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Abstract: Chlamydia trachomatis (CT) infection is one of
the most common causes of reproductive tract diseases
and infertility. CT-Hsp60 is synthesized during infection
and is released in the bloodstream. As a consequence,
immune cells will produce anti-CT-Hsp60 antibodies.
Hsp60, a ubiquitous and evolutionarily conserved chaper-
onin, is normally sequestered inside the cell, particularly
into mitochondria. However, upon cell stress, as well as
during carcinogenesis, the chaperonin becomes exposed
on the cell surface (sf-Hsp60) and/or is secreted from cells
into the extracellular space and circulation. Reports in the
literature on circulating Hsp and anti-Hsp antibodies are
in many cases short on details about Hsp60 concentra-
tions, and about the specificity spectra of the antibodies,
their titers, and their true, direct, pathogenetic effects.
Thus, more studies are still needed to obtain a definitive
picture on these matters. Nevertheless, the information
already available indicates that the concurrence of
persistent CT infection and appearance of sf-Hsp60 can
promote an autoimmune aggression towards stressed
cells and the development of diseases such as autoim-
mune arthritis, multiple sclerosis, atherosclerosis, vasculi-
tis, diabetes, and thyroiditis, among others. At the same
time, immunocomplexes composed of anti-CT-Hsp60
antibodies and circulating Hsp60 (both CT and human)
may form deposits in several anatomical locations, e.g., at
the glomerular basal membrane. The opposite side of the
coin is that pre-tumor and tumor cells with sf-Hsp60 can
be destroyed with participation of the anti-Hsp60
antibody, thus stopping cancer progression before it is
even noticed by the patient or physician.

Hsp60, a Ubiquitous Molecule with Multiple Roles
in Health and Disease

Hsp60 is a Group I chaperonin highly conserved during

evolution with essential roles in cells and tissues [1–4]. In

eukaryotes, this chaperonin is usually described as a mitochondrial

molecule that works together with its co-chaperonin, Hsp10, to

assist in the correct folding of other mitochondrial proteins. The

two chaperonins assemble and form an ‘‘American football–

shaped’’ molecular complex, a structure that is efficient for

correctly folding other proteins, i.e., ‘‘client polypeptides’’ [5]. The

Hsp60/Hsp10 complex is typically formed of a double ring-shaped

Hsp60 oligomer of 14 monomers and a dome-shaped Hsp10 single

ring of seven monomers. Each Hsp60 monomer displays three

domains: apical, intermediate, and equatorial [6].

Mammalian Hsp60 has been well characterized [7] and, in

humans, its gene resides on Chromosome 2 [8]. Hsp60 proteins

are highly conserved in evolution and, therefore, those of

eukaryotes and prokaryotes share numerous identical amino acids

[2,7]. This high similarity in primary structure implies common

antigenic sites (henceforth called epitopes) that elicit and react with

crossreactive antibodies [9,10]. This is the reason why exogenous

Hsp60 from a microbe can elicit an immune response in humans,

a response that although directed primarily against the microbial

molecule also reacts with the endogenous chaperonin [11],

providing a link between infection and development of autoim-

mune diseases, as postulated for arthritis [12–14], multiple

sclerosis [15–17], and diabetes [9,18,19]. These findings have

stimulated interest in Hsp60 in physicians willing to understand

the molecular basis of disease. However, from the literature it

appears that research on circulating Hsp60 and anti-Hsp60

antibodies has been marred by a lack of rigorous quantification of

the chaperonin concentrations and antibody titers in plasma or

serum. Furthermore, the specificity spectrum of the anti-Hsp60

antibodies has not usually been determined and, therefore, it is

difficult if not impossible to know the range of antigens, namely

human and bacterial chaperonins, recognized by the antibodies

and with what avidity. Because of the two limitations mentioned

above, and because of the inherent difficulty in devising reliable

strategies to obtain direct correlations between antibody levels and

extension of pathological lesions and clinical status in represen-

tative samples of pathological specimens and patients and

adequate controls, conclusions about the role of anti-Hsp60

antibodies in the onset and progression of disease must be taken as

provisory and subject to challenge with further investigation. The

main aim of this review is to make pathologists and clinicians fully

aware of the existence and pathogenetic potential, which we

assume is quite high, of anti-Hsp60 antibodies, but at the same

time the review intends to raise awareness on the limitations of

previous studies and, thus, encourage new ones more quantitative

and accurate in terms of specificity and avidity of the antibodies.

