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A novel trehalose synthase (TreS) gene was identified from a metagenomic library of saline-alkali soil by a simple
activity-based screening system. Sequence analysis revealed that TreS encodes a protein of 552 amino acids, with a
deduced molecular weight of 63.3 kDa. After being overexpressed in Escherichia coli and purified, the enzymatic
properties of TreS were investigated. The recombinant TreS displayed its optimal activity at pH 9.0 and 45 °C, and
the addition of most common metal ions (1 or 30 mM) had no inhibition effect on the enzymatic activity evidently,
except for the divalent metal ions Zn?* and Hg?*. Kinetic analysis showed that the recombinant TreS had a 4.1-fold
higher catalytic efficientcy (Kcat/K,,) for maltose than for trehalose. The maximum conversion rate of maltose into
trehalose by the TreS was reached more than 78% at a relatively high maltose concentration (30%), making it a good
candidate in the large-scale production of trehalsoe after further study. In addition, five amino acid residues, His172,
Asp201, Glu251, His318 and Asp319, were shown to be conserved in the TreS, which were also important for
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Introduction

Trehaolse is a naturally occurring non-reducing disaccharide
in which the two glucose unites are linked via an a,a-(1,1)-
glycosidic bond. Although there are three different anomers of
trehalose (i.e. a,a-1,1-,0,8-1,1- and B,p-1,1-), the only known
biologically active form is a,a-1,1-glucosyl-glucose [1]. This
disaccharide has been isolated from a large number of
prokaryotic and eukaryotic cells including mycobacteria,
streptomycetes, enteric bacteria, archaea, yeast, fungi, algae,
low orders of the animal kingdom and higher orders of the plant
kingdom, especially those living in harsh environment [2,3].
Initially, trehalose was thought to act solely as a reserve energy
and carbon source in a manner similar to that of starch and
glycogen, but a growing number of studies indicate that this
sugar instead has important biological function of playing a
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major role in cell protection against various physical and
chemical stresses, such as heat, cold, dehydration,
desiccation, oxygen radicals, and acidic/alkali environmental
conditions [4-6]. Moreover, the ability of the microorganisms to
survive in these environments correlates with their trehalose
content [7,8]. In yeast, the most ancient actor of
biotechnological transformation, trehalose was found to
accumulate, in certain physiological conditions, up to 10%-15%
of cell dry weight [9]. Investigation on the cell membranes of
anhydrobiotic yeast has unraveled that intracellular trehalose
can stabilize proteins in their native state and to reduce their
heat-induced denaturation and aggregation [10,11]. As a
matter of fact, the build-up of trehalose upon heat shock has
been shown to be more important than the induction of heat-
shock proteins as a thermotolerance response element [12].
Also, trehalose was shown to decrease oxidative damage to
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Table 1. Summary of several identified and characterized TreSs from bacterial strains.

Optimum

Gene size Molecular size temperature Optimum Optimum Conversion
Strain name (bp) (kDa) (°C) pH substrate rate Citation
Mycobacterium smegmatis ATCC 14468 1781 71 37 7.2 0.5mM 45% Pan et al., 2004
Thermobifida fusca DSM 43792 1830 66 25 6.5 800mM 60% Wei et al., 2004
Pseudomonas stutzeri CJ 38 2070 76 35 8.5 600mM 72% Lee et al., 2005
Picrophilus torridus DSM 9790 1677 65 45 6 150mM 71% Chen et al., 2006

Wang et al., 2007; Anna et al.,
Thermus thermophilus ATCC 33923 2898 106 65 6.5 3mM 62% O
. i Wang et al., 2007; Wei et al.,

Deinococcus radiodurans ATCC 13939 1659 61 15 6.5 800mM 65% 2004
Arthrobacter aurescens CGMCC1.1892 1797 68 35 6.5 90mM 60% Wu et al., 2009
Enterobacter hormaechei 1626 65 37 6 100mM 48% Yue et al., 2009
Meiothermus ruber CBS-01 2889 106 50 6.5 60mM 65% Zhu et al., 2010
Corynebacterium glutamicum ATCC .

