
RESEARCH ARTICLE

Estimating the dimensionality of the manifold

underlying multi-electrode neural recordings

Ege AltanID
1,2*, Sara A. Solla1,3, Lee E. MillerID

1,2,4,5, Eric J. PerreaultID
2,4,5

1 Department of Neuroscience, Northwestern University, Chicago, Illinois, United States of America,

2 Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of

America, 3 Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, United States

of America, 4 Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois,

United States of America, 5 Shirley Ryan AbilityLab, Chicago, Illinois, United States of America

* egealtan@u.northwestern.edu

Abstract

It is generally accepted that the number of neurons in a given brain area far exceeds the

number of neurons needed to carry any specific function controlled by that area. For exam-

ple, motor areas of the human brain contain tens of millions of neurons that control the acti-

vation of tens or at most hundreds of muscles. This massive redundancy implies the

covariation of many neurons, which constrains the population activity to a low-dimensional

manifold within the space of all possible patterns of neural activity. To gain a conceptual

understanding of the complexity of the neural activity within a manifold, it is useful to esti-

mate its dimensionality, which quantifies the number of degrees of freedom required to

describe the observed population activity without significant information loss. While there

are many algorithms for dimensionality estimation, we do not know which are well suited for

analyzing neural activity. The objective of this study was to evaluate the efficacy of several

representative algorithms for estimating the dimensionality of linearly and nonlinearly

embedded data. We generated synthetic neural recordings with known intrinsic dimension-

ality and used them to test the algorithms’ accuracy and robustness. We emulated some of

the important challenges associated with experimental data by adding noise, altering the

nature of the embedding of the low-dimensional manifold within the high-dimensional

recordings, varying the dimensionality of the manifold, and limiting the amount of available

data. We demonstrated that linear algorithms overestimate the dimensionality of nonlinear,

noise-free data. In cases of high noise, most algorithms overestimated the dimensionality.

We thus developed a denoising algorithm based on deep learning, the “Joint Autoencoder”,

which significantly improved subsequent dimensionality estimation. Critically, we found that

all algorithms failed when the intrinsic dimensionality was high (above 20) or when the

amount of data used for estimation was low. Based on the challenges we observed, we for-

mulated a pipeline for estimating the dimensionality of experimental neural data.
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Author summary

The number of neurons that we can simultaneously record from has increased exponen-

tially for decades; today that number is in the thousands of neurons. However, the individ-

ual firing rates are highly redundant. One approach to identifying important features

from redundant data is to estimate the dimensionality of the neural recordings, which rep-

resents the number of degrees of freedom required to describe the data without significant

information loss. Better understanding of dimensionality may also uncover the mecha-

nisms of computation within a neural circuit. Circuits carrying out complex computations

might be higher-dimensional than those carrying out simpler computations. Typically,

studies have quantified neural dimensionality using one of several available methods

reflecting a lack of consensus on which method would be most appropriate for neural

data. In this work, we used several methods to investigate the accuracy of simulated neural

data with properties mimicking those of actual neural recordings. Based on these results,

we devised an analysis pipeline to estimate the dimensionality of neural recordings. Our

work will allow scientists to extract informative features from a large number of highly

redundant neurons, as well as quantify the complexity of information encoded by these

neurons.

Introduction

Studies that simultaneously record the activity of many neurons have shown that cortical neu-

ral activity is highly redundant [1]. In primary motor cortex (M1), redundancy arises as tens of

millions of neurons control tens or at most hundreds of muscles. This redundancy implies sig-

nificant covariation in the activity of many neurons, which confines the population neural

activity to a low-dimensional manifold embedded in the neural space of all possible patterns of

neural population activity [2–9]. Low-dimensional manifolds have also been observed in a

variety of other cortical regions [10–18]. Reliable algorithms for identifying these manifolds

and characterizing their dimensionality are increasingly important as our ability to record

from large populations of neurons increases [19]. The dimensionality of the manifold describ-

ing the coordinated firing of a set of neurons quantifies the number of degrees of freedom

needed to describe population activity without significant information loss [20,21]. Projecting

the observed firing patterns onto the manifold yields a low-dimensional set of latent signals

that can simplify the interpretation of population neural activity [2,9,22]. Low-dimensional

latent signals can facilitate the manipulation or the extraction of signals for brain-computer

interfaces, a rehabilitative technology that converts neural signals into control commands to

restore movement to paralyzed patients [23,24].

Unfortunately, it is surprisingly difficult to estimate the dimensionality of neural manifolds,

particularly in the realistic condition of a noisy, nonlinear embedding. There is evidence of a

nonlinear mapping between the recorded neural activity and the associated low-dimensional

latent signals [10,25–27]. Noise propagates from the level of sensory transduction and amplifi-

cation, the opening and closing of voltage-gated ion channels, and builds up at the level of syn-

apses, causing neural firing to be a stochastic process [28]. The two effects, nonlinearity and

noise, combine to pose significant challenges to existing dimensionality estimation algorithms.

The accuracy of the estimators also depends on the amount of available data [29,30], which is

limited in most experimental paradigms. If we wish to identify the manifolds associated with

experimentally measured neural activity, we need methods that are robust in the presence of

these challenges.
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The methods that have been proposed for estimating the dimensionality of neural mani-

folds can be broadly categorized into linear or nonlinear algorithms, based on assumptions

about the nature of the mapping between the low-dimensional representation of the latent sig-

nals and the high-dimensional space of neural activity. The most commonly used linear

method for dimensionality reduction is Principal Component Analysis (PCA), based on iden-

tifying mutually orthogonal directions in the empirical neural space of recorded activity; these

directions are monotonically associated with the largest data variance. PCA provides a hierar-

chical description in which the data projected onto the manifold subtended by the leading

principal components become closer and closer to the recorded data as the dimensionality of

the linear manifold is increased towards the dimensionality of the empirical neural space.