In summary, this review presents a field with exciting prospects but
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full of traps that ought to be recognized within what has been done

in the past and what should be avoided in future research.

Surface and Secreted Hsp60 Can Activate the Immune
System

Although Hsp60 is primarily considered a mitochondrial protein,

in mammals 20% to 40% of cellular Hsp60 occurs in extra-

mitochondrial sites (Table 1) [20–23]. The presence of Hsp60 on the

cell membrane’s surface (sfHsp60) has been noted in normal [24],

stressed [25], and tumor cells [26–28] and was thought to be

associated with membrane transport and signaling [24,29]. An

increase in sfHsp60 levels is considered a danger signal for the

immune system in as much as it leads to activation and maturation of

dendritic cells and generation of an antitumor T cell response [27,30].

Hsp60 is a ligand of Toll-like receptor 4, part of the innate immune

system, and sfHsp60 expression positively correlates with the

triggering of apoptotic phenomena [31]. In addition, the expression

of sfHsp60 on the lymphocytic membrane has been associated with

spontaneous apoptosis and cell lysis [32,33]. Therefore, Hsp60

translocation through the plasma membrane should not be

considered just as a passive, inconsequential event, but as a key step

in the pathogenesis of immune system–mediated disorders (Table 2).

Hsp60 is also secreted from cells and thus reaches the interstitial

fluid and the bloodstream [34]. The levels of Hsp60 in plasma of

healthy subjects vary over a wide range from undetectable up to

over 1,000 ng/mL; nevertheless, plasma levels in any single

individual are rather stable, probably because they are under

genetic control [35]. Because of this individual stability of Hsp60

plasma levels when changes appear in any given person, they most

probably indicate that something is abnormal. This is one

important reason why circulating Hsp60 has recently become a

potentially useful marker for clinicians, worth measuring in sera of

patients affected by a variety of diseases, as will be discussed later.

However, due to the variations in Hsp60 levels among individuals,

quantification of circulating chaperonin in populations of patients

and controls must be carefully done and repeated to obtain

representative samples of data amenable to rigorous statistical

analysis that, in turn, will provide a satisfactory basis for assessing

correlations of Hsp60 levels with pathology.

Hsp60 Can Be Elevated in Tumors and Cardiovascular
Diseases

Previous studies have revealed that the levels of cytosolic Hsp60

in vivo gradually increase during carcinogenetic steps, from

normal tissue to dysplasia to fully developed carcinoma, in various

organs: uterine exocervix [36], large bowel [37], and prostate [38].

In contrast, in other malignancies cytosolic Hsp60 was found to

decrease during carcinogenesis as compared with normal tissue in

tumors of the tongue [39], bladder [40], and airways [41,42].

sfHsp60 occurs in the cell membrane of certain types of tumors

[28], where it is associated with p21ras protein [43] and also with

alpha-3-beta-1 integrin, which is involved in the adhesion of

metastatic breast cancer cells to lymph nodes and bone tissue [44]. It

has also been shown that sfHsp60 plays a role in the metastatization

of pancreatic carcinoma [26]. sfHsp60 occurs on the membrane of

oral tumor cells and seemingly participates in the mechanism of the

tumor cell lysis induced by gammadelta T lymphocytes [45].

Experiments in vitro with a number of tumor cells have shown that

photodynamic therapy can induce an increase in Hsp60 [46,47] and

membrane surface localization [48].