1812 70 35 7 3mM 69% Kim et al., 2010
13032
Deinococcus geothermalis DSMZ 11300 1692 65 40 7.6 300mM 60% Pawel et al., 2012
Thermomonospora curvata DSM 431383 1806 60 35 6.5 3mM 70% Liang et al., 2013
Rhodococcus opacusATCC 41021 1857 79 25 7 90mM 67% Yan et al., 2013
Deinococcus sp. 1656 63.3 45 9 800mM 78% This study

doi: 10.1371/journal.pone.0077437.t001

cell proteins by oxygen radicals and thus to increase the
tolerance of organisms to reactive oxygen species [13]. In
particular, trehalose also has the same protection effect in vitro,
which opens a new field for its application in food, cosmetic,
and pharmaceutical industries, ranging from serving as a
sweetener to a biomaterial stabilizer [14]. Besides acting as a
protectant, trehalose is also an important component of the cell
walls of many mycobacteria and corynebacteria in the form of
glycolipids. A well-known example is trehalose dimycolate (or
cord factor), which was composed by a trehalose core with
mycolic acid esterified at the 6-OH and 6'-OH positions [15].
The cord factor is the most toxic lipid produced by
Mycobacterium tuberculosis and dramatically increases the
impermeability of the cell wall to various antibiotics and thus
was identified as a virulence factor [16].

Although its usefulness was widespreadly recognized, the
cost of commercialized trehalose could reach as high as seven
hundred US$-kg™" in the early 1990s, which was not compatible
with emerging applications [17]. The conventional method for
production, for example, extraction from transformed plants, as
will as fermentation of yeast and Corynebacterium, had too low
a yield and too high a cost to be used. In 1995, the
Hayashibara Co. Ltd. has isolated a two-step enzymatic
system from a bacterial strain belonging to the genus
Arthrobacter sp. Q36 which was obtained from soil [18]. The
novel approach of trehalose production had led to a major
reduction in the commercial price of trehalose to 5-6 US$-kg™,
and for the first time, successfully exploited in industrial
production of trehalose. However, further decrease the
production cost of trehalose could be achieved no other than
the application of the brand-new enzymatic route [19].

Trehalose synthase (TreS, EC 5.4.99.16) was first
demonstrated in Pimelobacter sp. R48 through an extensive
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screening of 2,500 strains of soil bacteria [20]. It can catalyze
the intramolecular rearrangement of maltose into trehalose in a
single step, which represented a simple, fast, and low-cost
method for the future industrial production of trehalose [1]. So
far, a number of TreSs from several bacterial strains have been
identified and characterized (Table 1). However, these TreSs
were still not satisfying in a practical application with regard to
either their activities or conversion efficiency. Furthermore, all
these TreSs were from cultured microorganisms, and little
attention had been paid to those from uncultivable
microorganisms, which may account for more than 99% of
microorganisms in the environment [21]. It is imaginable that
there is a large number of industry-potential TreSs for the
production of trehalose in the uncultivable microorganisms of
environment.

To expand the range of TreSs discovery, culture-based
methods have been complemented or replaced by culture-
independent metagenomic approaches, which theoretically
provide access to the collective nucleic acids from the
uncultivable organisms of various environmental samples [22].
Functional metagenomics based on the direct isolation of DNA
from soil environmental samples, generation of metagenomic
libraries from the isolated DNA, and function-driven screening
of the constructed libraries has been successfully employed in
the identification and characterization of enzymes with special
biocatalytic activities [23]. In the present study, a metagenomic
library from saline-alkali soil sample of Lop Nur in Xinjiang
Uigur Autonomous Region of north-west China was
constructed for the screening new TreSs. Finally, one novel
TreS with high activity and conversion efficiency was identified
and subsequently expressed in Escherichia coli (E. coli). The
specific enzymatic properties of the recombinant enzyme were
also characterized after purification. Furthermore, the functional
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amino acid residues have been predicted by the site directed
mutation based on homology modeling and structure analysis.

Materials and Methods

Bacterial strains and cultivation

E. coli DH5a was used for construction of recombinant
plasmids and E. coli BL21(DE3) was used as expression host.
Thermus thermophilus ATCC 33923 was purchased from the
China General Microbiological Culture Collection Center
(CGMCC). The pUC118 (TaKaRa, Dalian, China) and
pET-22b(+) were used to construct metagenomic libraries and
express the target protein, respectively. E. coli transformants
were grown at 37 °C in Luria-Bertani medium containing 50
pg-mL-* ampicillin [24].