Although PCA provides a useful and systematic tool for variance-based dimensionality reduc-

tion, it does not specify how to uniquely identify the dimensionality of the manifold: the typical

implementation requires the choice of an arbitrary variance threshold. Other PCA-based algo-

rithms such as Participation Ratio (PR) [5,18] and Parallel Analysis (PA) [31,32] provide more

principled prescriptions for linear dimensionality estimation, by incorporating criteria for

determining an optimal number of leading principal components to use when constructing

the low-dimensional manifold.

Linear dimensionality estimation algorithms may work well for linear datasets, but are

likely to overestimate the dimensionality of a manifold arising from a nonlinear mapping

between the low-and high-dimensional spaces [20,21,33,34]. In contrast, nonlinear methods

(e.g., Correlation Dimension [35–37], Levina-Bickel Maximum Likelihood Estimation [38],

Two Nearest Neighbors [39], and Fisher Separability Analysis [40]) may provide accurate

dimensionality estimates for both linearly and nonlinearly embedded data.

Most dimensionality estimation methods have been tested in the absence of noise even

though it is known that linear and nonlinear methods overestimate dimensionality when the

data is noisy [20]. The robustness of dimensionality estimation algorithms to noise remains to

be characterized.

The objective of this study was to characterize the accuracy of several dimensionality esti-

mation algorithms when applied to high-dimensional recordings of neural activity. We evalu-

ated previously proposed algorithms on synthetic datasets of known dimensionality to identify

conditions under which each method succeeded and/or failed. Specifically, we evaluated how

the algorithms handled the nature of the embedding (linear or nonlinear), the amount of noise

added to the simulated neural data, and the amount of data available. We found increasing lev-

els of noise to be a challenge for all tested algorithms. We therefore also evaluated different

approaches for reducing noise prior to performing dimensionality estimation, including the

“Joint Autoencoder”, a method we developed based on deep learning techniques. Together,

our results allowed us to propose a methodological pipeline for estimating the intrinsic

dimensionality of high-dimensional datasets of recorded neural activity.

Methods

Ethics statement

All surgical and experimental procedures that yielded the multi-electrode array recordings

from non-human primates [41], which formed the basis of our simulated neural signals, were

approved by Institutional Animal Care and Use Committee (IACUC) of Northwestern Uni-

versity. The subject was monitored daily. The subject’s diet consisted of standard laboratory

animal diet, fresh fruits, and vegetables, and was provided with access to various types of

enrichment.
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Simulation of neural signals

We generated the synthetic data used to evaluate the various dimensionality estimation algo-

rithms as follows. First, we created d signals by randomly selecting (d x M) samples from an

empirical distribution of firing rates that we obtained from multi-electrode array recordings of

neural activity in the macaque primary motor cortex (M1) made while the monkey was per-

forming a center-out task [41]. The firing rates were binned at 50 ms. The sampling was done

randomly across all recorded neurons and time bins within successful trials. Our goal was to

generate M samples of d-dimensional latent variables that were uncorrelated with each other

and individually uncorrelated over time; we verified that these randomly selected signals were

indeed uncorrelated, as intended. These signals provided a set of variables of known dimen-

sion d that preserved the first-order firing statistics of the neural activity recorded in M1. Our

procedure aimed at generating simulated data that reproduces possible states of activity of a

neural population, without considering the order in which these states might be visited; in

other words, we focused on population statistics as opposed to population dynamics.

These signals provided a d-dimensional latent set used to construct synthetic high-dimen-

sional data sets (Fig 1). We allowed d to vary from 3 to 40. For the analyses where a fixed value

of d was used we chose d = 6, to approximate the characteristics of real data collected in our

laboratory (S1 Table). The d-dimensional latent signals were first smoothed using a Gaussian

kernel (s.d.: 50 ms), and then multiplied by a N x d mixing matrix W with entries that were

randomly selected from a zero-mean Gaussian distribution with unit variance. This resulted in

a dataset X composed of M samples, each of them N-dimensional. We chose N = 96 to repro-

duce the number of signals recorded by the multi-electrode array used to obtain the original

experimental data. The activity in each of the N = 96 simulated channels was scaled to the

range from zero to one to compensate for variability in firing rates across neurons and across

time. The effect of non-uniform firing rate variances across channels was considered separately

(see “Effect of non-uniform variances across channels” in Results).

A nonlinear embedding was implemented by processing each simulated neural recording

in X with an exponential activation function:

f Xð Þ ¼
eaX � 1

ea � 1
ðEq 1Þ

The choice of an exponential nonlinearity was based on results from Generalized Linear

Models, for which the statistics of the modeled variable determines the nonlinear link function

[42]. In our case, the variables of interest are spike counts. Under the assumption that these

variables follow a Poisson-like distribution, the appropriate choice of link function is the loga-

rithm [42]. The inverse of the link function, the exponential, is the appropriate nonlinear func-

tion for relating the linear combination of explanatory covariates, the latent signals, to the

variables of interest, the simulated firing rates. The exponential activation function used in our

simulations allowed us to control the degree of nonlinearity by varying the single parameter α,

and to ensure that the range of the nonlinearly embedded synthetic data remained between

zero and one. Finally, we added independent Gaussian noise to each of the channels in X, to

generate signals with known signal-to-noise ratio. This choice of noise model provides a sim-

ple and widely used mechanism for simulating stochastic processes [43].

The various steps in this procedure allowed us to generate datasets of known intrinsic

dimensionality, embedding type (linear/nonlinear), and signal-to-noise ratio.
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Dimensionality estimation algorithms

We evaluated two classes of dimensionality estimation algorithms, those that assumed a linear

embedding and those that also allowed for a nonlinear embedding.

Linear algorithms. Linear algorithms map high-dimensional data to a lower dimensional,

linear subspace. Principal Component Analysis (PCA) is often used for linear dimensionality

estimation in neuroscience [2,4,7,41,44,45]. All the linear algorithms that we tested (summa-

rized below) are based on PCA but use different criteria for dimensionality estimation.

