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Abstract: Breast cancer is a heterogeneous disease involving complex interactions of biological
processes; thus, it is important to develop therapeutic biomarkers for treatment. Members of the
dipeptidyl peptidase (DPP) family are metalloproteases that specifically cleave dipeptides. This
family comprises seven members, including DPP3, DPP4, DPP6, DPP7, DPP8, DPP9, and DPP10;
however, information on the involvement of DPPs in breast cancer is lacking in the literature. As
such, we aimed to study their roles in this cancerous disease using publicly available databases
such as cBioportal, Oncomine, and Kaplan–Meier Plotter. These databases comprise comprehensive
high-throughput transcriptomic profiles of breast cancer across multiple datasets. Furthermore,
together with investigating the messenger RNA expression levels of these genes, we also aimed to
correlate these expression levels with breast cancer patient survival. The results showed that DPP3
and DPP9 had significantly high expression profiles in breast cancer tissues relative to normal breast
tissues. High expression levels of DPP3 and DPP4 were associated with poor survival of breast cancer
patients, whereas high expression levels of DPP6, DPP7, DPP8, and DPP9 were associated with good
prognoses. Additionally, positive correlations were also revealed of DPP family genes with the cell
cycle, transforming growth factor (TGF)-beta, kappa-type opioid receptor, and immune response
signaling, such as interleukin (IL)-4, IL6, IL-17, tumor necrosis factor (TNF), and interferon (IFN)-
alpha/beta. Collectively, DPP family members, especially DPP3, may serve as essential prognostic
biomarkers in breast cancer.
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1. Introduction

Approximately 30% of all cancers that occurred in women in the United States in
2020 were breast cancer [1]. Breast cancer is subtyped by the expression levels of the
estrogen receptor (ER, the gene of which is named ESR1), progesterone receptor (PR), and
human epidermal growth factor receptor (HER)-2. Many genetic therapies are applied
to breast cancer patients, such as fulvestrant [2,3], cyclin-dependent kinase inhibitors [4],
aromatase-related inhibitors [5], and histone deacetylase (HDAC) inhibitors [6]. It has
been reported that 70% of metastatic breast cancer cases have high expression of B-cell
lymphoma 2 (BCL2). Using BCL2 inhibitors for these metastatic cases improved cancer
cell apoptosis in a preclinical model of breast cancer [7,8]. Genes that are involved in
this biological process are dipeptidyl peptidase (DPP) family genes, extracellular-signal-
regulated kinase (ERK), GATA-binding protein 3 (GATA3), signal transducer and activator
of transcription 3 (STAT3), phosphatidylinositol 3-kinase (PI3K), and NOTCH [9–12].

Members of the DPP family are metalloproteases that specifically cleave dipeptides,
and this family is comprised of seven members, including DPP3, DPP4, DPP6, DPP7, DPP8,
DPP9, and DPP10, which are zinc-dependent hydrolases involved in degrading oligopep-
tides. Many biological processes involve these proteins, including cancer cell defense
against oxidative stress. A previous study demonstrated that DPP3 and DPP7 are highly
expressed in multiple myelomas [13]. DPP3 overexpression was positively associated with
KEAP1 mutant tumors, and it further promoted lung cancer development [14]. DPP4
attenuates C-X-C motif ligand 10 (CXCL10) and atypical chemokine receptor 2 (ACKR2)
activity by regulating N-terminal processing [15], while DPP4 inhibitors may serve as
second-line treatment for epithelial ovarian cancer [16]. High expression levels of DPP4
in some types of cancer patients can increase susceptibility to severe acute respiratory
syndrome coronavirus (SARS-CoV)-2 infection and further cause cytokine storms [17].
DPP6 promoter activity was significantly higher in pancreatic ductal adenocarcinoma
tissues compared to normal tissues [18]. Knockdown of DPP7 increased apoptosis by
upregulating Bax–Bcl2 signaling in the HepG2 liver cancer cell line [19]. NLR family pyrin
domain-containing 1 (NLRP1) can interact with DPP8 and DPP9, which can serve as a
checkpoint for activating the NLRP1 inflammasome [20]. A DPP8 and DPP9 inhibitor can
promote apoptosis by activating poly(ADP ribose) polymerase (PARP) and caspase-3 in
multiple myelomas [21]. DPP10 inhibits colon cancer stem cell proliferation by regulating
microRNAs such as miR-127-3p [22].

