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Abstract. In this study, we aimed to explore the molecular 
mechanisms of and genetic factors influencing diabetic nephrop-
athy (DN). Gene expression profiles associated with DN were 
obtained from the GEO database (Accession no. GSE20844). 
The differentially expressed genes (DEGs) between diabetic 
mice and non-diabetic mice were screened. Subsequently, the 
DEGs were subjected to functional and pathway analysis. The 
protein-protein interaction  (PPI) network was constructed 
and the transcription factors  (TFs) were screened among 
the DEGs. A total of 92 upregulated and 118 downregulated 
genes were screened. Pathway analysis revealed that the 
p53  signaling pathway, the transforming growth factor 
(TGF)-β signaling pathway and the mitogen-activated protein 
kinase (MAPK) signaling pathway were significantly enriched 
by upregulated genes. Serpine1 (also known as plasminogen 
activator inhibitor-1), early growth response 1 (Egr1) and Mdk 
were found to be significant nodes in the PPI network by three 
methods. A total of 12 TFs were found to be differentially 
expressed, of which nuclear receptor subfamily 4, group A, 
member  1  (Nr4a1) and peroxisome proliferator-activated 
receptor gamma (Pparg) were found to have multiple interac-
tions with other DEGs. We demonstrated that the p53 signaling 
pathway, the TGF-β signaling pathway and the MAPK 
signaling pathway were dysregulated in the diabetic mice. The 
significant nodes (Serpine1, Egr1 and Mdk) and differentially 
expressed TFs (Nr4a1 and Pparg) may provide a novel avenue 
for the targeted therapy of DN.

Introduction

Diabetic nephropathy (DN) is a chronic kidney disease and 
is a serious complication of long-term diabetes mellitus (1). 

DN develops in 30-40% of patients with type I and II diabetes 
mellitus and is a risk factor for increased mortality in patients 
with cardiovascular disease (2). Although the signs of early DN 
are not evident, the clinical evidence for DN is the presence 
of proteinuria, glomerular hypertrophy, decreased glomerular 
filtration and a decline in renal function (1). DN continues to 
present a health concern worldwide.

Accumulating experimental in vivo and in vitro evidence 
has indicated that multiple pathways and cytokines play a role in 
the pathogenesis of DN. For example, a recent study suggested 
a cardinal role of inflammatory molecular and pathways in the 
pathogenesis of DN (3). The activation of the innate immune 
response associated with various inflammatory molecules, such 
as interleukin (IL)-1, IL-18 and tumor necrosis factor (TNF) has 
also been shown to contribute to the renal injury observed in 
patients with DN (4). Furthermore, it has been reported that the 
nuclear factor (NF)-κB signaling pathway induces the expres-
sion of inflammatory genes during the progression of DN, and 
these effects are modulated by the Ras homolog gene family, 
member A  (RhoA)/Rho-associated protein kinase  (ROCK) 
signaling pathway (5). A good understanding of the molecular 
mechanisms responsible for the disease may aid in the develop-
ment of effective therapies. However, the molecular mechanisms 
of DN have not yet been fully clarified.

Microarray data have been widely used to connect genes 
and molecules to diseases (6). Reiniger et al proved the target 
role of receptor for advanced glycation end-products (RAGE) 
in the treatment of DN based on microarray data (Accession 
no. GSE20844) (7). In the present study, we downloaded the same 
microarray data from the Gene Expression Omnibus (GEO) 
database. Subsequently, based on the gene expression profiles, 
the differentially expressed genes (DEGs) were analyzed and 
the DEG-related functions and pathways were predicted. The 
aim of the present study was to elucidate the mechanisms of 
DN pathogenesis and to identify associated significant genes.

Data collection methods

Data acquisition and preprocessing. Whole-genome micro-
array gene expression data for glomeruli from diabetic male 
OVE26 mice (diabetic group, n=4) and glomeruli from non-
diabetic male FVB mice (control group, n=3) have been deposited 
in the GEO archive database (Accession no. GSE20844) (7). 
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We downloaded the raw Affymetrix CEL files based on the 
platform of Affymetrix Mouse Genome 430 2.0 Array.

