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We identify a unique viewpoint on the collective behaviour of intelligent

agents. We first develop a highly general abstract model for the possible

future lives these agents may encounter as a result of their decisions. In the

context of these possibilities, we show that the causal entropic principle, whereby

agents follow behavioural rules that maximize their entropy over all paths

through the future, predicts many of the observed features of social interactions

among both human and animal groups. Our results indicate that agents are

often able to maximize their future path entropy by remaining cohesive as a

group and that this cohesion leads to collectively intelligent outcomes that

depend strongly on the distribution of the number of possible future paths.

We derive social interaction rules that are consistent with maximum entropy

group behaviour for both discrete and continuous decision spaces. Our analy-

sis further predicts that social interactions are likely to be fundamentally based

on Weber’s law of response to proportional stimuli, supporting many studies

that find a neurological basis for this stimulus–response mechanism and pro-

viding a novel basis for the common assumption of linearly additive ‘social

forces’ in simulation studies of collective behaviour.
1. Introduction
Collective decision-making and the emergence of collective intelligence are key

areas of study in animal behaviour and social science. Since Francis Galton

observed the power of the central limit theorem to provide an accurate estimate

for the weight of a bull by averaging individual opinions (as told by James

Surowiecki [1]), the ability of groups to make decisions that improve on the

accuracy of the individuals comprising them has continued to surprise

researchers. Human [2], animal [3] and even algorithmic [4] groups have

been shown to improve on individual performance in estimation problems

(Galton’s bull example), navigation [5], identifying superior options [6] and pre-

diction tasks [7]. In an age of unprecedented global connectivity of individuals

through Web and mobile Internet technologies, the opportunity to understand

the origins of social behaviour is greater than ever before.

Much is already known about how the transfer of information by individ-

uals can lead to intelligent outcomes on the group level. Models of social

contagion [8–10], quorum decision-making [11–13], Bayesian social decision

rules [14,15] and information cascades [16,17] all provide a detailed theory

for how each agent in a group can acquire and use information from other indi-

viduals’ actions, and under what conditions this leads to improved or disrupted

decision-making.

However, when we face the challenge of understanding the collective

behaviour of the millions of connected individuals now on our planet, the

prospect of beginning that process at the level of a single individual decision

maker is daunting. Statistical mechanics, and particularly the principle of

maximum entropy [18], provides an expedient methodology for studying the

behaviour of large systems with many interacting elements. Harte and

co-workers [19,20] show how maximum entropy methods imply specific non-

trivial distributions of organisms in space and energy usage, which match

observed natural distributions and those predicted by more structured
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biological theory [21,22]. Maximum entropy distributions can

also be used to analyse snapshots of moving groups, inferring

effective interactions by assuming the snapshot of positions

and directions is sampled from a Boltzmann distribution

[23]. Such an approach assumes that the collective is in a

form of quasi-equilibrium. Extending the maximum entropy

concept, the principle of maximum entropy production

(reviewed by Niven [24]) has enabled these methods to be

applied to more-general flow systems outside of the classical

notion of equilibrium, and causal entropy [25] has been pro-

posed to extend this to the case where the individual

elements of the system exhibit intelligence.

A physical, mechanical approach has already provided a

fruitful route to understanding collective behaviour, in par-

ticular collective motion, via the abstraction of social forces:

pseudo-forces that can modify an agent’s energy depending

on its alignment with or proximity to other individuals

[26], or explicitly provide a physical force to alter the

agents’ motion [27,28]. Such approaches have been able to

demonstrate why human and animal groups undergo

phase transitions between quasi-equilibria analogous to

those seen in statistical–mechanical systems and have been

developed to a particularly high degree of sophistication in

the study of human crowds [29], where they are used to

understand disasters such as at Hillsborough (1989) and the

Love Parade (2010) [30]. However, social forces are a con-

venient abstraction of psychological choices, and therefore

are typically adjusted to fit observations, rather than being

based on the fundamental logic of interactions.