In addition to carcinogenesis, Hsp60 has been associated with

several other pathologies, for example, with atherosclerosis (ATS),

a disease that can be serologically monitored by measuring Hsp60

and anti-Hsp60 antibodies [49]. It has been shown that soluble

Hsp60 plays a role in activating vascular and immune cells during

ATS development [49], and that the levels of complement-

activating anti-Hsp60 antibodies are elevated in ATS-related

diseases [50]. Hsp60 has been detected on the surface of stressed

endothelial cells [51,52] and, therefore, these cells become

susceptible to complement-dependent lysis by anti-Hsp60 anti-

bodies. In light of these findings, ATS has been proposed as an

‘‘autoimmune disease due to an immune reaction against Hsp60’’

[53]. Nevertheless, for the reasons mentioned earlier about

quantification of Hsp60 and anti-Hsp60 antibodies, one has to

be aware that the role of Hsp60 in ATS pathogenesis is still under

scrutiny. For example, while in teenagers a positive correlation

was revealed between early ATS and Hsp60 levels [54], the

picture is not clear in older individuals with symptomatic ATS,

because in these older patients there are so many other variables

that must be considered in relation to ATS that to make reliable

correlations between plasma Hsp60 levels and disease is

practically impossible.

Recently, it has also been shown that stressed myocardiocytes

excrete Hsp60 by the exosomal pathway [34], which may reflect

the increase in myocardial levels of Hsp60 that double by the end-

stage of heart failure [55]. A chronic injury of progressive heart

failure resulted from the localization of Hsp60 in the plasma

membrane [25]. Moreover, levels of sfHsp60 were positively

correlated with myocardiocyte apoptosis and with the release of

the chaperonin into circulation, resulting in the activation of the

innate immune system with generation of a pro-inflammatory

process in the myocardial interstitium [25].

Since sfHsp60 might be involved in the pathogenesis of ATS, by

extension one can infer that this chaperonin is implicated in the

pathogenesis of cerebrovascular disorders, such as stroke. In this

regard it is noteworthy that Hsp60 levels and distribution are

altered in various central nervous system conditions that are not

primarily due to the failure of blood circulation, such as

Alzheimer, Parkinson, and Huntington diseases, which suggests

a participation of the chaperonin in the pathogenesis of these

diseases unrelated to vascular pathology [56]. It has been shown

that Hsp60 expression in cultured human adult astrocytes is

induced by cytokines, i.e., interleukins IL-1b, IL-4, IL-6, and IL-

10, and TNF-alpha, which leads to the suggestion that Hsp60

plays an important role also in the pathogenesis of autoimmune

diseases of the nervous system, like multiple sclerosis [57].

Anti-Hsp60 antibodies have been found to occur in a number of

systemic autoimmune disease–associated vasculitides, such as

Takayasu arteritis, polyarteritis nodosa, Wegener granulomatosis,

and systemic lupus erythematosus [58]. In all of these conditions,

however, for the reasons mentioned earlier, the exact nature

(specificity) and role of the anti-Hsp60 antibodies in pathogenesis

is still incompletely understood.

Table 1. Hsp60 Locations and Functions.

Location Function(s) Reference

Mitochondrion Protein folding [5,6]

Cytosol Control of signal transduction, apoptosis,
senescence, glycolysis

[20–23]

Cell membrane Membrane transport, cell–cell signaling,
immune system alerting

[24–33]

Intercellular
interstitium

Either pro- or anti-inflammatory [25,49,50,59,61–63]

doi:10.1371/journal.ppat.1000552.t001
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Other Diseases Potentially Related to Hsp60
Hsp60 has also been implicated in the pathogenesis of

degenerative joint diseases such as rheumatoid arthritis (RA)