Isolation of DNA from environmental sample

For the construction of a metagenomic library, an
environmental sample was obtained from the soil in Lop Nur.
The total DNA was extracted based on a method described
previously [25]. Soil sample (4 g of wet weight) was mixed with
13.5 mL of DNA extraction buffer, which composed of 100 mM
Tris-HCI (pH 8.0), 100 mM sodium EDTA (pH 8.0), 100 mM
sodium phosphate (pH 8.0), 15 M NaCl, 1%
cetyltrimethylammonium bromide (CTAB), and 1.5 mL of 20%
sodium dodecyl! sulfate (SDS). The mixture was incubated in a
65 °C water bath for 2 h with gentle inversion every 15 to 20
min. The supernatants were collected after centrifugation
(6,000 % g, 10 min) at room temperature and transferred into 50
mL centrifuge tubes. An equal volume of chloroform/isoamylol
(24:1) was added and gently mixed. The aqueous phase was
recovered by centrifugation and precipitated with 0.6 volume of
isopropanol at room temperature for 1 h. The crude nucleic
acids was obtained by centrifugation (16,000 x g, 20 min) at 4
°C, washed twice with cold 70% ethanol and suspended in an
appropriate volume of sterile deionized water.

Construction of a metagenomic library

To construct the metagenomic library, the purified DNA was
partially digested with BamHI. DNA fragments of 2.5-10 kb
were ligated into BamHI-digested pUC118, and the ligated
products were transformed into E. coli DH5a. The transformed
cells were plated onto LB agar plates containing 50 pg/mL
ampicillin (Amp), 0.5 mM isopropyl-B-D-thiogalactopyranoside
(IPTG) and 100 pM  5-Bromo-4-chloro-3-indolyl  3-D-
galactopyranoside (X-gal). After incubation at 37 °C for 24 h,
clones with white color were selected and further tested by
colony polymerase chain reaction (PCR).

Subcloning and gene sequence analysis

Several bacterial trehalose synthase sequences published in
the NCBI database were collected and analyzed by the online
multiple sequence alignment program CLUSTAL W2 (http:/
www.ebi.ac.uk/Tools/clustalw2). As shown in Figure 1, two
degenerate primers TF1 (5-
AGYCCNCTNCGNGAYGRNGGNT-3’) and TF2 (5-
AGNGTNAGYTCRTCRTGRTT-3") were synthesized based on
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the conserved domains. Then colony PCR was carried with
primer TF1 and TF2, clones in white color were used as
templates, the genome of Thermus thermophilus ATCC 33923
was acted as a positive control. PCR products were detected
on a 2% agarose gel. Only the clones containing recombinant
plasmids (pUC118-treS) as well as positive control could
produce detectable band. Then the recombinant plasmids were
extracted and sequenced. The deduced amino acid sequence
analysis and open reading frame search were performed with
BLAST program provided by NCBI (http://
www.ncbi.nlm.nih.gov/). The phylogenetic tree was constructed
by the neighbor-joining methodusing Molecular Evolutionary
Genetics Analysis software (MEGA, version3.1).

Cloning of the treS gene and construction of the
expression vector

Primers TR1 (5-
CCCATATGATGATCCAGACCACCCCACCAG-3) and TR2
(5-CCAAGCTTGTTCAGGCGCAGCCAGTAATAGT-3’) were
synthesized according to the open reading frame (ORF)
sequence to introduce Ndel and Hindlll sites into the 3' and 5'
ends of treS ORF, respectively. The stop condon of treS was
eliminated to in-frame read a His(6)-tag on the C-terminus for
one step purification. The treS gene was amplified by PCR with
the pUC118-freS as template. The PCR product was then
digested with restriction enzymes Ndel and Hindlll, and
inserted into pET22b(+) vector to generate pET22b(+)-treS.
After confirmed by DNA sequencing, the recombinant plasmid
was transformed to the E. coli BL21(DE3).