Principal Component Analysis with a variance cutoff. PCA creates a low-dimensional

representation of the data by sequentially finding orthogonal directions that explain the most

remaining variance. Unit vectors that identify those directions, the PCA eigenvectors {vi}, pro-

vide an orthonormal basis for the N-dimensional data space. The eigenvectors are labeled in

decreasing order of the variance associated with each direction, given by the eigenvalues {λi}.
The simplest way to use PCA for dimensionality estimation is to find the number of principal

components required to reach a predetermined threshold of cumulative variance. The selec-

tion of a variance threshold can be rather arbitrary, and a range of thresholds have been used

in the literature. In this study, we used a threshold of 90%, which yielded accurate estimates of

dimensionality for the noise-free linear datasets.

Participation Ratio (PR). This approach provides a principled way of finding a variance

threshold when the ground truth is not known [5,18]. PR uses a simple formula based on the

eigenvalues:

PR ¼
ð
PN

i¼1
liÞ

2

PN
i¼1
ðliÞ

2
ðEq 2Þ

If the leading eigenvalue carries all the variance (λi 6¼ 0 for i = 1 and λi = 0 for all i� 2),

then PR = 1. At the other extreme, if all eigenvalues are equal, the variance is spread evenly

across all the dimensions, and PR = N. The actual value of PR interpolates between these two

extreme conditions to estimate the intrinsic dimensionality, and thus the number of principal

components to be kept [5].

Parallel Analysis (PA). Much like the Participation Ratio, Parallel Analysis is a principled

approach to finding a variance threshold [31,32]. Parallel Analysis generates null distributions

for the eigenvalues by repeatedly shuffling each of the N dimensions of the data separately. The

shuffling step ensures that the remaining correlations across the different dimensions of the

data are due to chance. We repeated the shuffling procedure 200 times, resulting in a null dis-

tribution for each eigenvalue based on 200 samples. The eigenvalues that exceeded the 95th

percentile of their null distribution were identified as significant; the number of significant

eigenvalues determined the number of dimensions to be kept. Although this method has not

Fig 1. Generation of simulated datasets. First, latent neural signals were obtained by randomly sampling the firing rates of primary motor

cortical recordings. The number of latent signals determined the intrinsic dimensionality of the dataset. Then, the dimensionality of the dataset

was increased through linear combinations effected by multiplication with a weight matrix W. The entries of W were sampled from a zero-

mean Gaussian distribution with unit variance. The resulting signals were then scaled to the [0,1] range by dividing them by their maximum

value. This procedure yielded noise-free, linear datasets. In nonlinear simulations, the signals were activated nonlinearly using the exponential

function in Eq 1 (red box in diagram). In noisy simulations, zero-mean Gaussian noise with variance specified by a predetermined signal-to-

noise ratio was added to the signals. This procedure yielded linear or nonlinear, noisy datasets with known signal-to-noise ratio.

https://doi.org/10.1371/journal.pcbi.1008591.g001
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been directly applied to neural data, similar approaches based on finding null distributions of

eigenvalues have been used for neural dimensionality estimation [46].

Nonlinear algorithms. Nonlinear algorithms can in principle estimate the dimensionality

of either linearly or nonlinearly embedded data. Unlike the linear algorithms we tested, the

nonlinear algorithms need not rely on a global model for the probability distribution from

which the data are assumed to be drawn (in the case of PCA, the model is a multivariate Gauss-

ian distribution). Instead, many nonlinear algorithms estimate intrinsic dimensionality

directly from local geometric properties of the data. Commonly used local properties include

distance and separability of each data point relative to its neighbors. Although nonlinear algo-

rithms are not yet much used in neuroscience, they have been used to estimate dimensionality

in several other fields that produce high-dimensional datasets [47].

Correlation Dimension (CD). Correlation Dimension estimates dimensionality by calcu-

lating how the number of data samples that fall within a hypersphere change as a function of

its radius. This method, originally developed in 1983 [35], has benefitted from recent efforts to

improve computational speed and accuracy [36,37]. Although there are only a few applications

of Correlation Dimension analysis to neural data [48,49], it is widely used in other disciplines

[36].

Levina-Bickel Maximum Likelihood Estimation (LBMLE). The Levina-Bickel Maxi-

mum Likelihood Estimation method [38] is an extension of Correlation Dimension that uses a

maximum likelihood approach to estimate distances between data points. This method has

been successfully applied to some of the benchmark datasets used in machine learning, such as

the Faces [33] and Hands datasets [50].

Two Nearest Neighbors (TNN). The Two Nearest Neighbors method also uses the dis-

tance between data points to estimate dimensionality [39]. However, unlike Levina-Bickel

Maximum Likelihood Estimation, it considers only the first and second neighbors of each

point. The ratio of the cumulative distribution of second-neighbor to first-neighbor distances

is a function of data dimensionality. By focusing on shorter distances, the method avoids

unwanted effects resulting from density changes across the manifold. This method has been

successfully applied to synthetic datasets of hyperspheres with known dimensionality [39], and

to real-world datasets including molecular simulations [51] and images of hand-written digits

[33].

Fisher Separability Analysis (FSA). High-dimensional datasets exhibit simple geometric

properties such as the likely orthogonality of two randomly picked directions. These properties

have recently been characterized as the blessings of dimensionality [52], in contrast to the well-

known concept of the curse of dimensionality. A useful example is the increasing ease with

which a hyperplane can separate any given sample in a dataset from all other samples as the

dimensionality of the dataset increases. Fisher separability is a computationally efficient, sim-

ple, and robust method to assess such separability [53,54]. Dimensionality can be estimated in

terms of the probability that a point in the dataset is Fisher separable from the remaining

points [40]. The probability distribution of Fisher separability allows the dimensionality of

both linear and nonlinear manifolds to be estimated. This method has been applied to study

the mutation profiles of the genes resulting in tumors as a means to evaluate therapeutic

approaches [55].