[59]. This is an autoimmune disorder with pathogenesis and

outcome influenced by the balance between the activities of Th-1

and Th-2 cells. Th-1 activation induces secretion by RA synovial-

fluid mononuclear cells of pro-inflammatory cytokines such as IL-1

and TNF-alpha, with consequent cartilage damage, whereas Th-2

activation promotes secretion of IL-4, inhibiting Th-1 activity and

diminishing inflammation and cartilage damage [60]. In this

respect, it is interesting that mycobacterial Hsp60 activates Th-1

production of IL-1 and TNF-alpha, which suppress cartilage

proteoglycan synthesis and contribute to cartilage damage [61]. In

contrast, human Hsp60 stimulates Th-2 production of IL-4 and

determines a lower release of IL-1 and TNF-alpha by Th-1 cells in

comparison to non-human Hsp60-stimulated Th-1 cells [62]. It

has been postulated that a humoral response against bacterial

chaperonin can elicit a crossreaction against the infected host’s

Hsp60, thus perpetuating local inflammation and destructive

processes in cartilage [59,63]. All of these data, confirmed also in

experimental models of adjuvant arthritis [64], suggest that

human, but not bacterial, Hsp60 contributes to suppressing

inflammation. Unfortunately, the human chaperonin can also

serve as an autoantigen in pathological lesions that may attract

antibodies, thus contributing to inflammation and tissue destruc-

tion. Such considerations have to be taken into account when

thinking of therapeutic uses of Hsp60.

Under physiologic conditions, pancreatic beta-cells show Hsp60

only in mitochondria and secretory granules [65], but in

pancreatic islets affected by insulitis the chaperonin migrates

towards the cytoplasm as well as to the plasma membrane, in

which it can be detected by the immune system that, consequently,

mounts an immune response [66]. Since it was realized that Hsp60

is one of the most relevant self-antigens for diabetogenic T cell

clones, the chaperonin peptide DiaPep277 has been used to slow

down beta-cell damage after the clinical onset of diabetes, both in

non-obese diabetic mice and human adults [67,68]. The first

results seem encouraging, but further clinical trials are currently in

progress to complete the validation of this therapeutic approach.

It has also been hypothesized that Hsp60 plays a role in the

pathogenesis of thyroid and adrenal immune diseases characterized

by a proliferation of oncocytes, i.e., intensely eosinophilic cells with

granular cytoplasm and a very large number of mitochondria [69].

Lately, the chaperonin has been described as a relevant disease-

related autoantigen in autoimmune glomerulonephritis [70], juvenile

dermatomyositis [71], and both plaque and guttate psoriasis [72].

Microbial Hsp60, a Strong and Potentially
Harmful Antigen

Numerous infections caused by bacteria, fungi, and mycobac-

teria can trigger an immune reaction against the microbial Hsp60

with the generation of anti-Hsp60 antibodies [73]. In this regard, it

is important to bear in mind that anti-Hsp60 antibodies can also

be found in healthy subjects (likely elicited by the chaperonin from

microbes in the normal digestive tract flora for instance),

representing an early non-specific defense mechanism against

pathogens [10]. The sharing of considerable similarity in the

primary structure of microbial and host Hsp60 predicts antigenic

crossreactivity and development of immune reactions against both

proteins [11].

Humoral immune reactions to bacterial Hsp60, such as those

from Chlamydia pneumonia (CP) and Escherichia coli have been

suggested to be involved in the process of vascular endothelial

injury during ATS pathogenesis [74]. It has been stated that the

risk of crossreactivity between the microbial chaperonin and the

human counterpart on the surface of stressed cells of the arterial

endothelium is the cost the organism has to pay for protective

immunity against microbial molecules [75]. Infections by Porphyr-

omonas gingivalis[76–78] and Helicobacter pylori[79] have been

correlated with a higher risk of development of coronary ATS,

due to the high crossreactivity of anti-microbial Hsp60 antibodies

with human Hsp60. For similar reasons, E. coli Hsp60 has also

been implicated in the pathogenesis of autoimmune rheumatic

[80] and pancreatic [81] diseases, and Sjogren syndrome [82].

Moreover, an increase in the levels of autoantibodies against

endogenous Hsp60 precedes the onset of diabetes in cystic fibrosis

patients; hyperimmunization with bacterial Hsp60 caused an

increase in anti-Hsp60 autoantibodies that was followed by glucose

intolerance [83].

Chlamydia trachomatis Hsp60 Is Abundantly Produced
during Persistent Infections

Among pathogens, Chlamydia trachomatis (CT) is an intracellular

bacterium responsible for a sexually transmitted disease. Approx-

imately 4 million cases of CT infections are estimated to occur

annually in the United States, although only about one quarter of

those cases are diagnosed and treated [84].