Protein expression and purification

The E. coli BL21(DE3) harboring pET22b(+)-treS was
inoculated into LB medium supplemented with 50 ug-mL"' Amp
and then grown at 37 °C in a shaker at 200 rpm. When the
ODg,, of the culture reached 0.8, IPTG was added to a final
concentration of 1.0 mM, and then the incubatin was continued
for another 8 h at 30 °C. The cells were harvested by
centrifugation and resuspended in lysis buffer (50 mM KH,PO,-
K,HPO,, 500 mM NaCl, pH 6.0) followed by sonification and
centrifugation at 12,000 x g for 20 min at 4 °C to remove
insoluble cell debris. The supernatant was filtered through a
0.45-ym filter and loaded onto a Ni-NTA affinity
chromatography column according to the manufacturer's
purification protocol manual (Novagen, Ni-NTA His-Bind
Resins). The cell extracts and purified enzyme were analyzed
by 12.5% (w/w) SDS-polyacrylamide gel electrophoresis (SDS-
PAGE). Protein concentrations were determined by the method
of Bradford using bovine serum albumin as a standard [26].

Activity assay of recombinant TreS

The activity of TreS was assayed by measuring the amount
of trehalose produced from maltose. The reaction was
performed in a mixture containing the TreS solution and 100
mM maltose in 50 mM phosphate buffer (pH 9.0) at 45 °C for
30 min, then boiled for 10 min to terminate the reaction. The
amount of trehalose, glucose, and maltose of each reaction
mixture was measured using a high-performance liquid
chromatography (HPLC) system equipped with an RID
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Figure 1. Multiple sequence alignment of trehalose
synthase. TfTS, Thermobifida fusca TreS (AAZ54622.1);

TcTS, Thermomonospora curvata TreS(ACY99119.1); MsTS,
Mycobacterium  smegmatis  TreS(ABK71531.1);  PsTS,
Pimelobacter sp. TreS(BAA11303.1); AaTS, Arthrobacter
aurescens TreS(ACL80570.1); TtTS, Thermus thermophilus

TreS(BAA19934.1); MrTS, Meiothermus ruber
TreS(YP003508484); PtTS, Picrophilus torridus
TreS(YP022847.1); DrTS, Deinococcus radiodurans

TreS(ACL80570.1). Amino acid residues that are identical are
shaded in black boxes, whereas conserved residues are
shaded in gray boxes. The dashed spaces represent gaps to
maximize alignment.

doi: 10.1371/journal.pone.0077437.g001
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(Shodex, China) detector at a flow rate of 0.9 mL-min-'. A NH,
column (Sepax, US) equilibrated with 75% acetonitrile, 25%
Milli-Q water was used. The retention times of glucose,
maltose, and trehalose were 8.0, 11.2, and 12.5 min,
respectively. One unit (U) of enzyme activity was defined as
the amount of enzyme that catalyzes the formation of 1 pmol
trehalose per min under the specified conditions. The
conversion rate was calculated by the ratio of the trehalose
product to the amount of maltose substrate.

Properties of recombinant TreS

The optimum pH of TreS was assayed by incubating the
purified enzyme with 200 mM maltose substrate in 50 mM
potassium phosphate buffer at pH 3.0 to 11.0 and 45 °C for 30
min, respectively. The optimum temperature for TreS activity
was determined at 10 to 80 °C using the same buffer at pH 9.0
for 30 min, respectively. To determine the effect of metal ions
and different chemical reagents on TreS, its activity was also
assayed in the presence of these ions or compounds at 1 mM,
respectively. To determine the conversion efficiency of TreS,
the 5-L reaction system consisted of a 5-L stirred-tank
fermentor (B. Braun, B. Braun Biotech International,
Melsungen, Germany) containing 2-L of a medium was
employed [27].

Determination of kinetic parameters

The Michaelis-Menten (K,) and maximum activity (V,,.,)
constant for recombinant TreS were determined under
conditions of pH 9.0 and 45 °C for 30 min in 200 mM sodium
phosphate buffer containing substrate (maltose and trehalose)
at various concentrations. The resulting data were plotted with
Origin 6.0 software (Microcal, Northampton, MA). All
experiments were carried out in triplicate.

Construction and analysis of protein models for TreS

Models were built through an online Automatic Modeling
Mode server at http://swissmodel.expasy.org. Obtained models
were analyzed through Swiss-Pdb Viewer [28] and PyMOL
(http://www.pymol.org). Structure predictions for TreS were
made by the development of the homology model using the
resolved X-ray structure of a-amylase with Protein database
entry code 1SMA as template.