Denoising algorithms

Noise that is uncorrelated across channels will lead to dimensionality estimates that approach

the number of channels as the level of noise increases. To mitigate this overestimation prob-

lem, we implemented two approaches to denoise neural data. Both rely on an initial estimate
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of an upper bound dimensionality D, estimated here by using Parallel Analysis. To quantify

the performance of the denoising algorithms, we reported Variance Accounted For (VAF)

between the denoised signals and the noise-free signals, the latter providing the ground truth.

PCA denoising. The linear approach to denoising was based on PCA. Once the value of D
was determined, we used the D leading principal components to reconstruct the original data.

PCA-based denoising is based on the assumption that most of the noise is relegated to the dis-

carded, low-variance principal components.

Joint Autoencoder denoising. We also used a neural network for denoising (Fig 2). For

this purpose, we divided the 96-dimensional simulated dataset X into two 48-dimensional par-

titions: X1 and X2. These partitions were each mapped by the compressive halves of the respec-

tive autoencoders to the D-dimensional subspaces Z1 and Z2. These compressed subspaces

were used to obtain reconstructed versions of X1 and X2, respectively denoted X̂1 and X̂2,

using the expansive halves of the corresponding autoencoders. The cost function C used to

train the Joint Autoencoder network not only minimized the reconstruction error for X1 and

X2, but also the difference between Z1 and Z2:

C ¼ MSE ðX1; X̂1Þ þMSE ðX2; X̂2Þ þMSE ðZ1;Z2Þ ðEq 3Þ

This design assumes that each of the partitions X1 and X2 contains the information neces-

sary to robustly identify the underlying D-dimensional signals Z1 and Z2, but not the indepen-

dent noise components that will differ between the two partitions. We trained the Joint

Autoencoder using the ADAM optimizer with a learning rate η = 0.001 and dropout regulari-

zation on the input layer with p = 0.05. The use of Rectified Linear Unit (ReLU) activation

functions in all layers ensured that the autoencoder network would both operate on and out-

put non-negative signals while allowing for nonlinear embeddings. Our choice of using the

ReLU activation function was motivated by its documented success in modeling a wide variety

of nonlinearities for deep learning applications [56,57]. In addition, the strict nonnegativity of

the ReLU function mimics that of real neural recordings.

Fig 2. Architecture of the Joint Autoencoder. Channels of the 96-dimensional simulated datasets were randomly partitioned into

two sets of signals (blue and yellow). Each 48-dimensional set was reconstructed through the corresponding D-dimensional

subspace, Z1 and Z2 (green). The reconstructed outputs of the networks were the denoised channels.

https://doi.org/10.1371/journal.pcbi.1008591.g002

PLOS COMPUTATIONAL BIOLOGY Intrinsic dimensionality of neural signals

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008591 November 29, 2021 7 / 23

https://doi.org/10.1371/journal.pcbi.1008591.g002
https://doi.org/10.1371/journal.pcbi.1008591


Statistical analyses

We used Monte Carlo simulations to generate up to 10 replications of synthetic data sets, each

corresponding to multi-electrode array recording data from an experimental session. We

noted the number of replications (n) in the figure captions where applicable. Our choice of the

number of replications is reasonable compared to the number of experimental sessions that we

would expect to see in experiments with monkeys [41,58,59]. The simulations differed by their

random number generator seed, which dictated the pseudorandom sampling procedures

required for generating the signals. There were three sampling steps in our simulations (Fig

1). First was the creation of the low-dimensional latent signals, which were sampled from an

empirical firing rate distribution. The second was the entries of the mixing matrix W, which

were sampled from a zero-mean Gaussian distribution with unit variance. The third was the

additive noise, sampled from a zero-mean Gaussian distribution with variance determined by

the specified signal-to-noise ratio. We used bootstrapping with 10,000 iterations to compute

the statistic of interest and computed its confidence interval using α = 0.05. We used Bonfer-

roni correction for multiple comparisons.

Results

Despite the large number of available algorithms for dimensionality estimation, there has been

no systematic study of how well-suited they are for the analysis of neural data. Here we test sev-

eral representative algorithms on synthetic datasets for which the intrinsic dimensionality is

known, to assess their ability to estimate the true dimensionality of the data across a range of

simulated conditions relevant to neuroscience. These assessments resulted in a recommended

procedural pipeline for estimating the intrinsic dimensionality of a set of neural recordings.

Dimensionality of noise-free datasets

We first considered the simplest case: how accurately can we determine the dimensionality of

linearly embedded, noise-free datasets? To answer this question, we applied the six selected

algorithms to datasets with dimensionality d = 6. We focused on d = 6 as this was the

dimensionality estimate of actual multi-electrode array recordings found when using the

methods investigated here. In this scenario, all tested linear and nonlinear algorithms esti-

mated the true dimensionality accurately (Fig 3A). Under noise-free conditions, the nonlinear

algorithms were as accurate as the linear ones on linearly embedded datasets.

Next, we evaluated all algorithms on nonlinearly embedded noise-free datasets, also for

d = 6. Nonlinearities were introduced as in Eq 1, using α = 16. In this case, the three linear

algorithms dramatically overestimated the true dimensionality, with errors reaching more

than 400% of the true value (Fig 3B). In contrast, the nonlinear algorithms performed well; the

Levina-Bickel Maximum Likelihood Estimation and the Two Nearest Neighbors methods

were more accurate than Fisher Separability Analysis, which slightly underestimated the true

dimensionality.

Effect of non-uniform variances across channels

The normalization of our simulated datasets restricted channel activity to the [0,1] interval,

thus imposing a large degree of variance similarity across channels. In contrast, variances of

real neural recordings can vary as much as 10-fold from channel to channel. To evaluate the

performance of the dimensionality estimation algorithms considered here in the presence of

non-uniform variances across channels, we scaled each channel of simulated neural data by a

randomly chosen real number between 1 and 10. We found that most algorithms yielded
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lower estimates of dimensionality when applied to the rescaled data in comparison to the esti-

mates obtained when the algorithms were applied to the data before rescaling (Fig 4A and

4B). However, note that both Levina-Bickel Maximum Likelihood Estimation and the Two

Nearest Neighbors yielded remarkably accurate dimensionality estimates when applied to

rescaled data.