In this paper, we demonstrate a new way to understand

collective behaviour, from a purely entropic viewpoint, with-

out any a priori specification of social information transfer,

social forces or individual interaction rules. We do this by

building on the causal entropic (CE) framework of Wissner-

Gross & Freer [25]. By specifying our uncertainty about the

long-term futures of a group of agents, we will show that

the decisions this group makes now can be predicted. We

will further show that social rules of interaction and social

forces, as assumed in many studies of collective behaviour

in the form of conditional expectations for agents to make

specific choices based on their decisions of others, emerge

not from the adaptiveness of the agents’ choices, nor from

any consideration of their immediate needs or desires, but

simply from a tacit assumption that their long-term actions

are maximally uncertain.
2. The causal entropic principle
The CE principle is an assertion about our knowledge of a sys-

tem’s future path through state space. This is fundamentally an

argument from a principle of maximum ignorance—we deem

ourselves to be as uncertain as possible about the path an

agent will take through all the future options available. As

we shall show, this counterintuitively provides us with infor-

mation about which choices the agent is likely to make now.

In previous work, Wissner-Gross & Freer [25] derived a ‘CE

force’ that drives systems towards locally available new micro-

states that permit a greater number of available paths through

future state space. In the cases presented by Wissner-Gross &

Freer [25], this force acts upon particles moving in a continu-

ous, bounded Euclidean space. As the ergodic principle for

equilibria states that any microstate of the particles in the gas
is equally probable, so in a causal entropic system, all available

future paths are assigned an equal probability. Therefore, the

probability of any new reachable microstate being selected is

proportional to the number of future state-space paths that it

makes available. This CE force was shown to cause a diverse

range of systems to behave in apparently intelligent ways,

mimicking for example animal use of tools or complex

cooperation. Inspired by these examples, we consider whether

the same principle can predict the interactions between

individuals in groups that are the foundation of collective

cognition and intelligence.
2.1. Application to collective decisions: a toy example
Consider observing a group of agents who must decide

between two options, A and B. Typically for social animals

(including humans) that live as groups, social interactions

between individuals will have an influence on which option

each agent chooses. This interaction is typically expressed

via the conditional probability for a focal agent to choose

option A, based on the number of other individuals who

have chosen either A or B, which we denote nA and nB:

P(AjnA, nB). From this conditional probability, the likelihood

P(nA) that a certain number of the agents will ultima-

tely choose option A can be derived by considering the

probability of all possible sequences of choices that lead to

that outcome.

We address this problem in reverse. We first derive the

group-level distribution P(nA), and ultimately use this to

infer an equivalent individual interaction rule P(AjnA, nB)

that satisfies this. We assume that at the macro-scale group

level, the distribution of future paths through state-space will

conform to the CE principle, and subsequently ask which

interactions between individuals would need to evolve to pro-

duce this maximum entropy distribution. Thus, we retain the

principle that the individual acts as the decision maker. Further-

more, we do not assign entropy-maximizing agency or will to

the individual agent or to the group; we ask instead what

interactions the maximum entropy distribution implies and

assess whether these correspond to interactions previously

observed in nature and in experiments.

In this example, we construct a hypothetical world where

the information about the future is the following: behind one

door lies four more options; behind the other, there is only

one. This is illustrated in figure 1. Assuming that the door

with four options is equally likely to be either A or B, what

distribution of the agents between the two options will maxi-

mize their expected entropy, over the possible future paths to

the final level of the branching tree?