CT includes three human biovars: trachoma (serovars A, B, and

Ba or C), urethritis (serovars D-K), and lymphogranuloma

venereum (LGV; serovars L1, 2, and 3) [85]. Each CT biovar

can cause from mild to severe symptoms. Some infected

individuals are asymptomatic, which allows spread from person

to person before the infection is detected. In the US in 1990, the

direct costs of treating CT infections and its complications were

estimated at US$4.2 billion [86], while projected costs for the

years 2000s were US$10 billion [87]. These figures clearly

demonstrate the magnitude of the health and social problems

caused by CT.

CT penetrates into epithelial cells as an elementary body and

then converts to a reticulate body, the replicating form of the

pathogen. During persistent infections, CT produces a large

quantity of Hsp60 (CT-Hsp60) [88], which has been implicated in

the pathogenesis of autoimmune disorders such as reactive arthritis

Table 2. Pathologic Conditions in Which Surface Hsp60 Has Been Correlated with Pathogenesis.

Condition Cell Role Reference

Cancer Tumor Involved in metastatization to lymph nodes and bones and antitumor immune response activation [26,44–48]

Atherosclerosis Endothelial Confers susceptibility to complement-dependent cell lysis [50–52]

Heart failure Myocardiocyte Promotes myocyte apoptosis and pro-inflammatory status in myocardium [25,34,53,55]

Diabetes Beta, (insulitis) Becomes target for T cell–mediated beta-cell destruction [66]

doi:10.1371/journal.ppat.1000552.t002
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[89,90]. CT-Hsp60 might exert an antiapoptotic effect in nascent

tumor cells, which would contribute to female genital tract

oncogenesis [91,92].

There are three CT-Hsp60 isoforms: CT-Hsp60-1, mainly

found in the reticulate bodies, and CT-Hsp60-2 and CT-Hsp60-3,

which are released extracellularly [93]. Prolonged exposure of the

immune system to any of the CT-Hsp60 isoforms leads to immune

system activation and antibody formation [94]. CT-Hsp60 is able

to stimulate production of pro-inflammatory cytokines in endo-

thelial and smooth-muscle cells and macrophages [95], and it can

also promote the activation of specific immune cells via a Toll-like

receptor [96].

In a recent study, our group compared the amino acid

sequences of human-Hsp60 and CT-Hsp60-1 (serovar D), and

we found four epitopes with a 100% identity and 13 other peptides

of various lengths with identities between 33% and 75% [97].

These epitopes are present in all three domains of the molecule

(Figure 1).

Previous comparisons of human versus CT (serovars B, C, and

L2) Hsp60 sequences identified 13 major epitopes, seven of which

showed crossreactive antibody binding with homologous peptide

sequences in human Hsp60 [98]. These data should draw the

attention of clinicians towards an often ignored pathogenetic

factor, namely, the crossreactive anti-Hsp60 antibodies formed

during CT infection. One of the major objectives of this article is

to inform clinicians about the occurrence of these antibodies and

about their considerable pathogenetic potential.

Chlamydia trachomatis Infection and Antihuman-
Hsp60 Antibodies: Negative and Positive Impact

CT infections can persist for very long periods because, usually,

the human immune system cannot eliminate pathogens that

remain hidden but virulent at focal sites; thus, these silent foci

represent a high risk for complications [99].

People affected by CT develop high titres of serum antibodies

anti-CT-Hsp60 [93,99]. These antibodies also recognize homol-

ogous epitopes on human Hsp60 [100], so the more prolonged the

infection the greater the increase in the risk that crossreactive

antibodies will react against host cells expressing sfHsp60

(Figure 2). These examples illustrate the importance of assessing

the specificity spectrum of anti-Hsp60 antibodies as mentioned

earlier, to obtain a defined picture of the antibody populations at

play in pathology, a consideration that must also be applied when

considering CT versus CP infections (see below).

Eukaryotic Hsp60 is a ubiquitous, multifaceted, versatile

molecule in as much as it has been classically described in

mitochondria, but it has lately been found in extramitochondrial

sites [101]. In addition, during carcinogenesis Hsp60 may be

augmented or diminished [102]. If augmented, it can have either

pro- [103,104] or anti-apoptotic effects [23,105] or both [106].

Likewise, when Hsp60 is released outside cells, it can exert either

pro- [25,53] or anti-inflammatory roles [62].