Although correlations between breast cancer and DPP family members′ messenger
(m)RNA expression levels still remain unclear, it is important to investigate this corre-
lation with a comprehensive, holistic approach. It is well known that high-throughput
technologies provide thousands to millions of data points from a single run, making them
highly suitable tools for rapidly and efficiently screening potential biomarkers [23–25].
Significant alterations in transcriptomic levels of genes imply their roles in a certain disease,
such as oncogenic or tumor suppressors in cancerous diseases [26]. Utilizing this concept,
we queried publicly available transcriptomic databases for DPP mRNA expression levels
in many breast cancer datasets, including multiple breast cancer subtypes. Furthermore,
protein and gene interaction networks were evaluated to screen for downstream molecules
associated with DPP family member genes.

2. Materials and Methods
2.1. Oncomine and GEPIA Analyses

To search for mRNA expression levels of DPP genes in 20 types of common cancers
relative to normal matched tissue, we used Oncomine (www.oncomine.org, accessed on
01 May 2021) and GEPIA (http://gepia.cancer-pku.cn/, accessed on 01 May 2021) [27–32].
Search thresholds included the multiple of change (>2.0), p value (<10−4), and gene ranking
percentile (top 10%). Search results displayed the number of datasets qualified for the
above thresholds with up- and downregulated expression levels in different types and

www.oncomine.org
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subtypes of cancers. Red- and blue-colored gradients were used to show these genes′ up-
and downregulated expression levels based on the top-ranking percentiles.

2.2. Cancer Cell Line Encyclopedia (CCLE) Analysis

Additionally, we used the CCLE database (https://portals.broadinstitute.org/ccle,
accessed on 1 May 2021) to search for expression levels of DPP genes in cancer cell lines [33].
The CCLE is comprised of many human cancer cell lines (n = 1457) with large numbers
of unique datasets (n = 136,488). Gene expression levels were retrieved using an RNA
sequencing method in 60 breast cancer cell lines and the data were plotted with default
settings as we previously described [34–37].

2.3. Kaplan–Meier (KM) Plot of Survival Analysis

Gene expression levels correlations of mRNAs of DPP genes with breast cancer pa-
tients’ survival, such as relapse-free survival (RFS), were investigated using the KM plotter
database (https://kmplot.com/, accessed on 1 May 2021) [38]. The breast cancer database
was established using gene expression data and survival information of 2898 patients
acquired from the Gene Expression Omnibus (GEO) (Affymetrix HGU133A microarrays
platform). The numbers of patients in high- and low-risk groups were also displayed along
with the survival duration on the horizontal axis. Poor survival status of patients was
based on log-rank p values smaller than 0.05 for statistically significant differences between
low and high mRNA expression of the target genes. The HR ratio was displayed as a mean,
together with 95% confidence intervals (CI). All analyses in the KM plotter database were
performed with default parameters for calculating survival curves, log-rank p values, as
well as hazard ratios (HRs) with 95% CIs.

2.4. Functional Enrichment Analysis of DPP Family Members

To obtain shared coexpressed genes with DPP genes between The Cancer Genome
Atlas (TCGA) and Metabric from Cbioportal databases, the final top 10% of coexpressed
genes were further uploaded into MetaCore software (https://portal.genego.com/, ac-
cessed on 1 May 2021) for pathway and network analyses with Gene Ontology (GO). A
log-rank p value of <0.05 was considered to be statistically significant [39–41].

2.5. Statistical Analysis

The Cox proportional hazard model was also utilized to evaluate the role of clinico-
pathological features in overall survival (OS) results from the TCGA database. Patients
were differentiated into low- and high-expression groups by applying a median cutoff strat-
egy. Extracted clinical data for patients were managed using R software using “survival”
and “survminer”. Cox univariate and multivariate analyses were separately performed
to construct a proportional hazard model. Data were obtained from TCGA Pancancer
Atlas and clinical data for patients were extracted and managed with R language. Com-
parisons between groups were done using Student’s t-test. The mRNA expression level
was transformed into logarithmic scale (log2(TPM + 1)). The q value was set to 0.05 for
GEPIA analysis. A p value of <0.05 was used to make statistically significant decisions, as
previously described [42,43].