Site-directed mutagenesis of TreS

Mutants were obtained through a cloning method with two
complementary primers containing mutation bases. The
pET22b(+)-treS plasmids were amplified by PCR with
PrimeSTAR HS DNA polymerase (Takara, Dalian, China). To
remove the templates, Dpnl was added to PCR reactions for 1
h at 37 °C. The digested products were then directly
transformed into competent E. coli DH5a to obtain mutation
recombinant plasmids. After identified by sequencing, the
recombinant plasmid containing mutation site was transformed
to the E. coli BL21(DE3).
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Thermobispora bispora TreS(YP003653451)
Streptosporangium roseum TreS(YP003343539)
Thermomonospora curvata TreS(ACY99119.1)
Thermobifida fusca TreS(AAZ54622.1)
Streptomyces ghanaensis TreS(ZP06576540)
Streptomyces hygroscopicus TreS(YP006243246)
Streptomyces davawensis TreS(YP007526826)
Mycobacterium smegmatis TreS(ABK71531.1)
Rhodococcus opacus TreS(AGF84773.1)
Pimelobacter sp. TreS(BAA11303.1)
Arthrobacter aurescens TreS(ACL80570.1)
Picrophilus torridus TreS(YP022847.1)
Deinococcus peraridilitoris TreS(YP007182934)
Meiothermus silvanus TreS(YP003685394)
Deinococcus maricopensis TreS(YP004171115)

This study
93 Deinococcus radiodurans TreS(ACL80570.1)
83 Deinococcus gobiensis TreS(YP006261985)

Truepera radiovictrix TreS(YP003705085)

100 Meiothermus ruber TreS(YP003508484)
100 [ Thermus thermophilus TreS(BAA19934.1)

1001 Thermus sp. TreS(ZP09897732)

Enterobacter hormaechei TreS(ACI16355.1)
— Pseudomonas stutzer TreS(AF113617.1)

100L— pseudomonas syringae TreS(ZP21127579)

1.0 0.8 0.6 0.4

0.2 0.0

Figure 2. Phylogenetic tree analysis of TreS in this study and other trehalose synthases.

doi: 10.1371/journal.pone.0077437.g002

Results

Construction and screening of the metagenomic library

A metagenomic library of ca. 85,000 clones was constructed
for obtaining trehalose synthase genes. Restriction analysis of
20 randomly selected clones indicated that all the clones
harbored insertion DNAs ranging from 2.5 to 5 kb in size, with
an average of approximating 3.5 kb. The metagenomic library
processed a capacity ~300 Mb of soil microbial genomic DNA.
One clone expressing trehalose synthase activity was isolated
after all the clones in the library had been screened.

Sequence analysis of treS gene

The plasmid of pUC118-treS was extracted and the complete
insert DNA was sequenced. The length of the insert DNA was
5,356 bp. An ORF-finder and BLAST analysis revealed the
presence of an ORF consisting of 1,656 bp, encoding a full-
length treS gene, which further encoded a protein of 552 amino
acids with a predicted molecular mass of 63.3 kDa. The
deduced amino acid sequence of treS was used to perform a
BLAST research of the NCBI and SwissProt databases. This
search revealed that the protein has the highest similarity
(84%) with trehalose synthase from Deinococcus radiodurans
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R1 [29]. As can be seen in Figure 1, multiple sequence
alignments of this treS gene with 10 reported trehalose
synthase revealed that they share several highly conserved
amino acid motifs, such as SPLRDG/DGYDV/I, FPL/
VMPRI/LF/Y, NHDELTLE, GIRRRLA/MPL, and so on.
However, the region SRVPAPNTVF in this treS gene of the
present study was significantly different from the conserved
regions YYGDEIGMGD in other listed treS genes (Figure 1).
Such a result suggests that the cloned fragment may originate
from an uncultured organism, and the identified gene-encoding
products possibly had a unique function. The phylogenetic tree
based on amino acid sequence was further constructed to
verify the evolutionary relationship of this treS gene to other
known trehalose synthases, and 24 trehalose synthase
proteins were selected for the phylogenetic tree analysis. As
shown in Figure 2, this recombinant TreS has a close
relationship to Deinococcus genus regarding sequence
homology.