Because of the superior accuracy of Levina-Bickel Maximum Likelihood Estimation and

Two Nearest Neighbors, we focused on these two methods for the remainder of the nonlinear

analyses. We also retained Parallel Analysis as a benchmark for some of the analyses, as it was

the most accurate linear method for estimating the dimensionality of nonlinearly embedded

data.

Effect of true dimensionality on algorithm accuracy

We next evaluated how the true intrinsic dimensionality of the noise-free data influenced algo-

rithm accuracy. Can any intrinsic dimensionality be reliably estimated? We found that the

answer is no: the accuracy of all algorithms suffered when the intrinsic dimensionality of the

synthetic data was too high. Parallel Analysis was accurate on linear datasets with d< 20, but

inaccurate on nonlinear datasets of all dimensions, as expected (Fig 5). Below about d = 6,

Levina-Bickel Maximum Likelihood Estimation and Two-Nearest Neighbors were accurate on

both linear and nonlinear datasets. However, Levina-Bickel Maximum Likelihood Estimation

began to underestimate the dimensionality of both linearly embedded (Fig 5A) and nonli-

nearly embedded (Fig 5B) datasets for d> 6. This underestimation increased with increasing

d. For nonlinear datasets, the estimate saturated at d = 13, where underestimation began to get

Fig 3. Dimensionality of noise free datasets. A) We applied PCA with 90% variance cutoff (PCA90, gray),

Participation Ratio (PR, brown), Parallel Analysis (PA, blue), Levina-Bickel Maximum Likelihood Estimation

(LBMLE, green), Two Nearest Neighbors (TNN, purple), and Fisher Separability Analysis (FSA, orange) to linearly

embedded, d = 6 datasets (n = 10). B) Same as in A, but for nonlinearly embedded datasets. Circles indicate the mean

and error bars indicate the standard deviation of the dimensionality estimates. Asterisks indicate significant difference

of the mean from the true dimensionality of 6 at the significance level of α = 0.05.

https://doi.org/10.1371/journal.pcbi.1008591.g003
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Fig 4. Dimensionality of noise free datasets with unequal variance. A) We applied PCA with 90% variance cutoff

(PCA90, gray), Participation Ratio (PR, brown), Parallel Analysis (PA, blue), Levina-Bickel Maximum Likelihood

Estimation (LBMLE, green), Two Nearest Neighbors (TNN, purple), and Fisher Separability Analysis (FSA, orange) to

linearly embedded, d = 6 datasets (n = 10) after randomly scaling each of the N = 96 channels. B) Same as in A, but for

nonlinearly embedded datasets. Circles indicate the mean and error bars indicate the standard deviation of the

dimensionality estimates. Asterisks indicate significant differences of the mean from the true dimensionality of 6 at the

significance level of α = 0.05.

https://doi.org/10.1371/journal.pcbi.1008591.g004

Fig 5. Effect of increasing true dimensionality on dimensionality estimates. A) The dimensionality of noise free,

linear datasets (n = 3) was assessed using Parallel Analysis (PA), Levina-Bickel Maximum Likelihood Estimation

(LBMLE), and Two Nearest Neighbors (TNN). Dashed line indicates the identity line. B) Same as A, but for nonlinear

datasets. The curve for TNN precisely overlays that of LBMLE, causing it to be obscured.

https://doi.org/10.1371/journal.pcbi.1008591.g005
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much worse. These results revealed that the intrinsic dimensionality of nonlinearly embedded

datasets is hard to estimate reliably when it is large.

Effect of the level of nonlinearity

We next evaluated how the degree of nonlinearity influenced the accuracy of the dimensional-

ity estimation algorithms. We controlled the degree of nonlinearity by varying the parameter α
in Eq 1; this parameter controls the slope of the exponential activation function used to gener-

ate the nonlinearly embedded datasets. We found that both Levina-Bickel Maximum Likeli-

hood Estimation and Two Nearest Neighbors provided accurate dimensionality estimates for

all tested levels of nonlinearity (Fig 6). Surprisingly, even Parallel Analysis was accurate up to

levels of nonlinearity corresponding to α�8, where it started to overestimate the intrinsic

dimensionality. These results revealed that Levina-Bickel Maximum Likelihood Estimation

and Two Nearest Neighbors provide accurate dimensionality estimates for wide levels of non-

linearity, whereas Parallel Analysis is accurate only for low levels of nonlinearity.

Amount of data required for estimating dimensionality

Ideally, algorithms would require only small amounts of data, so that the intrinsic dimension-

ality could be estimated even during transient behaviors and for a small number of recording

channels. We thus evaluated the amount of data required to estimate the dimensionality of

Fig 6. Effect of changing the degree of nonlinearity. Dimensionality of nonlinear datasets (n = 10) with varying levels

of nonlinearity controlled by the α parameter (See Methods), was assessed using Parallel Analysis (PA), Levina-Bickel

Maximum Likelihood Estimation (LBMLE), and Two Nearest Neighbors (TNN). Circles indicate the mean and error

bars indicate the standard deviation of the dimensionality estimates. Asterisks indicate significant differences of the

mean from the true dimensionality of 6 at the significance level of α = 0.05.

https://doi.org/10.1371/journal.pcbi.1008591.g006
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datasets with d = 6, by varying both the number of samples M and the number of recording

channels N.

On linear datasets, the accuracy of Parallel Analysis depended only on the number of chan-

nels: the algorithm was accurate if 20 or more channels were available (Fig 7A). In contrast,

the accuracy of both Levina-Bickel Maximum Likelihood Estimation and Two Nearest Neigh-

bors also depended on the number of samples (Fig 7B and 7C). Around M = 600, requiring

about 30 seconds of data binned at 50 ms, was sufficient for accurate estimates of intrinsic

dimensionality using either of these two nonlinear methods.