For any given branching tree, entropy is maximized by

making any assignment of the agents to each future path

that reaches the final level equally probable. Because the

graph of choices is a tree, each final option is associated

with a single unique path through the future space; therefore,

it is equivalent to assign agents randomly to the final nodes

on the tree. We aim to find a consistent distribution of

agents that maximizes the path entropy over all possible

worlds—a general way for the agents to organize themselves

such that their entropy will be as high as possible, on average,

in all the worlds they might encounter. Therefore, we take

each possible tree, weighted by its probability of existing

and assign a uniform multinomial distribution of the agents

to its final nodes. We then feed this distribution back to the
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Figure 1. Schematic of a toy example illustrating the CE collective model. A
group of agents at the root of the tree must choose between two options: ‘A’
and ‘B’. Two possible worlds exist: one where option A leads to four more
choices and B to one, or one where A leads to one more choice and B to
four. The decision rule for the group that maximizes their future path entropy
averaged over the two possible worlds is a mixture of two binomial distri-
butions, shown in figure 2.
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Figure 2. An example of predicted decisions by a group of eight agents in a
‘toy’ world: choosing one (unknown) option leads to four possible future
paths, and the other to one. A future path is assigned at random to each
agent, averaging over possible configurations of the future world, where
the four options may be behind choice A or B. The predicted distribution
of nA, the number of agents choosing door A, is a weighted sum of binomial
distributions, with far greater cohesion than expected if each agent would
independently choose a door at random.
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first choices (in this case, A and B) that the agents must make.

Denoting by N the total number of agents, and by nA and nB

the number choosing each door, this model implies that the

probability distribution for the number choosing door A is

a weighted sum of two binomial distributions, one with

p ¼ 4/5, the other with p ¼ 1/5. Each has a weight of 1/2,

as each has a 50% chance of existing:

P(nA) ¼ 1

2

N
nA

� �
4

5

nA 1

5

N�nA

þ 1

2

N
nA

� �
1

5

nA 4

5

N�nA

¼ 1

2

N
nA

� �
4nA þ 4N�nA

5N : (2:1)

For the case of eight agents picking between these two

options, the expected distribution is shown in figure 2, along-

side the distribution we would expect if each agent chose a

door independently at random. The exact form of the distri-

bution varies with the total number of agents, as well as

with the number of future options. The figure clearly shows

that the CE principle, picking randomly from future options

rather than the immediately available ones, induces a greater

degree of cohesion on the agents—they are much more likely

to choose the same option. This cohesive ‘force’ increases as

the difference between the number of options behind each

door increases.
3. Collective causal entropic model
We now expand the toy example above to consider more gen-

eral collective decisions, where the information about the

number of future options is less precise. Letting P(pA) and

P(pB) describe the probability of finding pA and pB future

paths behind doors A and B, respectively (assuming for

now that these are independent), equation (2.1) generalizes
to an infinite sum of probability-weighted binomial

distributions.

P(nAjN) ¼
N
nA

� � X1
pA¼0

X1
pB¼0

P(pA)P(pB)
p

nA

A p
N�nA

B

(pA þ pB)N

¼
N
nA

� �ð1

R¼0

P(R)RnA (1� R)N�nA dR, (3:1)

where R ¼ (pA)/(pA þ pB). The key factor in equation (3.1)

that controls the number of agents nA choosing door A is

the ratio R, the proportion of future options that lie behind

door A. The problem of estimating the agents’ behaviour is

thus largely a problem of estimating P(R), the probability of

this ratio.
3.1. A distribution for the number of possible futures
In general, the number of future paths that either A or B may

lead to may take any distribution. However, for the purposes

of deriving the consequences of a model of collective

decision-making, we must determine a specific form for

P(pA) and P(pB), and most importantly for P(R). We propose

the following method: a continuing branching tree of possible

choices, in which each branch leads to an unknown number

of future choices (illustrated in figure 3). The number of

new choices generated on each branch is determined by

some fixed distribution, independent of time. This is a

Galton–Watson (GW) process [31]. We stress that the

agents themselves need not hold any beliefs about these

future choices. Instead, we argue that agents will develop

interaction rules that serve to maximize entropy over these

possible trees of future choices.

We are interested in the number of nodes on this branch-

ing tree after some time window h—the height of the tree.