3. Results
3.1. DPP Family Members Play Crucial Roles in Breast Cancer Development

Previous studies identified seven DPP family members in humans; some of their
members were reported to be crucially involved in cancer development. Consequently, a
meta-analysis study of the roles of these genes is necessary to clarify their roles in breast
cancer and its subtypes, which might provide potential biomarkers for this disease. Results
from an Oncomine analysis showed that mRNA expression levels of DPP3 and DPP9 were
highly upregulated in breast cancer tissues, whereas DPP4, DPP6, and DPP8 exhibited
downregulated levels in breast cancer tissues relative to normal breast tissues (Figure 1).

https://portals.broadinstitute.org/ccle
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Figure 1. The mRNA expression levels of dipeptidyl peptidase (DPP) family genes in pan-cancers from the Oncomine
database. The analysis was done on mRNA expression levels of breast cancer tissues and normal matched tissues. Red-
and blue-colored gradients show gene rank percentiles in specific datasets. The significant unique analysis represents the
number of datasets that reached the threshold over total unique analyses.

3.2. Associations of DPP Family Members with Clinicopathological Parameters in Breast Cancer

The mRNA expression levels of DPP genes in breast cancer tissues and normal tissues
were compared with the GEPIA tool. DPP3 and DPP9 mRNA expression levels were
upregulated in breast cancer tissues relative to normal breast tissues (Figure 2) and other
subtypes (Supplementary Figure S1). Additionally, the CCLE analysis also presented
mRNA expression levels of DPP family members in breast cancer cell lines (Figure 3).
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SAA2, WIPF1, EVIZA, PIK3R5, TNFRSFIB, CD247, ZNF333, MRAP2, EHD3, GLIPR1, 
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Figure 3. Transcript expression levels of dipeptidyl peptidase (DPP) family genes in a variety of cancer cell lines. Differential
expression levels of DPP3, DPP4, DPP6, DPP7, DPP8, DPP9, and DPP10 in the Cancer Cell Line Encyclopedia (CCLE). The
upper blocks represented by red indicate overexpression, whereas the bottom blocks indicate underexpression.

3.3. Genes Coexpressed with DPP Family Members in Breast Cancer

Gene coexpression levels with DPP3 in the Ma dataset was analyzed via the Oncomine
platform. We found that DPP3 was positively correlated with C6orf125, COPZ1, POLRZL,
PDZD11, TMEM87B, PNPO, STRA13, NHP2, PSENEN, CANT1, FKBP4, CYB561, PRR15L,
MAPK13, GTF2IRD1, NR2F6, and KRT18. We found that DPP4 expression was positively
correlated with CHST11, BCAT1, CHST11, WIPF1, SIGLEC10, AOAH, C1QB, LST1, S100A4,
HLA-DOA, PLEKHOZ, SELPLG, FCGRZA, FCGR2A, FCGR3B, MSR1, ADAP2, and LAPTM5.
We found that DPP6 expression was positively correlated with SAA2, WIPF1, EVIZA,
PIK3R5, TNFRSFIB, CD247, ZNF333, MRAP2, EHD3, GLIPR1, FIBIN, SNCAIP, CMTM3,
Cl0orf54, ID4, ABCB1, LPAR6, OGFRL1, and DAB2. We found that DPP7 expression
was positively correlated with C9orf86, ZDHHC12, PPP2R4, FBXW5, ATP5D, ALKBH7,
RNH1, LMNA, Cllorf2, ENG, MACROD1, ASL, PACS2, KIAA0562, SCOZ, ZNHIT2, PTOVI,
NME4, ZMAT5, and CLDN4. We found that DPP8 expression was positively correlated
with MARCH6, WDFY3, ZNF24, SDAD1, FBX033, SCAMP1, NIPBL, ZC3HAVI, SMCR7L,
PROSC, RNF160, SRP72, G2E3, RNF13, CNOT7, ZNF148, VPS24, EIF5, and C9orf5. We
found that DPP9 expression was positively correlated with SLC43A2, LOC338799, C16orf53,
MICALL2, CHTF18, PASK, FERIL4, DFNB31, CCDC45, C8orf73, PVRIG, PILRB, LRCH4, and
YPEL3. We found that DPP10 expression was positively correlated with MAMLD1, RGS20,
ASNS, E2F3, C9orf140, DTNA, PRKCA, LRP8, KCNN2, TMSB15A, LOC286052, TMEM65,
CHD7, GGH, C2lorf30, ANKS6, CLTCL1, EIF5A2, and HS3ST3Al (Figure 4).