The raw data underwent pre-processing, including 
background correction, quantile normalization and probe 
summarization with the application of bioconductor package 
‘affy’, as previousy described (8).

Analysis of DEGs. The DEGs in the diabetic group compared 
with the non-diabetic controls were analyzed using the 
Bioconductor package ‘limma’, as previousy described  (9). 
The P-value for each gene was calculated using the Student's 
t-test. Genes with differences in expression denoted by values of 
p<0.05 and |log2FC (fold change)|≥0.58, screened as DEGs. In 
order to compare the differences in the profiles of DEGs between 
the diabetic and control samples, the gene expression data was 
clustered using R gplots software package (http://cran.r-project.
org/web/packages/gplots/index.html.). Subsequently, the chro-
mosomal location of the DEGs was explored based on the chip 
annotation information.

Gene Ontology (GO) and pathway analysis. The upregulated 
and downregulated genes were subjected to GO and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway anal-
ysis. The genes were enriched in three GO categories, such as 
biological process (BP), molecular function (MF) and cellular 
component (CC). The enrichment analysis based on the hyper-
geometric distribution was performed using the Database for 
Annotation, Visualization and Integrated Discovery (DAVID)
online tool (10). The cut-off value for a significant GO term and 
pathway was set to P<0.05 and count ≥2.

Protein-protein interaction (PPI) network. The functional 
protein interactions among the DEGs and the encoding 
proteins were predicted using the Search Tool for the Retrieval 
of Interacting Genes (STRING) (11). The PPI score was set 
as 0.4 and other parameters were set as the default value. 
Cytoscape was used to visualize the PPI network.

Subsequently, with the application of CytoNCA (12), the 
hub nodes were measured based on the degree centrality (13), 
betweenness centrality (14) and subgraph centrality (15). The 
hub genes were then subjected to cluster analysis using the 
R gplots software package.

Transcription factor (TF) analysis. TFs encoded by DEGs were 
explored combined with the mouse TF information recorded 
in The Animal Transcription Factor DataBase (AnimalTFDB) 
(http://www.bioguo.org/AnimalTFDB/index.php) (16). Based 
on the TRANSFAC  database, the TF-DEG interactions 
were predicted according to the information provided in the 
TRANSFAC database using the cytoscape plugin termed 
iRegulon (17).

Results

Identification of DEGs. After preprocessing, the gene expres-
sion data were normalized (Fig. 1). According to values of 
p<0.05 and |log2FC(fold change)|≥0.58, a total of 210 genes 
were found to be differentially expressed in the diabetic group, 
including 92  upregulated and 118  downregulated genes. 
Hierarchical clustering analysis revealed that the upregu-
lated and downregulated genes were relatively distinguished 
between the different groups (Fig. 2).

As shown in Fig. 3, the majority of upregulated genes were 
located on chromosome 3, whereas chromosomes 9 and 11 had 
the majority of downregulated genes.

GO and pathway analysis. The over-represented GO terms for 
the upregulated and downregulated genes are listed in Table I. 
Significantly enriched GO terms for upregulated genes included 
the regulation of angiogenesis, extracellular region and vascular 
endothelial growth factor receptor binding. For genes that were 
downregulated, the significantly enriched GO terms included 
cellular ion homeostasis, apical plasma membrane and symporter 
activity.

Figure 1. Gene expression data before and after normalization. Horizontal axis represents the sample symbol and the vertical axis represents the gene expression 
values. The black line in the box plot represents the median value of gene expression.
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Of the 7  significantly enriched pathways, Pentose and 
glucuronate interconversions were found to be closely associ-
ated with the downregulated genes. Other pathways, such 
as the p53  signaling pathway, cytokine-cytokine receptor 
interaction, the transforming growth factor (TGF)-β signaling 
pathway and the mitogen-activated protein kinase (MAPK) 

signaling pathway were significantly enriched by upregulated 
genes (Table II).