The Kesten–Stigum theorem [32] states that for any GW

process, the distribution on the number of nodes converges

to an exponential distribution, conditional on the tree not
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Figure 3. Schematic illustrating the general branching process of future
choices. Each choice leads to an unknown number of future options to
choose between, creating an expanding tree of possible future paths.
The number of new options is generated from a stationary probability dis-
tribution, such that each new branch forms an independent and identically
distributed tree. The total number of options at the top of the tree, p, is
distributed according to a GW process. If the probability of generating no
new choices is non-zero, dead-ends can form (black circle) and there is a
probability a that the tree will become extinct. The CE collective model
assumes that agents will be uniformly distributed on the final options
(red circles), weighted by the probability of the tree being generated by
a GW process.
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becoming extinct. Thus, including the possibility of extinc-

tion, for large h, the number of options is distributed as

P(p) ≃ ad(0)þ (1� a)
1

zh exp � p

zh

� �
, (3:2)

where z is the mean number of descendants of each node in

each generation, a is the extinction probability and d is the

Dirac delta function. The extinction probability is determined

by the fixed point of the generating function for the number

of new choices generated on each branching. We will treat a

as an adjustable parameter of our model. The behaviour of

agents on this tree is determined, via equation (3.1), by the

ratio distribution P(R) ¼ P((pA)/(pA þ pB)). Since our

assumption is that each new branch of the tree forms an inde-

pendent GW process, this takes a simple form

P(R) ¼ 1

1þ a
((1� a)þ a(d(0)þ d(1))): (3:3)

This follows from noting that the ratio X/(X þ Y ) of two

identically distributed exponential random variables X and

Y is a uniformly distributed random variable on (0, 1), and

considering the special cases where either pA or pB is zero.

Instances where both pA and pB are zero are undefined

and do not contribute to the calculation. The Dirac delta func-

tions are the result of the possible extinction of one branch or

the other. The final distribution over the choices of N agents

can be obtained via equation (3.1) and mirrors the distri-

bution of R, with an equal probability of 1 to N – 1 agents

choosing door A, and higher probabilities for either 0 or N
agents to do so if a . 0. An equivalent model exists for a

tree embedded in continuous time: the Yule process [33,34].

Thus the distribution derived for P(R) does not depend on

whether the branching process for possible future trees is dis-

crete or continuous in time.
3.2. More than two choices
The same principles used to derive the distribution of the

agents over two choices can be applied to an arbitrarily

higher number of options. To do so, we need the following

fact: the proportional ratios of i.i.d. exponential random vari-

ables X1,X2, . . . ,XK are beta distributed. Using this fact and

accounting for the probability that one or more of the trees

behind each option goes extinct, we may generalize equation

(3.3). We have the following probability distribution for R, the

proportion of future paths behind one choice, in the case

where there are K options:

P(R) ¼ 1

1� aN

"
a(1� aN�1)d(0)þ aN�1(1� a)d(1)

þ (1� a)
XN�1

i¼1

N � 1

i

� �
aN�1�i(1� a)i b(R, 1, i)

#
,

(3:4)

where b(R; a, b) represents the beta probability distribution on

R with parameters a and b. As a becomes large, the factors

multiplying the beta probability distributions tend to zero

faster than the delta function terms, and consensus is still

enforced. Each door shares an equal probability of being

the consensus choice, reflected in the greater chance that

R ¼ 0 than R ¼ 1. This result mirrors the experimentally

observed tendency of, for example, fish to remain as a

group when presented with three options [35], though it

should be noted that this framework does not provide a

clear way to model groups with conflicting preferences—a

limitation addressed in the discussion. For all but the

highest values of a, the probability of a consensus decreases

with the number of options K, implying the common-sense

notion that the probability of all agents choosing the same

option is reduced as the number of equivalent choices

becomes very high.
4. Consequences
4.1. Consensus decision-making
The CE model predicts a tendency for groups of agents to

reach a consensus. In the case where the extinction prob-

ability is greater than zero, there is a strong entropic

‘bonus’ for agents to remain as a single group, specified by

the Dirac delta functions in equations (3.3) and (3.4). How-

ever, even in the case where the probability of all but one

future tree becoming extinct is effectively zero, such as

when a is zero or very small, or when the number of choices

is very high, there is still a strong bias towards consensus

decisions. For example, in the case that a ¼ 0, in figure 4

we plot the probability that a group of agents of size 2, 3 or

4 will choose the same option from K independent choices,

compared to the probability of this occurring if each agent

makes a choice uniformly at random.