As expected for highly nonlinear datasets (α = 16, d = 6), Parallel Analysis was not accurate

(Fig 7D) regardless of the amount of data. Both Levina-Bickel Maximum Likelihood Estima-

tion and Two Nearest Neighbors were accurate provided that data from more than 50 channels

were available (Fig 7E and 7F). Furthermore, while Levina-Bickel Maximum Likelihood esti-

mation required around 600 samples of data for accurate dimensionality estimates, Two Near-

est Neighbors required more than twice as many samples. These results would also depend on

the actual dimensionality d; here we focused on d = 6.

Evaluating and reducing the effects of noise

Any experiment will include some amount of noise in the recorded signals. As expected, all

tested algorithms overestimated intrinsic dimensionality in the presence of noise (Fig 8). For

any given noise level, estimation errors for the linear datasets (Fig 8A) were a bit smaller than

those for the nonlinear datasets (Fig 8B). Adding noise with a power of only 1% of that of the

Fig 7. Amount of data required by dimensionality estimators. Amount of data required by A) Parallel Analysis

(PA), B) Levina-Bickel Maximum Likelihood Estimation (LBMLE), and C) Two Nearest Neighbors (TNN) on linear

datasets. Data length was logarithmically scaled betweenM = 100 and M = 12,000 samples. The correct dimensionality

d = 6 is shown in pink. Light colors indicate overestimation and dark colors indicate underestimation of

dimensionality. D, E, and F) Same as A, B, and C, respectively, but for nonlinear datasets.

https://doi.org/10.1371/journal.pcbi.1008591.g007
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signal (SNR = 20 dB) caused Levina-Bickel Maximum Likelihood Estimation and Two Nearest

Neighbors to overestimate the dimensionality of the nonlinear data by ~200% (Fig 8B). PA

yielded consistent overestimation errors across all nonzero levels of noise for both linear and

nonlinear data.

We evaluated two algorithms for mitigating the effects of noise prior to estimating

dimensionality: a PCA-based linear method and a Joint Autoencoder nonlinear neural net-

work (see Methods). Both methods were quite effective for denoising the linear datasets (Fig

9A), with the PCA-based approach slightly better than the Joint Autoencoder at the higher

noise levels. For linear datasets, dimensionality estimates following PCA-based denoising were

highly accurate, yielding correct estimates of the true intrinsic dimension even for high-noise

signals (Fig 9B). The Joint Autoencoder was significantly more effective for denoising the non-

linear datasets (Fig 9C). Joint Autoencoder denoising on nonlinear datasets resulted in

dimensionality estimates that still increasingly overestimated with increasing noise, but at a

much slower rate than without denoising (Fig 9D). The highest noise level we tested (20%;

SNR = 7 dB) caused the dimensionality to be overestimated by about 100%. These results were

consistent for different degrees of nonlinearity. The more nonlinear the data, the more appro-

priate it was to use the Joint Autoencoder for denoising.

Discussion

This study evaluated techniques for estimating the intrinsic dimensionality of high-dimen-

sional neural recordings. We considered representative linear and nonlinear algorithms,

Fig 8. Effect of noise on dimensionality estimates. Estimated dimensionality of linear (A) and nonlinear (B) datasets

(n = 10) with 20 dB, 10 dB, and 7 dB signal-to-noise ratio was assessed using Parallel Analysis (PA), Levina-Bickel

Maximum Likelihood Estimation (LBMLE), and Two Nearest Neighbors (TNN). Circles indicate the mean and error

bars indicate the standard deviation of the dimensionality estimates. Asterisks indicate significant differences of the

mean from the true dimensionality of 6 at the significance level of α = 0.05.

https://doi.org/10.1371/journal.pcbi.1008591.g008
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testing their performance on synthetic datasets that captured properties of neural recordings

likely to affect dimensionality estimation. The tested datasets had known intrinsic dimension-

ality, known levels of noise, and embeddings that were either linear or nonlinear. Our results

demonstrated that none of the tested algorithms work for all possible scenarios, but they

yielded important insights for when estimates of intrinsic dimensionality are likely to be valid

and when they are not. As expected, we found that linear estimation methods are generally not

as accurate as nonlinear methods when the mapping between the low-dimensional latent

space and the high-dimensional space of neural recordings is nonlinear. Surprisingly, the lin-

ear method Parallel Analysis estimated the dimensionality of mildly nonlinear datasets well

though it failed for more highly nonlinear embeddings. In contrast, the nonlinear methods

Fig 9. Performance of PCA and Joint Autoencoder (JAE) denoising algorithms. A) PCA and JAE denoising applied to

linear datasets (n = 10) with varying signal-to-noise ratio. Symbols indicate the mean and error bars indicate the standard

deviation of the VAF between noise-free and denoised signals. Asterisks indicate significant difference between mean

values at the significance level of α = 0.05. B) Dimensionality estimation on linear datasets after PCA denoising.

Dimensionality was estimated using Parallel Analysis (PA), Levina-Bickel Maximum Likelihood Estimation (LBMLE), and

Two Nearest Neighbors (TNN). Symbols indicate the mean and error bars indicate the standard deviation of the

dimensionality estimates. Asterisks indicate significant differences of the mean from the true dimensionality of 6 at the

significance level of α = 0.05. C) Same as in A, but for nonlinear datasets. D) Same as in B, but for nonlinear datasets after

JAE denoising.

https://doi.org/10.1371/journal.pcbi.1008591.g009
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worked well on both linear and highly nonlinear datasets but failed once the intrinsic

dimensionality of the data became too high.