High levels of Hsp60 in plasma of healthy subjects have been

positively correlated with low socioeconomic status, social

isolation, and psychological distress [107]. Moreover, serum levels

of Hsp60, but not those of anti-Hsp60 auto-antibodies, decline

with age [108]. These autoantibodies could bind Hsp60 and, thus,

produce immunoprecipitates with pathological impact on cells and

tissues. There is a report on one case of immune complex

glomerulonephritis in a 24-year-old individual with a CT infection

of the fallopian tube [109]. Cases like this are probably frequent

but missed in clinical practice. Therefore, the occurrence of anti-

Hsp60 autoantibodies in individuals with CT infections should

always be investigated, paying especial attention to aged patients,

since both prevalence of autoimmunity and titres of autoantibodies

tend to increase with age [110–113].

Anti-Hsp60 autoantibodies recognize Hsp60 epitopes exposed

on stressed endothelial cell membranes [51,52]. This would

represent the initial event triggering the formation of ATS lesions

Figure 1. Comparison between the structures of Chlamydia trachomatis (ct-) and human- (h-) Hsp60. Shown are the positions of the four
epitopes with 100% homologies. Circle: apical domain; arrow: intermediate domain; arrowhead: equatorial domain. See text and reference [94] for
further details. The images were created with PyMol (http://pymol.sourceforge.net).
doi:10.1371/journal.ppat.1000552.g001
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and vasculitis. Autoantibodies are also thought to induce apoptosis

in cells of the vascular endothelium and to generate renal

vasculopathy in systemic lupus erythematosus [114].

When sfHsp60 is exposed on the myocardiocyte plasma

membrane, anti-Hsp60 autoantibodies can trigger myocyte

destruction via macrophage and/or neutrophil Fc recognition,

accelerating heart failure [25]. Studies on Hsp60 autoimmunity

also indicate that autoimmune diabetes can begin after bacterial

hyperimmunization [83].

Cautionary Notes on Anti-CT-Hsp60 Antibody
Measurements

Although several studies have been carried out to investigate the

presence of Hsp60 and anti-Hsp60 in CT-infected individuals (and

in various autoimmune diseases, as discussed elsewhere in this

article), the results must be subjected to scrutiny and, if possible, to

confirmatory research. This is pertinent, for example, to detection

of Hsp60 in human plasma.

First, in many of these studies, undiluted plasma was used to

measure Hsp60 or antibodies to Hsp60 by ELISA. As a consequence,

it becomes very difficult to be certain as to what was actually

detected by the antigen–antibody binding assay because undiluted

plasma is rich in a wide variety of proteins, which makes non-

specific binding likely. In addition, in a considerable number of

cases it is not clear what internal controls were used and how the

ELISA was calibrated to avoid false positives and false negatives.

Second, since antibodies to Hsp60 are also found in normal,

healthy individuals and since their levels could vary widely (see

above [35]), the possible significance of such antibodies, if they are

detected in patients, in regard to development of autoimmune

diseases can be very difficult to establish.

Third, despite the fact that antibodies to Hsp60 could be

induced by a variety of bacteria in human niches, including those

present in periodontal pockets and the gastrointestinal tract [10],

the antigenic specificity of the antibodies was not, as a rule,

determined. Thus, antibodies found to react with CT Hsp60 could

very well have been elicited by chaperonins from other microbes, a

possibility that must not be ignored due to the known high degree

of similarity of Hsp60 across species. Consequently, efforts must be

made to obtain and prepare panels of well-characterized antigens

Figure 2. Potential effects of anti-CT-Hsp60 antibodies generated during persistent CT infections. CT-Hsp60 is released from cells
infected with Chlamydia trachomatis (CT), and anti-CT-Hsp60 antibodies are produced by the host’s immune system. In turn, these antibodies
recognize surface Hsp60 on either stressed or tumor cells and, consequently, cell lysis and organ destruction can occur, determining pathogenesis of
a number of diseases (see text for further details). Likewise, immunocomplexes formed by anti-CT-Hsp60 antibodies and CT- (or human-, not shown)
Hsp60 can form deposits in the glomerular basal membrane, causing an idiopathic form of glomerulonephritis. Tumor cell lysis can arrest
tumorigenesis, in which case it is likely that the infected individual escapes from cancer without having experienced a detectable pathology or
symptom.
doi:10.1371/journal.ppat.1000552.g002
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to assess the specificity spectrum of the antibodies and identify

those most likely to be the relevant ones for any bacterial infection,

including CT infection.