4.2. Social interaction rules
The entropic prediction of collective consensus is fundamen-

tally a group-level analysis. Most studies in collective

decision-making have started from a model of how individ-

uals react to the decisions of others. What individual

interaction rules would be necessary to produce the group-

level behaviour that our analysis predicts? We can answer

this question by considering a single individual choosing
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Figure 4. The ratio of the probability that a group of N agents make the
same choice from K options within the CE model, relative to random
chance. Note the log scale on the y-axis. The ratio is always above one
for K . 1 and increases with both K and N, indicating the CE model’s
bias towards consensus collective decision-making.
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Figure 5. The increasing proportion of agents avoiding a threat with a low
detection probability (d ¼ 0.1) as a function of group size, for different
values of the extinction probability on the future paths tree. The greater
the possibility of one or other of the future path trees becoming extinct,
the greater the cohesive force between the agents, and thus the stronger
the information transfer between the detecting agents and the others,
resulting in improved collective intelligence.
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from two options when the other members of the group have

already decided. From equation (3.1), assuming that nA and nB

agents have already assigned themselves to options A and B:

P(AjnA, nB) ¼
Ð 1

R¼0 P(R)RnAþ1(1� R)nB dRÐ 1
R¼0 P(R)RnA (1� R)nB dR

: (4:1)

If the extinction probability is zero (a ¼ 0), implying that

P(R) ¼ 1, this can be simplified in form to reveal a Weber’s

law interaction [36]:

P(AjnA, nB) ¼
Ð 1

R¼0 RnAþ1(1� R)nB dRÐ 1
R¼0 RnA (1� R)nB dR

¼ b(nA þ 2, nB þ 1)

b(nA þ 1, nB þ 1)

¼ nA þ 1

nA þ nB þ 2
,

(4:2)

where b is the beta function. This is Weber’s law with one

‘pseudo-observation’ for both A and B, and also corresponds

to the expected value of a Bernoulli probability after observing

nA successes and nB failures, assuming a uniform prior.

In the case where a . 0, there exists a special case when

either nA or nB is equal to zero. For example, if nA . 0 and

nB ¼ 0 then

P(AjnA . 0, nB ¼ 0) ¼ (1� a)b(nA þ 2, 1)þ a

(1� a)b(nA þ 1, 1)þ a
: (4:3)

In this special case, a! 1 enforces the same consensus as

derived at the group level, since the first agent to commit

to option A or B makes the probability of that option for sub-

sequent agents approximately equal to one, thus causing an

irreversible information cascade.
4.3. Collective intelligence
The entropic enforcement of consensus decisions implies

some degree of collective intelligence. To see this, consider

the model used by Ward et al. [37] to explain the collective
decisions of groups of varying size. In this ‘many-eyes’

model, if any one agent in a group spots a threat, all agents

will avoid it. This implies that the proportion of agents avoid-

ing a threat should grow in proportion to the probability that

at least one will spot the threat, i.e. 1 2 0.5(1 2 d )N, where d is

the detection probability.

Our model implies a similar result. As the agents them-

selves are not actively trying to maximize entropy (instead,

social decision rules have evolved that tend to maximize

entropy in general), any agent seeing a threat should avoid

it. However, once this occurs, the general tendency of the

other agents to maintain a consensus means that the group

will generally stick together, with a probability determined

by the extinction probability of the branching process, closely

mimicking the many-eyes model. We can calculate the

expected number of agents avoiding a threat as a function

of the extinction probability, by conditioning equation (3.1)

on a given number, i, detecting the threat and avoiding it,

and weighting by the probability of that number of detec-

tions, given d.

P(nA avoidthreat)¼
XnA

i¼0

N
i

� �
di(1�d)N�i

�

�
N�i
nA�i

� �Ð 1
R¼0 P(R)RnA�i(1�R)N�nA�i dRÐ 1

R¼0 P(R)Ri dR

#
:

(4:4)

In figure 5, we plot the implied collective intelligence for differ-

ent values of the extinction probability, in the case where any

given agent has a d¼ 0.1 chance of detecting a hidden threat,

as in the example of Ward et al. [37]. The prediction for high

values of a is essentially identical to the prediction of Ward

et al. [37]. When a is high, consensus is entirely enforced

since equation (3.3) tends to the sum of two delta functions.