Noise was a challenge for all methods, causing dimensionality to be overestimated even for sig-

nal-to-noise ratios as low as 20 dB (1% noise variance). We presented two approaches for denois-

ing the data so as to improve the accuracy of the dimensionality estimation. These were a linear

PCA-based approach and a novel nonlinear, deep learning approach that we call the Joint Auto-

encoder. Both denoising approaches attempted to remove signal components that were not

shared across the data channels. To achieve this, the PCA-based approach simply removed Princi-

pal Components with low variance, whereas the Joint Autoencoder identified an underlying man-

ifold that was common to two randomly sampled sets of channels. Both approaches relied on a

linear, upper-bound estimate of the intrinsic dimensionality. Denoising by either method substan-

tially improved subsequent dimensionality estimation, but the Joint Autoencoder was substan-

tially more effective in denoising nonlinear datasets. For linear datasets, dimensionality estimates

using Parallel Analysis, Levina-Bickel Maximum Likelihood Estimation, and Two Nearest Neigh-

bors were accurate after PCA-denoising. In the nonlinear case, dimensionality estimates using the

two nonlinear methods (LBMLE and TNN) were similarly accurate after JAE-denoising.

Implications for evaluation of experimental recordings

Due to its computational efficiency and ease of interpretation, most studies have used PCA

with an arbitrary variance cutoff to estimate the dimensionality of M1 neural recordings

[4,17,41,44,45]. While we have shown that some of the linear methods can be quite effective,

simply eliminating non leading PCs based on a cumulative variance cutoff was the least accu-

rate of the algorithms that we tested. Parallel Analysis, the most accurate linear method, per-

formed as well or even better than some of the more advanced and computationally

demanding nonlinear methods. Therefore, PA should suffice as a quick and effective approach

to estimating dimensionality, even for mildly noisy and nonlinear datasets.

Some of the linear methods used in neuroscience studies rely on a structure of repeated tri-

als in the data [7,46]. These methods use the regularity of repeated trials in a supervised sce-

nario to identify neural dimensions associated with specific experimentally controlled

conditions. Such supervised methods cannot be applied to data obtained during non-stereo-

typed, non-repeating behaviors. All of the methods that we assess in this study are unsuper-

vised and thus applicable to datasets with no repeated trial structure.

Despite the simplicity of linear algorithms, estimating the dimensionality of nonlinear man-

ifolds requires nonlinear algorithms. There is some evidence that neural manifolds may be

nonlinear. Recent studies have shown that nonlinear methods for inferring behavioral parame-

ters from M1 neural manifolds are superior to linear methods [60–63]. This suggests that the

underlying neural manifold representing motor intent may be nonlinear, and that linear

dimensionality estimation methods may be inadequate when estimating the intrinsic

dimensionality of primary motor cortical recordings. Studies that investigated the dimension-

ality of M1 using linear methods most likely overestimated its true intrinsic dimensionality.

Nonlinear algorithms were more accurate than linear algorithms for nonlinear datasets of

dimensionality below 10. However, nonlinear methods underestimated dimensionalities

above 10. This is a critical concern for experimental recordings, since a low dimensionality

estimate from a nonlinear method might be inaccurate if the true dimensionality were large.

Multiple studies using linear methods have reported an estimated dimensionality of M1 of

around 10 for simple, well-practiced behaviors [5,45,59]. Our results show that linear methods

provide an upper bound to the estimate of intrinsic dimensionality as long as the true

dimensionality of the data is below 20. If the intrinsic dimensionality of M1 is substantially
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higher for more dexterous use of arm and hand than for the scenarios that have typically been

studied, the nonlinear methods investigated here may underestimate it.

One method for addressing this concern would be to use nonlinear methods to reduce the

dimensionality of a dataset to that of its nonlinear dimensionality estimate, and then to assess

the amount of variance that the nonlinear low-dimensional representation captures. If the

VAF is high, the data may be truly nonlinearly low dimensional. If, on the other hand, the

VAF is low, the true intrinsic dimensionality could be higher than estimated. For the latter

case, a practical approach would be to report only the linear dimensionality estimate and

emphasize that it only provides an upper bound to the true dimensionality.

We currently lack techniques for reliably assessing datasets with high intrinsic dimensional-

ity, at least when considering practical situations with limited data. There have been some the-

oretical studies of the amount of data needed for accurate estimation of dimensionality

[64,65]. Correlation Dimension, the method on which many nonlinear algorithms are based,

requires that the number of data samples M be on the order of 10d/2 [29]. The total amount of

data can be increased by either recording from more channels or for a longer duration. Studies

that investigated the dimensionality of the primary visual cortex (V1) found that the eigen-

value spectrum of the neural signals obtained from approximately one thousand neurons

decayed as a power law [66,67]. These findings would not have been possible if recording from

a hundred neurons, which would not have revealed the long, slow-decaying tail of the eigen-

value distribution. One interpretation of these findings is that the linear dimensionality of V1

is arbitrarily large. However, an alternative interpretation is that the neural data are embedded

in a very nonlinear manifold, causing the intrinsic dimensionality to be overestimated by the

linear methods used in these studies.

The stochastic nature of neural firing and the noise associated with experimental measure-

ments will also cause the intrinsic dimensionality to be overestimated. The two denoising

approaches that we presented are simple and effective. Depending on the assumptions about

the underlying structure of firing patterns, alternative denoising approaches may be useful.

For example, if the temporal relationship between the firing patterns of the population neural

activity is of interest, one could use denoising methods that explicitly attempt to model these

dynamics, such as Latent Factor Analysis through Dynamical Systems (LFADS), prior to esti-

mating the dimensionality [61].

For the past five decades since the time of Evarts’ early experiments [68], assessing the rela-

tionship between behaviors and single neuron signals recorded from the brain has been a

mainstay of motor systems research. Although the focus of our study was on the dimensional-

ity of the neural manifold to which the population activity is confined, the natural next step in

the analysis is to investigate the dynamics of the signals within the neural manifold and their

relation to behavior.

Limitations of the study

While we tried to replicate essential features of experimental data, there are certain characteris-

tics that we did not try to model in our simulations. For example, we only considered additive

Gaussian isotropic noise, for simplicity. Experimental recordings might include non-additive,

non-isotropic, or non-Gaussian noise. In such cases, PCA may not be an appropriate approach

to denoising, even for linearly embedded data. Methods such as Factor Analysis or extensions

such as Gaussian-Process Factor Analysis [69], and preprocessing steps such as square-root

transforms or pre-whitening could be used instead.

