing errors in the WGS data sets might
account for the difference in percent identity values
between the two data sets.

We defined a match as a BLAST hit of > 99% identity and
> 0.8 alignment coverage, which we defined as the ratio of
alignment length to the BES length. The proportion of
BESs with at least one match (that is, BES+ and BES++
sequences in Fig. 2) was greater with the BGI data than the
SGP data. Conversely, BESs without matches (that is, BES-
and BES-- sequences) were more abundant with the SGP
data. The number of BES-- sequences common to both
WGS data sets in the EcoRI and BamHI BESs was 145 and
73, respectively. A BLAST search of BES-- sequences
against ecoli.nt and vector databases revealed that 74
EcoRI and 34 BamHI BES-- sequences were contaminated
sequences, probably as a result of incomplete automated
sequence trimming. The majority of the remaining BES--
sequences (69 EcoRI BESs, 31 BamHI BESs) had no signif-
icant homology (e-value: 1e-05) in the nr or gss (genomic
survey sequences) databases, indicating that they might
be gap region sequences or sequences extraordinarily
amplified during polymerase chain reaction (PCR) proc-
ess.

The majority of BESs with a match were BES+, having only
one match in each WGS data set. In addition, the percent-
age of "multi-match" EcoRI BESs (BES++ in Fig. 2) was
lower than that of multi-match BamHI BESs. We inferred
each BES+ to be a unique region-derived sequence, and
BES++ to be likely derived from repetitive sequences. We
defined "unique paired-end clones" as paired-end clones

Table 2: Characteristics of the two groups of BAC end sequences (BESs)

EcoRI BESs BamHI BESs Total

Number of sequences 61696 33208 94904

Average read length (bp) 571.6 598.1 580.9
Minimum read length (bp) 50 50 50
Maximum read length (bp) 955 920 955

Total bases (bp) 35266874 19860186 55127060

GC content (%) 3745 40.30 3847

Clones 34240 18251 52491

Paired-end clones 27456 14957 42413
Percentage of paired-end clones 80.2 82.0 80.8

(%)

A paired-end clone is a clone that contains both end sequences. The percentage of paired-end clones is the ratio of the number of paired-end

clones to the total number of clones.
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Table 3: Distribution of interspersed repeat DNA sequences within both BAC end sequences (BESs) in different repeat classes

EcoRI BESs BamHI BESs
GC% Elements Percentage GC% Elements Percentage
SINE 45.57 4088 1.63 45.92 2120 1.37
LINE 53.85 6865 5.14 53.22 11105 16.40
LTR 47.04 4140 2.32 47.26 2264 222
DNA 41.49 3711 3.77 40.77 744 0.70
Unclassified 4091 1469 0.69 41.24 963 0.62

"Elements" denotes the number of repeat elements detected. "Percentage” denotes the ratio of length occupied by interspersed repeats to total
length. GC content of unmasked region of EcoRl and BamHI BESs were 35.49% and 37.05%, respectively. Overall GC content of EcoRIl and BamHI

BESs were 37.45% and 40.30%, respectively.

showing a single match at each BES. A BLAST search of
SGP data using the BESs as queries identified 8104 unique
paired-end clones in the EcoRI library and 2778 among
the BamHI BESs. Similarly, a BLAST search of the BGI data
yielded 8878 paired-end clones in the EcoRI BAC library
and 3102 in the BamHI BAC library. A total of 4757
unique paired-end clones among the EcoRI BESs, and
1482 among the BamHI BESs, were common to both WGS
data sets.

BES clustering and coding region composition

We performed BES clustering, using "Combined BLAST
and PhredPhrap" (CBP) as described in Methods, to
examine BES composition in detail. Sequence clustering
of each group of BESs was performed separately, using
sequences of > 100 bp. The percentage of singletons
among the EcoRI BESs was higher than that among BamHI
BESs (Table 4).