Diagnostics 2021, 11, 1204 7 of 15Diagnostics 2021, 11, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 4. Genes coexpressed with dipeptidyl peptidase (DPP) family members and correlations 
between DPP family genes in breast cancer patients. Genes coexpressed with the DPP3, DPP4, Figure 4. Genes coexpressed with dipeptidyl peptidase (DPP) family members and correlations
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presented in a heatmap format.
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3.4. Protein Expression Levels and Prognostic Values of DPP Family Members in Breast Cancer

After performing a screening of expression levels of DPP family members in breast
cancer patients, we further explored the DDP members’ roles in clinical human breast
cancer specimens in different molecular subtypes of breast cancer and their correlations
with other featured biomarkers. To determine expression levels of DPP family members
and their clinical relevance, the Human Protein Atlas (HPA) was used to analyze the protein
expression levels of DPP family members in clinical specimens (https://www.proteinatlas.
org/, accessed on 1 May 2021). Data demonstrated that DPP3, DPP7, DPP8, DPP9, and
DPP10 mostly had medium protein expression levels, while some clinical tissues showed
strong positive expression levels of DPP3, DPP7, and DPP9 in breast cancer specimens
(Figure 5). The Kaplan–Meier (KM) plot showed that high expression levels of DPP3
and DPP4 were correlated with poor survival of breast cancer patients, whereas other
DPP family members were not. These data implied DPP3 and DPP4′s oncogenic roles
in breast cancer progression (Figure 6). In addition, multivariate analysis indicated that
“treatment” and “tumor stage” were significantly associated with high-risk factors, while
DPP3 expression levels were an independent survival determinant in breast cancer patients
(Supplementary Figure S2).

3.5. Pathway and Network Analysis of DPP Family Member Genes

Enriched biological processes shown by the GeneGo Metacore analysis demonstrated
that genes coexpressed with DPP family genes were involved in molecular processes re-
lated to cancer development. Furthermore, biological networks established by GeneGo
Metacore from the pool of input genes also explained the biological processes associated
with each tissue. Genes coxpressed with DPP family members from TCGA and METABRIC
breast cancer datasets were uploaded to the MetaCore platform. Results showed that many
cancer progression-related pathways were correlated with expression levels of DPP family
genes. A strong cluster of the top 10% of coexpressed genes was obtained from TCGA and
METABRIC breast cancer datasets. Next, GeneGo Metacore annotations of enriched biologi-
cal processes revealed that genes coexpressed with DPP3 were involved in cell-cycle-related
pathways and networks, such as “Cell cycle_Role of APC in cell cycle regulation”, “Cell
cycle_Spindle assembly and chromosome separation” and “DNA dam-age_ATM/ATR reg-
ulation of G2/M checkpoint: cytoplasmic signaling” playing essential roles in breast cancer
patients (Supplementary Figure S3, Table S1). Genes coexpressed with DPP4 were involved
in cell TGF-related pathways and networks, such as “IL-1 beta- and Endothelin-1-induced
fibroblast/myofibroblast migration and extracellular matrix production in asthmatic air-
ways”, “Development_TGF-beta-dependent induction of EMT via SMADs”, “Expression
targets of tissue factor signaling in cancer”, “Cell adhesion_ECM remodeling“, and “TGF-
beta-induced fibroblast/myofibroblast migration and extracellular matrix production in
asthmatic airways” playing essential roles in breast cancer patients (Supplementary Figure
S4, Table S2). Genes coexpressed with DPP6 were involved in cell Kappa-type opioid
receptor-related pathways and networks, such as “Muscle contraction_Role of kappa-type
opioid receptor in heart”, “Development_Schema: FGF signaling in embryonic stem cell
self-renewal and differentiation”, and “Neurophysiological process_Kappa-type opioid
receptor signaling in the central nervous system” playing essential roles in breast cancer
patients (Supplementary Figure S5, Table S3). Genes coexpressed with DPP7 were involved
in cell cycle-related pathways and networks such as “Cell cycle_Role of SCF complex in
cell cycle regulation”, “DNA damage_ATM/ATR regulation of G1/S checkpoint”, ”Cell
cycle_Role of APC in cell cycle regulation“, ”Cell cycle_Spindle assembly and chromo-
some separation”, and “Cell cycle_Chromosome condensation in prometaphase“ playing
essential roles in breast cancer patients (Supplementary Figure S6, Table S4). Genes co-
expressed with DPP8 were involved in immune-related pathways and networks such as
“IL-6 signaling in breast cancer cells”, ”G-protein signaling_Regulation of Cyclic AMP
levels by ACM”, “Development_YAP/TAZ-mediated coregulation of transcription”, and
“Immune response_IL-4-induced regulators of cell growth, survival, differentiation, and