This implies that one agent that spots and avoids the predator

is sufficient to cause all group members to avoid it, matching

the assumption made by Ward et al. [37].
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4.4. Collective motion: derivation of a social force
Set in a discrete space, the model we describe here does not

give immediate quantitative predictions about the types of

collective motion [38] we would expect in a continuous

space. However, we can sketch what such a generalized

model would look like. The choice of which direction to

move in is a decision like any other, but with many possible

options. According to the arguments above, agents in

approximately the same spatial location—those who will

experience the same branching process of future options—

should tend to move in the same direction.

For a given type of agent and environment, there is likely

to be a typical spatial range over which future option trees are

strongly correlated. We can associate this with the zones of

interaction found in many models of collective motion, such

as the classic Vicsek model [26] and Couzin zonal model

[27]. In the case of a relatively confined environment, individ-

uals outside of the immediate perceptual range may still

experience the same future trees, and this can be expressed

in individual interaction terms via a memory of encounters

[39], leading to something akin to a mean-field model.

We can discuss the form of interaction rules with refer-

ence to a quantitative special case. Assume that in a

continuous space, there are N þ 1 agents, of which N are

already committed to a particular position. Where should

the (N þ 1)th agent position itself? Let Ri ¼ pi/
P

jpj be the

ratio of number of future options at xi to the number available

at all other points fxjg. At each point xi in the space-direction

continuum occupied by an agent in f1, . . . ,Ng, there is a

probability distribution over this ratio P(Rijxi), where Ri are

assumed to be i.i.d. unless two points share the same future

tree. Let us further assume a particular form for the distri-

bution P(RNþ1jxNþ1): with probability gk, this position

shares a future tree with position xk. We take this probability

to be defined by a squared exponential decay function

gk ¼ exp (�L�1(xNþ1 � xk)2): (4:5)

The probability distribution of possible position choices nNþ1 is

determined by a mixture of the possibility that P(RNþ1jxNþ1)

is independent of all other points, and each of the possibilities

that xNþ1 shares a future tree with the position of another

agent. Again ignoring second-order effects, we have

P(xNþ1) ≃ 1�
X

k

gk

 !Y
i

kRlþ
XN

k¼1

gkkR2l
Y
i=k

kRl

¼ mNþ1 þ
XN

k¼1

gkm
N�1s2, (4:6)

wherem ¼ kRl ands2 ¼ kR2l� m2. We find the optimal position

by maximizing P(xNþ1), obtaining

d

dxNþ1

XN

k¼1

exp (�L�1(xNþ1 � xk)2) ¼ 0, (4:7)

which we identify as the least-squares solution: xNþ1 ¼
1=N

PN
k¼1 xk. Therefore, the unique optimal position for agent

Nþ1 is the mean position of all the other agents, implying a

social force towards this point proportional to dP(xNþ1)/

dxNþ1. It should be clear that the same argument would apply

in relation to the direction choices of other individuals as well,

creating an equivalent social force to rotate the agent’s direction

towards the average of the group. If the probability of sharing
future trees were correlated between space and direction, then

a distance-dependent alignment force would emerge.
5. Discussion
We have demonstrated that the CE principle gives a purely

statistical prediction for many of the emergent properties of

collective behaviour, without any detailed understanding on

the mechanisms of interactions between individuals. Com-

pared to previous work applying maximum entropy

methods in behavioural ecology (e.g. [20,23]), our approach

differs by focusing on dynamical processes rather than static

snapshots or equilibrium distributions. As such we measured

entropy over paths through state space, following Wissner-

Gross & Freer [25], rather than entropy over current positions

and velocities. Adopting the taxonomy of modelling

approaches described by Sumpter et al. [40], this is a purely

global approach to modelling groups and is complementary

to a detailed understanding of individual behaviour, rather

than a replacement. On the individual level, selection favours

those who make decisions which aid their survival and repro-

duction. This is entirely consistent with the idea that the group

operates with some degree of consensus, as following the

decisions of other group members is often individually

rational [14–16]. Our claim is that the resulting collective be-

haviour can be understood in part from a group-level

entropic view without a detailed understanding of how or

why individuals interact by considering the probability

distribution of all possible futures for the group.