Each representative sequence was then searched against
the GenBank nr database (BLASTX, with the e-value set to
1e-05) to investigate the percentage of BESs containing
protein-coding regions. As a result, 8068 clusters (20.2%)
of EcoRI BESs had similarity to proteins in the database,
compared with 6905 clusters (28.2%) of BamHI BESs. For
EcoRI BESs, most of the hit proteins were from Bombyx

Table 4: Summary of clustering results

BamHI BAC ends
(%)

Cluster size d EcoRI BAC ends (%)

d= 1 (singleton) 28595 (71.69) 19731 (79.02)
4>d>2 9606 (24.08) 4306 (17.57)
8>d>4 1494 (3.75) 373 (1.52)

16>d>8 136 (0.34) 64 (0.26)

32>d> 16 43(0.11) 32 (0.13)

64>d>32 7 (0.0176) 9 (0.04)
128 > d > 64 5 (0.0125) 0 (0)
d>128 I (0.0025) 0 (0)
Total 39887 24515

mori (53.8% of the clusters with similarity to proteins in
the database), Anopheles gambiae (6.8%), Apis mellifera
(4.0%), Drosophila melanogaster (3.2%), or Bos taurus
(1.6%), whereas in the case of BamHI BESs, most of the
hit proteins were from Bombyx mori (68.4%), Anopheles
gambiae (11.7%), Apis mellifera (8.5%), Drosophila mela-
nogaster (2.4%), or Bos taurus (2.5%). The majority of
large clusters showed similarity to TE-related proteins.

Discussion

BamHI BESs contained more repetitive sequences than
EcoRI BESs. In particular, the two groups of BESs con-
trasted with regard to the abundance of LINEs. The GC
bias of BamHI may be main factor accounting for this dif-
ference because the GC% of BamHI recognition sites was
relatively close to the estimated GC% of protein coding
DNA of the silkworm genome. This inference is further
supported by the fact that the LINEs in the repeat
sequences library had BamHI recognition sites at average
intervals of 2.0 kbp, whereas the average interval between
EcoRI recognition sites was 3.0 kbp. These results indicate
that the use of multiple BAC libraries constructed with dif-
ferent restriction enzymes can increase the genome repre-
sentation [39].

The GC content of the masked region, especially the
LINEs-derived region, was much higher than that of the
unmasked region (Table 3). Conversely, the GC% of the
DNA transposons-derived region was similar to that of the
coding region. To confirm the GC-richness of silkworm
LINEs, we calculated the GC content of each type of trans-
posable element in the repeat sequences library and found
that the median GC content of DNA-type elements (67
sequences), long terminal repeat (LTR) elements (30
sequences), LINEs (69 sequences), and short interspersed
elements (SINEs) (26 sequences) was 39.1%, 43.7%,
51.9%, and 46.6%, respectively. Thus, the GC% of silk-
worm LINEs was rather higher than the estimated GC% of
coding DNA of 43%. These results suggest that the GC
richness of transposable elements, especially that of
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Summary of BLAST searches with each group of BAC end sequences (BESs) versus the silkworm whole-
genome shotgun sequencing (WGS) data sets. BLAST searches were performed with each group of BESs against the
two available silkworm WGS data sets. Each bin consists of two types of hits (red indicates a hit with, and blue a hit without, a
repetitive region). The method for detecting a repetitive region was given in a previous section (Repeat analysis of BESs).

LINEs, primarily accounted for the greater abundance of
TEs in the BamHI BESs.

Moreover, the GC richness of silkworm LINEs is notable
because previous papers have reported that the AT-rich
region of the mammalian genome contains an increased
density of LINE insertions and mammalian LINEs have a
relatively low GC content [40-44]. In general, LINEs of
insects, especially silkworm, have a much higher GC con-
tent than those of mammals (Fig. 3). The GC richness of
LINEs in silkworm might contribute toward the formation
of specific genomic structures such as heterochromatin. A
silkworm has a female heterogametic sex chromosome
system (WZ/ZZ), as do most species of Lepidoptera. More-
over, the structural features of lepidopteran sex chromo-
somes have recently been described; that is, the W
chromosome possesses a block of heterochromatin,
which may comprise a small or a large segment of the
chromosome or even the entire W chromosome [45]. The
presence of many repetitive DNA elements in the W chro-

mosome, especially non-LTR retrotransposons, has been
reported [46,47]. These facts may suggest that silkworm
LINEs are associated with the formation of heterochroma-
tin. To further elucidate this possibility, analysis of more
reliable genomic resources and cytogenetic methods is
necessary.