Expression and purification of the recombinant TreS

To characterize the biochemical properties of the
recombinant TreS, the treS gene was expressed as an N-
terminal His-tag fusion protein using pET22b(+) expression
system in E. coli BL21(DE3). No inclusion bodies were found in
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W <€ his study

Figure 3. SDS-PAGE analysis of the purified recombinant TreS. Lane M is protein molecular weight markers. Lane 1 is the
crude extract of the recombinant strain E. coli BL21 with pET22b. Lane 2 is the crude extract of the recombinant strain E. coli BL21
with pET22b-treS. Lane 3 is the recombinant enzyme TreS purified using Ni-NTA affinity chromatography. The arrow indicates the

recombinant TreS in this study.
doi: 10.1371/journal.pone.0077437.g003

cell lysates, which suggested that this recombinant TreS was
expressed in a soluble form. The cells were harvested and
disrupted by sonication on ice. When compared to the sample
without induction (Figure 3, lanes 1), only the induced cells
containing the recombinant vector expressed an extra protein
band migrating at about 65 kDa upon induction (Figure 3, lanes
2). The recombinant protein was about 1.5 kDa heavier than
the predicted molecular mass of 63.3 kDa, which was due to
the additional 13 amino acids including the His(6)-tag at the N-
terminus. After purification with the Ni-NTA column, a single
band was shown on the SDS-PAGE gel correlating with the
size of enzyme, indicating that the recombinant enzyme was
purified to homogeneity (Figure 3, lane 3).

Effects of pH and temperature on activity of TreS

The optimum pH of the recombinant TreS was found to be
9.0. The enzyme maintained high activity at a broad pH range
of 5.0-10.0 (Figure 4A). The optimum temperature was 45 °C.
Meanwhile, the enzyme maintained high activity when reaction

PLOS ONE | www.plosone.org

temperature ranged from 15 °C to 55 °C. However, relative
activity quickly decreased when temperature was above 55 °C
or below 15 °C (Figure 4B). Thus, it is probably more efficient
to carry out conversions at moderate temperatures. In this
study, the recombinant TreS exhibited a stable performance
under the wide working conditions (pH 5.0-10.0 and 15-55 °C,
Figure 4). Further studies of the effects of temperature,
reaction mixtures containing 200 mM maltose were incubated
under pH 9.0 at 55 °C for 1 h, the remaining activity of the
recombinant TreS was as high as 80% of its initial activity.

Activity assay of the recombinant TreS

Enzymatic activity was detected with purified TreS in
reactions of the conversion between maltose and trehalose. It
was confirmed that the DNA fragment was the intrinsically
coding sequence of active TreS. The highest enzyme activity
was calculated to be 133.5 + 4.8 U-mg’ protein, and the
conversion efficiency was test in a 5-L reaction system. After
18 h of TreS-catalyzed reaction, the final yield of trehalose was
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Figure 4. Effects of pH (A) and temperature (B) on the activity of TreS. (A) The enzyme activity at various pH values were
examined at the maltose concentration of 200 mM and 45 °C for 30 min. (B) The enzyme activity at various temperature were

examined at the maltose concentration of 200 mM and pH 9.0 for 30 min. The average of triplicate experiments is presented.
doi: 10.1371/journal.pone.0077437.9g004

constantly above 75%, with the maximum value of 78% under Effects of mental ions and reagents on activity of TreS
the optimum condition at a relatively high maltose

The effects of metal ions and reagents were further
concentration (30%).

determined by examining recombinant TreS activity in the
presence of 1 and 30 mM of these substances under standard
assay conditions (Table 2). As shown in Table 2, the TreS
activity was inhibited strongly by Hg*, Zn?*, and SDS and
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Table 2. Effects of metal ions and reagents on the activity
of TreS.

Reagent Relative activitya (%) Reagent Relative activitya (%)

1mM 30 mM 1mM 30 mM
none 100 100 MgCly 106+ 6 104 +3
ZnS0Oy4 69 +4 41+5 MnCly 9+5 98 + 6
CuSOy4 82+6 80+4 BaCly 98 +2 95+5
CdSO4 78+5 74+5 CaCly 97 +6 98 +5
Al2(SO04)3 1045 1032 PbCly 82+5 78+3
FeSOy4 99 +4 98+5 HgClp 68+5 34+3
DTT 98+3 85+5 SrClp 95+7 92+2
EDTA 97 +2 93+4 NiClp 90 +4 88+5
SDS 65+5 58+3 CoCly 93+1 9143
Tris 74+2 65+5

2 Enzyme activity was measured in the presence of 1 and 30 mM metal ions or
reagents under assay conditions of temperature 45 °C, pH 9.0, and 200 mM
maltose for 30 min. Relative activity is expressed as a percentage of the enzyme
activity in the absence of metal ions and reagents. The average of ftriplicate
experiments is presented.

doi: 10.1371/journal.pone.0077437.t002

moderately by Cu?*, Cd?*, Pb?*, and Tris at the concentration of
1 mM. More uplifting was the result that, at the concentration of
30 mM, almost all metal ions and reagents, except for Hg?* and
Zn?, had no more inhibition effect on the enzyme activity than
the concentration of 1 mM.