Finally, it is of the utmost importance to be aware that CP

infections are more widespread in the human population than are

CT infections [115]. More than half of all adults in North America

have antibodies to CP. As a consequence, one can expect that

antibodies to CP Hsp60, which are most likely directed against

similar epitopes as those in CT, should be of common occurrence.

Here again, the challenge is to determine the specificity spectrum

of the antibodies with a panel of Hsp60 molecules from pertinent

species and, thus, determine with accuracy the true specificity of

the antibodies as well as their titers with regard to the antigen

under investigation (e.g., CT or CP Hsp60).

How, and When, to Defend from CT-Hsp60 Production?
Despite all the suggestive information already in the literature,

sfHsp60 has not yet been sufficiently studied in human tissues under

normal or pathological conditions, or after stress when Hsp60

translocates to the plasma membrane. sfHsp60 becomes recogniz-

able by the immune system, leading to the generation of

autoantibodies and other manifestations of the immune response

accompanied by cell destruction, inflammation, and organ damage

(Table 3). This series of concatenated events typical of autoimmune

disorders due to autoantigens that share sequence homology with

human Hsp60 very likely occur in various diseases, for example,

Hashimoto disease, thyroiditis, scleroderma, pemphigoid, multiple

sclerosis, chronic active hepatitis, primary biliary cirrhosis, and

Addison disease [116]. It is imperative to ask the question whether

all those diseases, and perhaps others, are not due at least in part to

the invasion of the host by microbial Hsp60 from undiagnosed or

misdiagnosed (and therefore untreated) bacterial infections, among

which CT could be one of the prime suspects. The invading Hsp60

would elicit antibodies primarily directed to the microbial

chaperonin but crossreactive with the host’s counterpart (Figure 2).

If that were the case, an essential distinction should be made

between these antibodies elicited by a foreign antigen but reactive

also with autoantigens and true autoantibodies elicited by

autoantigens. This essential difference could very well mean other

important dissimilarities pertaining to structural, functional, and

biological molecular aspects, all of which deserve investigation in

order to understand pathogenetic mechanisms, and to devise

adequate diagnostic and therapeutic strategies.

On the other side of the coin, since sfHsp60 can be present on

the surface of tumor cells [26–28], the occurrence of an anti-

Hsp60 immune response, including circulating autoantibodies,

could be beneficial in as much as the response would have a strong

negative impact on tumor growth [117]. In this scenario, patients

with a chronic CT infection may inadvertently be protected from,

or ‘‘vaccinated’’ against as it were, cancer (Figure 2). This is a

plausible possibility deserving investigation, even more so because

a comprehensive study in vivo on sfHsp60 localization in tumor

cells is still lacking.

In regard to the above, in vitro experiments showed that

photodynamic therapy could induce sfHsp60 localization in a

number of tumor cells [48]. This is one reason why it is believed

that the presence of anti-Hsp60 autoantibodies might have

antitumor effects and that the use of such antibodies could be a

means for cancer treatment.

In summary, the high prevalence of CT infection in humans

and the high similarity in the primary structure of CT and human

Hsp60 should keep physicians on the alert and drive them to make

every possible effort to diagnose CT infection or rule it out. Thus,

measuring serum for anti-Hsp60, and also anti-Hsp10, antibodies

offers a promising approach if the proper methodology is used (as

discussed earlier in various sections of this article). If this diagnostic

conduct is abided by, it is likely that much light will be shed on a

number of misdiagnosed, idiopathic autoimmune disorders. In

addition, investigating autoimmunity elicited by CT Hsp60 could

provide information on a suspected protective role of the

autoimmune phenomena in cancer, specifically when the cancer

cells bear sfHsp60.