The construction of a complete physical map is a vital task
of genome sequencing projects. BESs are useful for identi-
fying minimally overlapping clones that extend in each
direction from finished clones. Unique paired-end clones
are particularly useful for validating, ordering, and joining
contigs. Therefore, BACs and their end sequences can be
effectively used for integration of linkage and physical
maps [12,28,29]. However, the possibility of mismap-
ping, mainly due to sequence contamination must be
considered. A BAC-based physical map can suffer from
chimeric clones, genome assembly errors, and repetitive
elements in the genome [48]. To reduce the incidence of
incorrect mapping, tools such as repeat-masked BESs and
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BAC end sequence (BES) categorization results based on the BLAST search. We defined a BLAST hit with > 99%
identity and > 0.8 alignment coverage, defined as the ratio of alignment length to BES length, as a match. BES+ denotes a BES
with a single match, and BES++ a BES with multiple matches. BES- denotes a BES without a match, and BES-- a BES without a

"raw BLAST hit."

BLAST searching with stringent criteria are necessary. In
addition, DNA markers are helpful to detect incorrectly
mapped clones. Contigs with two markers from different
linkage groups should be tested for clone contamination
[25]. Incorrect mapping can also be detectable as an
inconsistency in the physical map when a deep coverage
BAC library is used. This BLAST-based analysis revealed
that the majority of BESs had BLAST hits with > 99% iden-
tity against two available WGS data sets. Moreover, the
percent identity of BLAST hits against BGI data tended to
be slightly lower than that against SGP data, although the
main cause of this tendency could not be determined by
our analysis. The estimated sequence divergence between
the p50T and p50 strains was too low to determine
whether the divergence was polymorphism-derived.
Therefore, merging of the two WGS data sets is reasonable
and will contribute to the construction of a more useful
genomic resource in the future.

Conclusion

Characterization of BESs from two BAC libraries con-
firmed that BAC libraries by nature tend to have certain
biases. Therefore, BESs from multiple complementary
BAC libraries constructed with different restriction
enzymes are a more useful genomic resource. The BESs
produced by this research constitute a valuable resource
for genomic research in Bombyx mori, for example, as a
base for construction of a BAC-based physical map and
for exploration of DNA makers. The GenBank accession
numbers of the obtained end sequences are DE283657~
DE378560.

Methods
Silkworm strain
We used the inbred silkworm strain p50T for the research.

BAC libraries
We used two silkworm BAC libraries for end-sequencing,
One library was constructed from a partial EcoRI (EC
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Figure 3

Relationship between the GC% of genome and the GC% of long interspersed nuclear elements (LINEs) in dif-
ferent species. We used the following LINE elements: A. gambiae; T1(M93689), RT1(M93690), RT2(M93691), Q(U03849),
R6Ag3(AB090819), RTAg4(AB090813). D. melanogaster; BS(X77571), Doc(X17551), F(M17214), G(X06950),
Helena(AF012030), HeT-A(U06920), I(M14954), Jockey(M22874), Pilger(AF278684), R1Dm(X51968), R2Dm(X15707),
Tart(U02279), X(AF237761), You(A)302712). H. sapiens; L1(U93574), HSLINE1O(X52235), L1.24(U93571), L1.21(U93570).
M. mulculus; LIMd-A2(M13002), MMU15647(U15647), LIMd4(X14061), LIMd-TfI4(AF081108), LIMd-Tf23(AF081110),
LIMd-Tf26(Af081112), LIMd-Tf9(AF081107), L1orl(D84391), L1spa(AF016099), LIMd-TfI8(AFOI81111), LIMd-
Tf30(AF081 112), LIMd-Tf8(Af081106),, LIMd-Tf29(AF081 | |3), LIMd-TfI7(AF081109), LI Md-Tf5(AF081104), L1Md-
Tf6(AF081 105). B. mori; BMCI(ABO18558), RIBm(M19755), R2Bm(AB076841), TRAS(AB04668), SART | (D85594). C. elegans;
Rte-1(AF054983), Frodo-1(Z70755), Frodo-2(Z48009), Sam | (U13643), Sam2(U57054), Sam3(U46668), Sam4(Z92972),
Sam5(Z81092), Samé(Z82275), Sam7(Z82090), Sam8(AF016663), Sam9(Z81064).