Our model takes a unique approach to understanding the

origins of collective behaviour and makes testable predictions

about the fundamental form of social interactions. It predicts

that interactions between individuals take the form of

Weber’s law. This social decision rule has empirical support

in the response to various stimuli of several species, e.g.

insects [41,42], fish [15] and humans [10,43], as well as a

solid grounding in experimental psychology [44] and the psy-

chophysical [45] and neurological [46] basis of estimating

differences. In continuous spaces, we have shown that

reasonable assumptions about the spatial and directional cor-

relations between individuals’ futures lead to social forces

resembling those of self-propelled particle models, which

have also found experimental support [47–49], and which

underlie static maximum entropy approaches to collective

self-organization [23]. As our model can be shown to be

equivalent to Weber’s law interactions and social forces,

data supporting these form of interaction would equally

support our construction in an empirical test.

However, there are other studies that find that individual

decisions are better described by more nonlinear interactions

[11,12]. As pointed out by Bialek et al. [23], the fact that a maxi-

mum entropy method makes minimal assumptions does not

necessarily make it correct. Instead, this should be seen as a

basis model for social behaviour, implying that Weber’s law

can be considered the most basic form for social interactions.

However, observations of apparent nonlinear interactions do

not necessarily imply a fundamentally different mechanism.

Perna et al. [42] have shown that an accumulation of Weber’s

law interactions, combined with some degree of noise or inac-

curacy (which we would expect in any real system) can lead to

apparently nonlinear interactions. We therefore suggest that

where nonlinear interactions are observed, these may be the
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result of an accumulation of smaller scale linear interactions,

which self-propelled particle models have shown can lead to

strongly nonlinear consensus decision-making in moving

groups [50,51]. In many experimental set-ups involving

animal groups, the choices ultimately made by the individuals

are not single events, but the final result of a period of motion

where many smaller choices are made, supporting the idea

that the final choice can be seen as an accumulation of smaller

interactions.

A limitation of our model is the lack of a description of

groups with conflicting information or preferences. Variation

in information or personality in groups has been shown to be

a potentially important driver of collective outcomes

[50,52,53]. This could potentially be addressed by assigning

different beliefs to each agent about the probability distri-

bution on future trees. However, we have deliberately

framed our model in terms of a consistent rule that produces

a maximum entropy result over all possible futures, rather

than assigning entropy-maximizing agency to the individuals

themselves. There is no clear reason for individual agents,

animal or human, to desire greater entropy over future

paths; rather, we consider it as a minimal assumption regard-

ing our certainty in which futures may be possible, and

which decisions the agents will take. Nonetheless, the view-

point could be relaxed to allow the emergence of a more

sophisticated model including conflicting groups in the

future. The entropic consequences of conflict are therefore

an area of importance for future research in this area.
The model described here gives a simple caricature of the

types of decisions that face groups of intelligent agents. This

abstraction is useful for understanding the logic of how CE

maximization implies group behaviours, social interactions

and collective intelligence. We have shown how the model

might be generalized to a continuous space in consideration

of collective motion. Such an expansion of the model could

potentially describe the structure of moving animal groups

[23,54,55] and patterns of group-level direction changes

[56]. More widely, the CE principle may provide a general

framework for understanding the dynamics of complex intel-

ligent systems, extending from animal groups, through

organizations such as corporations and governments, to

global human social systems built on the enormous connec-

tivity of the Internet. We cannot be sure what series of

choices every animal, pedestrian, bureaucrat or social-net-

work user will face, or what decisions they will make, over

an extended period of time. But precisely this ignorance can

help us to predict what they will do next.
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