PPI network. With a PPI score  >0.4, a PPI  network with 
123 nodes and 219 edges was constructed, as shown in Fig. 4. 
The top 15  nodes based on the degree, betweenness and 

Figure 2. The heatmap of gene expression profiles in diabetic and non-diabetic samples. Green, low gene expression value; red, high gene expression value; 
black, no differential expression.

Figure 3. Distribution information of the upregulated and downregulated genes on the respective chromosomes.
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subgraph centralities were screened (Table III). Top 3 nodes 
such as early growth response 1 (Egr1), Serpine1 [also known 
as plasminogen activator inhibitor-1 (PAI-1)] and Mdk were 
shared based on the degree, betweenness and subgraph 
centralities. Merging the overlapping genes, we obtained 
24 significant genes. Hierarchical clustering analysis revealed 
that the diabetic and non-diabetic samples were distinguished 
based on the gene expression profiles of the 24 significant 
genes (Fig. 5), suggesting that these genes were feature genes 
in diabetic samples.

In order to analyze the pathways associated with these 
feature genes, we performed KEGG pathway analysis. As 

shown in Table IV, the significant genes were closely associated 
with the MAPK signaling pathway, the p53 signaling pathway 
and the TGF-β signaling pathway.

Analysis of TFs. Combined with the TF information recorded 
in TFDB, we obtained 12 differentially expressed TFs from 
9 TF families (Table V). The interactions between differen-
tially expressed TFs and DEGs predicted by the TRANSFAC 
database are shown in  Fig.  6. The TFs, nuclear receptor 
subfamily 4, group A, member 1  (Nr4a1) and peroxisome 
proliferator-activated receptor gamma (Pparg), were shown to 
have interactions with multiple genes.

Table I. The significant GO terms enriched by DEGs.

Term		  Count	 P-value

Upregulated genes
  BP
    GO:0042127 - regulation of cell proliferation	 13	 2.30E-05
    GO:0045765 - regulation of angiogenesis	 5	 9.16E-05
    GO:0016525 - negative regulation of angiogenesis	 4	 2.04E-04
    GO:0008285 - negative regulation of cell proliferation	 7	 0.001184688
    GO:0009611 - response to wounding	 8	 0.002365745
  CC
    GO:0005576 - extracellular region	 20	 5.60E-05
    GO:0044421 - extracellular region part	 11	 0.001793488
    GO:0046658 - anchored to plasma membrane	 3	 0.002476471
    GO:0005615 - extracellular space	 8	 0.006777968
    GO:0044459 - plasma membrane part	 14	 0.022475418
  MF
    GO:0005172 - vascular endothelial growth factor receptor binding	 3	 2.41E-04
    GO:0005539 - glycosaminoglycan binding	 5	 0.002459879
    GO:0030247 - polysaccharide binding	 5	 0.00373434
    GO:0001871 - pattern binding	 5	 0.00373434
    GO:0030246 - carbohydrate binding	 7	 0.00480543
Downregulated genes
  BP
    GO:0006873 - cellular ion homeostasis	 7	 0.002754032
    GO:0055082 - cellular chemical homeostasis	 7	 0.003139335
    GO:0048878 - chemical homeostasis	 8	 0.003390517
    GO:0050801 - ion homeostasis	 7	 0.004850765
    GO:0019725 - cellular homeostasis	 7	 0.010204447
  CC
    GO:0016324 - apical plasma membrane	 6	 3.76E-04
    GO:0005576 - extracellular region	 22	 0.001139987
    GO:0045177 - apical part of cell	 6	 0.001580783
    GO:0005615 - extracellular space	 9	 0.014078693
    GO:0005903 - brush border	 3	 0.020010741
  MF
    GO:0015293 - symporter activity	 5	 0.008223849
    GO:0019807 - aspartoacylase activity	 2	 0.012005144
    GO:0008201 - heparin binding	 4	 0.013672168
    GO:0004046 - aminoacylase activity	 2	 0.023867944
    GO:0031402 - sodium ion binding	 4	 0.024166754