3.1.21.4) digest of genomic DNA. The construction of this
library was reported previously [49]. Copies are available
through BACPAC RESOURCES at the Children's Hospital
Oakland Research Institute [32]. The other library, pre-
pared by using BamHI as the restriction enzyme (EC
3.1.21.4), was purchased from the Laboratory for Plant
Genomics and GENEfinder Genomic Resource of Texas
A&M University [33]. The properties of the two BAC
libraries are summarized in Table 1.

Purification of BAC clones

Escherichia coli cells harboring single BAC clones were
maintained at -80°C. A fresh colony from each clone was
inoculated into each well of a 96-deep-well plate filled
with 1.25 mL of 2x LB medium (2% tryptone peptone,

1% yeast extract, and 1% sodium chloride) containing 20
pg/ml chloramphenicol. They were cultured with shaking
for 18 to 20 h at 37°C. BAC DNA was prepared using an
automated DNA isolation system (PI-1100, Kurabo
Industries Ltd., Osaka, Japan) according to the manufac-
turer's instructions.

Sequencing of BAC ends

Sequencing reactions were performed with 3 pL Big Dye
terminator mix (Applied Biosystems, Foster City, CA,
USA), 1.0 puL 5x sequencing buffer, 0.5 to 1.0 pg template
DNA, 10 pmol of primer, and 4 mM MgCl,. The condi-
tions for the thermal cycling reactions were 96°C for 5
min, then 99 cycles of 96°C for 30 s, 55°C for 10 s and
60°C for 4 min, followed by holding at 4°C. We used cus-
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tom T7 and SP6 sequencing primers. The DNA was recov-
ered by using MultiScreen 384SEQ plates (Millipore,
Billerica, MA, USA).

Sequence trimming

Base-calling and trimming of BESs were performed with
RAMEN, which was used for vector-trimming of silkworm
WGS sequences [4]. A BLAST search of mtDNA sequences
among the BESs was performed to identify and discard
contaminated sequences (e-value: 1e-50). The obtained
BESs have been deposited in the DNA Data Bank of Japan/
European Molecular Biology Laboratory/GenBank under
accession numbers DE283657 to DE378560.

BES clustering

BES clustering was done with the in-house program
"Combined BLAST and PhredPhrap" (CBP), which was
developed mainly for clustering silkworm ESTs. This pro-
gram internally uses BLAST [38] and PHRAP [50,51]. To
optimize the clustering of the BESs, we modified the algo-
rithm slightly. An outline of the clustering procedure fol-
lows.

Step 1 An all-to-all BLAST (BLASTN) operation of the
BESs was performed. The expectation value (-e option)
was set to 10, and no complexity filter (-F option) was
used. The number of alignments to be reported (-b
option) and maximum number of sequence bases to be
created in a volume (-v option) were set to 1000000.

Step 2 Each BLAST hit was analyzed. A provisional cluster
was created when a BLAST hit had an identity of at least
90% (T},4) and an alignment length of 90 bp (T,,). The
longest sequence in each provisional cluster was chosen as
the representative sequence. A provisional cluster of size 1
was treated as a "singleton."

Step 3 Sequences in each provisional cluster were assem-
bled with PHRAP (using default parameters).

Step4 Reclustering and reassembling were performed
under more stringent conditions if multiple contigs were
generated. This process was iterated until a single contig
was generated. For each iteration, the criterion of align-
ment length T,;, was incremented by 30 bp if T,;,, was less
than or equal to 300 bp. If T, was greater than 300 bp,
the incrementation of T,;,, was set to 15 bp. If a single con-
tig was not generated by these iterations, then this process
was iterated with a stricter T,y criterion until a single con-
tig was generated. Any unassigned sequences were col-
lected and stored for Step 6.

Step 5 Each contig generated in Step 4 was searched
against the member sequences of its own contig for verifi-
cation. Contigs that did not satisfy the condition, identity

http://www.biomedcentral.com/1471-2164/8/314

> 95% and coverage of alignment > 90%, were stored for
Step 6.

Step 6 All sequences stored during the above steps were
reprocessed (return to Step 2).
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