Kinetic analysis of TreS

Kinetic parameters of the recombinant TreS were
investigated at pH 9.0 and 45 °C for 30 min with maltose or
trehalose as substrate. When this data was plotted by the
method of Lineweaver and Burk, the K, values for the
recombinant TreS were found to be 9 +1.2 mM for maltose and
64 + 3.5 mM for trehalose, the V,, values of 1.5 + 0.2
mM-min-' mg™' protein for maltose and 3.1 £ 0.6 mM-min"' mg"
protein for trehalose were calculated, respectively. Although a
higher K, for trehalose than maltose was seen (78 + 6.5 s™' vs.
44 + 3.8 s"), TreS had a 4.1-fold higher catalytic efficiency
(Kcatl/K,,) toward maltose than trehalose (4.9 £ 1.2 M s vs.
1.2 + 0.18 M' s'). With regard to these results, the
recombinant TreS had a higher affinity to maltose and a
favorite reaction direction toward the synthesis of trehalose.
Interestingly, all reported TreS enzymes share the feature of a
reversible conversion at different degrees [26,29].

Structure analysis and site-directed mutagenesis

Using the structure-resolved Pseudomonas Mesoacidophila
trehalulose synthase as template (PDB ID: 2PWG), a TreS
model was built through SWISS-MODEL. The sequence
identity of TreS and trehalulose synthase was 30%, but both
belonged to the glycosyl hydrolase family 13 (GH13 family) and
had a typical (a/B); barrel catalytic domain (Figure 5A). In
alignment with the amino acid sequences of trehalulose
synthase, five conserved key amino acids constituting a
catalytic pocket (His172, Asp201, Glu251, His318 and Asp319)
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of TreS were deduced. Three dimensional structures showed
that all five putative active sites were in the center of the barrel
catalytic domain (Figure 5B). To verify the importance of these
residues, site-directed mutagenesis was used to replace the
five residues individually with Ala, and each mutant
recombinant protein was purified by Ni column. The drastic
reduction in enzyme activity of all mutants suggested that these
five residues might play essential roles in TreS catalysis (Table
3). Moreover, similar conservations of active sites were
observed in other TreSs (Figure 1), further supporting the
catalytic importance of these residues in TreS activity.

Discussion

Up to now, five different enzymatic routes involved in the
biosynthesis of trehalose have been discovered and indentified
from all kinds of environmental microorganisms. The first
pathway utilizes trehalose-phosphate synthase (TPS, EC
2.4.1.15) (OtsA in E. coli) that catalyzes the transfer of the
glucosyl moiety from UDP-glucose to glucose-1-phosphate,
forming the intermediate trehalose-6-phosphate and UDP. The
phosphate is then removed by trehalose-phosphate
phosphatase (TPP, EC 3.1.3.12) (OtsB in E. coli) to give free
trehalose [30]. The second pathway involves a trehalose
glycosyltransferring synthase (TreT, EC 2.4.1.245) that
catalyzes the synthesis of trehalose using nucleoside
diphosphate glucose (NDPG), such as UDPG, as a donor and
glucose as an acceptor [31]. The third pathway utilizes
trehalose phosphorylase (TreP, EC 2.4.1.64) to catalyze a
reversible reaction in which it hydrolyzes trehalose in the
presence of inorganic phosphate to form glucose-1-phosphate
and glucose and, inversely, gives rise to trehalose from both
products in vitro [32]. However, all these three pathways are
not suitable in trehalose industrial production due to their
expensive substrates. The fourth pathway also involves a two-
step enzymatic process, which utilizes glycogen or
maltooligosaccharides as the starting material. The maltosyl
moiety at the reducing end is first isomerized into a trehalosyl
moiety by maltooligosyl trehalose synthase (TreY, EC
5.4.99.15). Hydrolytic release of the trehalose is then catalyzed
by maltooligosyltrehalose trehalohydrolase (TreZ, EC
3.2.1.141) [33]. Trehalose has mainly been manufactured
through this pathway since it was discovered in 1995. The last
pathway utilizes only one enzyme, trehalose synthase (TreS,
EC 5.4.99.16), to catalyze the intramolecular rearrangement of
the a-1,4-linkage of maltose to the a-1,1-linkage of trehalose
[34]. Maltose is relatively cheap, and this single step process
saves both time and costs in scale-up mode, which could be an
alternative method for industrial trehalose production.