https://www.proteinatlas.org/
https://www.proteinatlas.org/
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metabolism“, playing essential roles in breast cancer patients (Supplementary Figure S7,
Table S5). Genes coexpressed with DPP9 involved immune-related pathways and networks,
such as “Immune response_IFN-alpha/beta signaling via PI3K and NF-κB pathways”,
“Immune response_TNF-R2 signaling pathways”, ”Development_GM-CSF signaling“,
”Main growth factor signaling cascades in multiple myeloma cells”, and “Apoptosis and
survival_IL-17-induced CIKS-independent signaling pathways” playing essential roles
in breast cancer patients (Supplementary Figure S8, Table S6). Genes coexpressed with
DPP10 were involved cell cycle-related pathways and networks such as “Cell cycle_Role of
APC in cell cycle regulation”, “Higher ESR1/ESR2 ratio in breast cancer”, “Cell cycle_The
metaphase checkpoint”, ”Putative pathways of hormone action in neurofibromatosis type
1”, and “Cell cycle_Role of Nek in cell cycle regulation” playing essential roles in breast
cancer patients (Supplementary Figure S9, Table S7).
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Figure 6. Relationships of expression levels of dipeptidyl peptidase (DPP) family members and
recurrence-free survival (RFS) of clinical breast cancer patients (n = 2898). Kaplan–Meier plots show
correlations of RFS with high and low expression levels of DPP family genes. Red and black lines
indicate higher and lower values than the median, respectively. High expression levels of DPP3 and
DPP4 were associated with poor survival, whereas high expression levels of DPP6, DPP7, DPP8, and
DPP9 were associated with better survival rates (p < 0.05 considered significant).
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4. Discussion

Breast cancer is the most-common cancer disease occurring in female subjects relative
to other cancer types. Efforts and knowledge have improved over decades of study;
however, treatment targets are still a focus of research for advanced stages and metastatic
breast cancer. Consequently, developing and proposing new targets would benefit breast
cancer patients [44]. Proteases widely participate in biological processes and regulate
molecular functions, which can further promote cancer development. DPP3 was reported to
regulate the genesis of leukemia and other malignancies [45]. This evidence was consistent
with our data, as we found that DPP3 had high expression levels in breast cancer tissues
at both the transcription and protein levels, and further caused poor prognoses in breast
cancer patients. DPP4 was reported to be a therapeutic target for coronavirus pandemics,
such as the Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute
respiratory syndrome (SARS-CoV)-2 (i.e., coronavirus disease 2019 (COVID-19)) [46–48].
DPP4 contributes to ferroptosis in clear cell renal cell carcinoma [49], while DPP4 had high
mRNA expression under hypoxic growth in ovarian cancer cells [50]. Interestingly, our
data demonstrated that DPP4 had low expression levels in breast cancer tissues at both the
transcription and protein levels, but was associated with poor prognoses in breast cancer
patients. Therefore, DPP4 may be regulated by post-translational modifications (PTMs) or
epigenetic-related mechanisms [51,52]. DPP6 served as a tumor-specific hypermethylated
gene [53] and was significantly related to the prognosis of clear cell renal cell carcinoma
patients [54]. Our data showed that DPP6 had low expression levels in breast cancer tissues
at both the transcription and protein levels, and was further related to good prognoses in
breast cancer patients, which also suggested that DPP6 may act as a tumor suppressor in
cancer development. DPP7 had high expression levels in colorectal cancer patients and
could be a significant predictor of a poor prognosis [55]; this is also consistent with our
Oncomine and GEPIA analyses. We found that DDP7 was highly expressed in colon cancer
tissues but not in breast cancer patients; therefore, the role of DPP7 in cancer progression
may occur in a tissue-specific manner. DPP8 and DPP9 can regulate pyroptosis in human
acute myeloid leukemia [56], while DPP8 and DPP9 mRNAs are overexpressed in ovarian
carcinoma [57]. Our data showed that DPP8 had low expression levels in breast cancer
tissues at both the transcription and protein levels whereas DPP9 did not, and both of them
were related to good prognoses in breast cancer patients. DPP10 displayed significant
correlations with methylation levels and cervical neoplasia progression [58]. DPP10 was
underexpressed in primary glioblastomas [59], and was also found to be down-expressed
in nasopharyngeal carcinoma [60]. These data are very similar to our analysis, as our data
showed that DPP10 had low expression levels in breast cancer tissues and was further
related to good prognoses in breast cancer patients. The literature on the roles of DPP
family members in breast cancer is still limited; therefore, the present study can provide
valuable information for prospective studies in breast cancer research.