Conclusions and Perspectives

The chaperonin of Group I, Hsp60, or Cpn60 has many

important functions, and its alterations, whether genetic or

acquired, can cause pathologic disorders [118,119]. Like other

Hsp chaperones, Hsp60 is an evolutionarily conserved protein

and, consequently, molecules from different species share

sequences that can be antigenic and elicit crossreactive antibodies.

This situation is particularly relevant to human diseases with an

autoimmune mechanism, particularly in patients with chronic

infections.

This article focuses on the potential pathogenetic effect of

Hsp60 from Chlamydia trachomatis (CT-Hsp60) that shares various

antigenic determinants with the human counterpart. Infection

with CT leads to an immune response against the invader’s

chaperonin, but the response crossreacts with the host’s Hsp60.

The crossreactive effects are perpetuated, and possibly amplified,

Table 3. Anatomic Sites and Cells in Which Hsp60 Could Play the Role of Autoantigen during Persistent CT Infection and Anti-CT-
Hsp60 Antibody Production.

Site Cell Pathology Reference

Vessels Endothelial cells Vasculitis, atherosclerosis [49,50,53,54,58]

Heart Myocardiocyte Myocarditis, infarct, heart failure [25,34,55]

Joints Synoviocyte Rheumatoid arthritis [59,61–63]

Pancreas Beta-cells Diabetes [66,69]

Thyroid Thyreocyte Hashimoto thyroiditis [69]

Liver Hepatocyte, biliary duct cells Chronic active hepatitis, primary biliary cirrhosis [69]

Adrenal glands Glomerular zone cells Addison disease [69]

Kidney Glomerulus Glomerulonephitis [70]

Skin Keratinocyte, fibroblast, endothelial cells Scleroderma, pemphigoid, psoriasis, dermatomyositis [71,72]

doi:10.1371/journal.ppat.1000552.t003
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by the fact that the human chaperonin is present not only inside

cells but also outside them, attached to the cell membrane or in

circulation. Thus, antibody-antigen reactions can occur on the

cell’s surface, in the intercellular space, and in biological fluids

with a variety of consequences, including modulation of the

immune system and generation of pathological lesions with

immunoprecipitates. If Hsp60 occurs on the surface of malignant

cells, a fact already ascertained for some types of cancer,

antibodies or immune cells that react with the chaperonin have

the potential ability to damage the tumor.

Since CT infections may go undetected or be misdiagnosed, and

may be long lasting, anti-Hsp60 antibodies are likely to be causing

disease silently for a long time without the physician being aware

of this potentially very damaging situation. Likewise, protracted

infections with CT could protect against the growth of certain

tumors. These examples demonstrate why Hsp60 is considered a

multifaceted, versatile molecule difficult to understand in any

particular situation. As a consequence, the physician ought to

become aware of the various roles of Hsp60 and anti-Hsp60

antibodies and of the importance of measuring them in all cases

with suspected or demonstrated autoimmune manifestations.

It would be important to determine at what stage of human

development Hsp60 begins to appear in extracellular locations and

whether it is tolerogenic. Elucidation of these aspects of Hsp60

biology is essential to determine if, why, and when anti-Hsp60

autoantibodies (elicited by the endogenous human chaperonin)

emerge, and what is their distribution in any given population.

Clarification of these points will help understand the mechanism

involved in the generation of anti-Hsp60 antibodies and/or their

increase in response to invasion by a crossreactive chaperonin

from a microbe.

Accession Numbers

The Entrez Protein Data Bank (http://www.ncbi.nlm.nih.gov/

sites/entrez?db = protein) accession codes for the proteins dis-

cussed in this paper are Chlamydia trachomatis Hsp60-1 (CAH04305,

[97]); mitochondrial heat shock 60 kD protein 1 variant 1 [Homo

sapiens] (ACE06961, [97]); mycobacterial Hsp60 (CAD95638,

[120]); Chlamydia pneumoniae Hsp60 (AAF38748, [121]); Escherichia

coli Hsp60 (Q1R3B6, [122]); Helicobacter pylori (ACD47477,

Reference Kersulyte, D., et al., direct submission, unpublished).
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