In the present study, we constructed a plasmid metagenomic
library from uncultivated microorganisms within saline-alkali soil
samples and isolated a novel TreS gene by a sequence-based
screening strategy. This recombinant TreS showed an optimal
pH of 9.0 and an optimal temperature of 45 °C and retained
80% of its initial activity after heat-treatment at 55 °C for 1 h,
which was consistent with the extreme environment such as
high temperature, high salinity conditions in Lop Nur region. In
comparison with other previously reported trehalose synthases,
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Figure 5. Comparative modeling of TreS based on known trehalulose synthase template. (A) Model of TreS (blue) was
superimposed with 2PWG (red). Five key amino acids (His104, Asp200, Glu254, His326, and Asp327) in the active center of 2PWG
are labeled with marked sticks inside the (a/B)8 barrel catalytic domain. (B) Side view of the surface model for TreS and its five
conserved amino acids (His172, Asp201, Glu251, His318, and Asp319) in the active center. The key amino acids are indicated by

sticks and name of residue.
doi: 10.1371/journal.pone.0077437.g005

this recombinant TreS has the most alkali optimum pH.
Moreover, the three well-characterized TreSs from
Thermobifida fusca, Enterobacter hormachei, Arthrobacter
aurescens showed dramatic decreases in enzyme activity at
pH above 9.0 and retained <40% of activity [35-37]. Therefore,
it is more alkali-tolerant than other TreSs reported so far. Using

PLOS ONE | www.plosone.org 9

an enzyme that is stable at high pH value as well as high
reaction temperature can reduce the possibility of microbial
contamination, lower viscosity, and improve the solubility of
substrates for better access to enzymatic attack.

It is well known that a glycosidase activity is frequently
affected by the presence of metal ions [38]. Various divalent
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Table 3. Relative specific activity of wild-type TreS and
mutant enzymes.

relative specific activitya

mutant relative specific activitya (%) mutant (%)

wide type 100.00 E251A 1.71£0.12
H172A 7.21+0.51 H318A 0.00
D201A 4.76 £0.24 D319A 0.00

a. Relative activities are represented as the ratio of mutants to wild type. The
specific activity of wild-type TreS was 133 units/mg protein.

doi: 10.1371/journal.pone.0077437.t003

metal ions were therefore examined and consequently found to
have inhibition effect on the enzyme activity in different degree.
The results showed that the activity of the recombinant TreS
was decreased by Zn?* and Hg?, but not as significantly as
other known TreSs, especially at a high concentration of the
metal ions (up to 30 mM) [39,40]. However, the activity of this
recombinant TreS was not affected by EDTA, suggesting that
this enzyme did not require metal ions for activity and stability.

To the target substrate maltose, the specific activity of this
recombinant TreS was estimated to be about 133 units/mg of
protein, which was 1.67-fold higher than that of Pseudomonas
stutzeri and Picrophilus torridus trehalose synthases, and
roughly equal to that of Thermus aquaticus trehalose synthase
[20,39,41]. Because TreS catalyzes the interconversion of
maltose and trehalose, but converts maltose to trehalose more
rapidly than trehalose to maltose, it was therefore of interest to
determine the affinity (K,,) of this recombinant TreS for these
two substrates. The results showed that the TreS had much
greater affinity (7.1-fold) for maltose than trehalose. Moreover,
the catalytic efficientcy (Kcat/K,) for maltose was 4.1-fold
higher than trehalose, due to the reduced K, value as well as
the increased K, value, which resulted in the conversion of
trehalose. In this study, the maximum trehalose yield from
maltose by this recombinant TreS was exceeded 78% under
the optimum condition, which was close to the theoretical
equilibrium constant for overall reaction of 82% in favor of
trehalose using thermodynamic parameters [42].

Although no three-dimensional structures have been
obtained to date on trehalose synthase, previous reports on
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