5. Conclusions

In summary, the present study provides new findings related to DPP family genes,
which have prognostic and predictive values in breast cancer, as validated by multiple
datasets. Comprehensive analysis of DPP gene members in breast cancer could serve as
novel biomarkers of breast cancer.

Supplementary Materials: Supplementary materials can be found at https://www.mdpi.com/
article/10.3390/diagnostics11071204/s1. Figure S1. Transcription levels of dipeptidyl peptidase
(DPP) family genes in different subtypes of breast cancer patients (TCGA database). Figure S2.
Multivariate analysis of dipeptidyl peptidase 3 (DPP3) expression and relationships between it and
clinicopathological parameters (age, treatment, stage, and TNM (tumor, node, metastasis) stage).
Figure S3. MetaCore pathway analysis of the coexpression gene network of dipeptidyl peptidase
3 (DPP3) in breast cancer patients. Figure S4. MetaCore pathway analysis of the coexpression gene
network of dipeptidyl peptidase 4 (DPP4) in breast cancer patients. Figure S5. MetaCore pathway
analysis of the coexpression gene network of dipeptidyl peptidase 6 (DPP6) in breast cancer patients.
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Figure S6. MetaCore pathway analysis of the coexpression gene network of dipeptidyl peptidase
7 (DPP7) in breast cancer patients. Figure S7. MetaCore pathway analysis of the coexpression gene
network of dipeptidyl peptidase 8 (DPP8) in breast cancer patients. Figure S8. MetaCore pathway
analysis of the coexpression gene network of dipeptidyl peptidase 9 (DPP9) in breast cancer patients.
Figure S9. MetaCore pathway analysis of the coexpression gene network of dipeptidyl peptidase
10 (DPP10) in breast cancer patients. Table S1. Pathway analysis of dipeptidyl peptidase 3 (DPP3)-
coexpressed genes from public breast cancer databases using the MetaCore database (with p < 0.01 set
as the cut-off value). Table S2. Pathway analysis of dipeptidyl peptidase 4 (DPP4)-coexpressed genes
from public breast cancer databases using the MetaCore database (with p < 0.01 set as the cut-off
value). Table S3. Pathway analysis of dipeptidyl peptidase 6 (DPP6)-coexpressed genes from public
breast cancer databases using the MetaCore database (with p < 0.01 set as the cut-off value). Table
S4. Pathway analysis of dipeptidyl peptidase 7 (DPP7)-coexpressed genes from public breast cancer
databases using the MetaCore database (with p < 0.01 set as the cut-off value). Table S5. Pathway
analysis of dipeptidyl peptidase 8 (DPP8)-coexpressed genes from public breast cancer databases
using the MetaCore database (with p < 0.01 set as the cut-off value). Table S6. Pathway analysis
of dipeptidyl peptidase 9 (DPP9)-coexpressed genes from public breast cancer databases using the
MetaCore database (with p < 0.01 set as the cut-off value). Table S7. Pathway analysis of dipeptidyl
peptidase 10 (DPP10)-coexpressed genes from public breast cancer databases using the MetaCore
database (with p < 0.01 set as the cut-off value).
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