We scaled the firing rates of each channel to be in the [0,1] range. The arbitrary scaling of

firing rates provided a simple means for the nonlinear datasets to have the same range as their
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linear counterparts, as the nonlinear activation function that we used mapped the [0,1] range

onto itself. However, this modeling restriction does not reflect experimental neural firing data,

since the range of neural firing can differ significantly even across neurons of the same type.

We have illustrated how heterogeneity in the range of firing rates affects the reliability of

dimension estimation algorithms. Soft-normalization approaches that are commonly used in

neuroscience (dividing a neuron’s firing rate by its range plus a small constant, e.g. [70]),

would results in the amplification of signals with low variance and would cause variance-based

algorithms to result in higher dimensionality estimates.

The latent signals used to generate simulated firing rates have the same first-order statistics

as the actual data from which they were sampled, but the rescaling of simulated channel activ-

ity to a [0,1] range introduced a departure from realism. This unrealistic scenario is addressed

through the random rescaling of individual simulated channels, to reflect the heterogeneity in

the range of firing rates observed in actual neural recordings. The latent signals corresponding

to the rescaled data no longer share common statistics. This scenario allows us to address an

important problem: that low-variance latent signals can be informative [71]. As demonstrated

in our study, the use of nonlinear methods for dimensionality estimation ameliorates the prob-

lems that arise when neglecting low-variance signals as purely noisy.

Recommended analysis pipeline

Based on our results, we recommend the following approach for estimating the dimensionality

of neural recordings (Fig 10). First, obtain an upper-bound estimate D of the intrinsic

dimensionality of the data. We found that Parallel Analysis works well for this purpose, being

both computationally efficient and the most accurate linear method in our tests. Next, the sig-

nals should be denoised. Our denoising approach worked by projecting the neural signals into

a subspace of dimensionality D equal to the upper-bound dimensionality estimate, and then

reconstructing them based on these projections. A PCA based reconstruction is easy to imple-

ment and interpret and may be preferable if computational efficiency is important. A nonlin-

ear denoising algorithm, such as the Joint Autoencoder we proposed, should also be used to

assess the degree of nonlinearity of the manifold. The usefulness of the denoising step was

quantified through the VAF between the reconstructed signals, assumed to be denoised, and

the noise-free synthetic signals before noise was added to them. Our results showed that for

nonlinear datasets this VAF was higher for the Joint Autoencoder than it was for PCA. How-

ever, this VAF cannot be computed for experimental data, for which we do not have access to

the noise-free signals. In this scenario, the reconstruction VAF between noisy inputs and the

denoised reconstructed outputs may be useful for detecting nonlinear manifolds: a higher

reconstruction VAF for Joint Autoencoder denoising than for PCA denoising would signal a

nonlinear manifold. A reconstruction VAF that prefers the Joint Autoencoder indicates that

this denoising method yields better denoised signals. Once the signals are denoised, and the

linearity or nonlinearity of the manifold is established, either a linear or nonlinear dimension-

ality estimation method should be used depending on the comparative performance of the cor-

responding denoising algorithms. The most accurate linear method we tested was Parallel

Analysis. Of the nonlinear methods, Levina-Bickel Maximum Likelihood Estimation and Two

Nearest Neighbors were the most accurate; Levina-Bickel Maximum Likelihood Estimation

required fewer data samples.

Conclusions

Estimating the dimensionality of neural data is challenging. In this study, we tested several

available algorithms and determined the conditions under which estimating dimensionality
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may be particularly difficult or even impractical. Noise is a confounding factor and must be

removed prior to dimensionality estimation. Most existing studies have estimated intrinsic

dimensionality using linear methods that are computationally efficient and easy to interpret.

We showed that linear methods provide an upper-bound to the intrinsic dimensionality, and

in cases of high noise, may even provide better estimates than nonlinear methods, although

neither linear nor nonlinear methods will yield accurate estimates in this scenario. Nonlinear

algorithms were more accurate for nonlinear datasets when noise was adequately removed.

Finally, algorithms failed when the intrinsic dimensionality was high. It may be impractical or

impossible to estimate the dimensionality of neural data when it is above ~20. However, esti-

mation of the dimensionality of neural activity in the primary motor cortex may be possible, as

many studies have reported its linear dimensionality to be within the practical limits for accu-

rate estimation by the methods we tested.

Fig 10. Recommended analysis pipeline for estimating the dimensionality of multi-electrode array recordings.

First, obtain an upper-bound dimensionality estimateD using a linear algorithm. Parallel Analysis works well for this

purpose. Next, denoise the data using both linear (PCA based) and nonlinear (JAE based) denoising approaches and

compare their reconstruction VAFs. Higher VAF for the PCA based denoising. Similar VAFs for the linear and

nonlinear denoising approaches would signal a linear manifold. In contrast, higher VAF for the JAE based denoising

would signal a nonlinear manifold. Finally, once the signals have been denoised using the appropriate denoising

method based on the determined linearity of the manifold, estimate the dimensionality of the denoised signals. Parallel

Analysis is appropriate for linear manifolds. Levina-Bickel Maximum Likelihood Estimation and Two Nearest

Neighbor are the most accurate nonlinear algorithms that we tested.

https://doi.org/10.1371/journal.pcbi.1008591.g010
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Supporting information

S1 Table. Application of the recommended analysis pipeline to three sets of real neural

recordings. The parallel analysis (PA) estimates of the dimensionality are shown for each of

the datasets J1, J2, and J3. These values determined the dimensionality to be used for denoising

each dataset. The PCA-based denoising yielded reconstructions with 53%, 51%, and 56% VAF.

The JAE-based denoising was slightly better for all datasets, with 61%, 59%, and 62% VAF.

The better performance of the JAE-based denoising is indicative of modest nonlinearity in all

three datasets. Once each dataset had been denoised using JAE, the corresponding dimension-

alities were estimated using MLE and TNN. These results motivated our choice of d = 6 for the

intrinsic dimensionality of most of our simulated datasets.
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