GO, Gene Ontology; DEGs, differentially expressed genes; BP, biological process; CC, cellular component; MF, molecular function.
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Discussion

DN is a chronic kidney disease and is more prevalent in patients 
with diabetes mellitus (18). ND increases the risk factor of 
cardiovascular disease and mortality in diabetic patients (19). 
There is thus a need for the development of more effective 
treatments for patients with DN. In this study, we attempted 

to explore the potential molecular mechanisms of DN based 
on the bioinformatics methods and to provide a prospective 
novel therapeutic target. In the present study, we screened out 
92 upregulated and 118 downregulated genes. All the genes 
with changes in expression were proven to be significant 
according to hierarchical clustering analysis.

KEGG pathway analysis for both DEGs and significant 
nodes in the PPI  network revealed that the p53  signaling 
pathway, the TGF-β signaling pathway and the MAPK 
signaling pathway were the significantly enriched pathways. It 
has been reported that the overexpression of p53 is associated 
with the progression of DN. The expression of p53 and TGF-β 
was shown to be overexpressed in the renal cortex of diabetic 
mice. The crosstalk between p53 and miR-192, which is medi-
ated by TGF-β was shown to be involved in the pathogenesis 
of DN (20). The MAPK signaling pathway is a regulator of the 
expression of pro-inflammatory molecules in DN. Targeted 
therapy for inhibiting the p38 MAPK signaling pathway has 
shown preventive effects on streptozotocin-induced DN (21). 
The p38 MAPK signaling pathway also plays a partial role in 
fibrosis associated with DN (22). These findings suggest that 
our findings are significant.

In our study, the PPI network showed that Egr1, Serpine1 
and Mdk were the top 3  nodes based on the degree of 
centrality, betweenness centrality and subgraph centrality. 
Serpine1, also known as PAI-1, is a serine protease inhibitor 
and a key regulator of extracellular matrix (ECM). PAI-1 

Figure 4. Protein-protein interaction (PPI) network for differentially expressed genes (DEGs). Green, downregulated genes; red, upregulated genes.

Table II. Pathways significantly enriched by differentially 
expressed genes.

Term	 Count	 P-value

Upregulation
  mmu04115: p53 signaling pathway	 5	 7.57E-04
  mmu04110: Cell cycle	 5	 0.007243672
  mmu04060: Cytokine-cytokine	 6	 0.015248477
  receptor interaction
  mmu04350: TGF-β signaling pathway	 4	 0.015533727
  mmu04010: MAPK signaling pathway	 6	 0.021089527
  mmu05219: Bladder cancer	 3	 0.026718766
Downregulation
  mmu00040: Pentose and glucuronate	 3	 0.003652816
  interconversions
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has been widely investigated in many diseases including the 
kidney disease (23,24). It is reported that ECM accumulation 
is implicated in the development and progression of DN (25). 
The expression of PAI-1 contributes to the fibrosis of kidney 
by inhibiting ECM degradation (26). PAI-1 has been proposed 

to be the potential target in renal fibrogenesis (26). PAI-1 was 
found to be overexpressed in the kidney of diabetic mice and 
its deficiency prevents glomerular injury of diabetic mice (27). 
Therefore, PAI-1 contributes to the progression of DN and PAI-1 
knockdown may prove to be an effective therapeutic strategy 
for the treatment of DN. Additionally, midkine encoded by 
the Mdk gene has been proven to play a physiological role in 
kidney disease, including DN. Mdk plays a role in the occur-
rence and progression of acute kidney injury and contributes to 
the development of DN (28). Recent evidence has indicated that 
the diverse role of Mdk may open a new avenues for targeted 
therapies for DN (28).

Furthermore, Egr1 is a TF and plays a role in inducing 
the overexpression of heparanase in DN. The upregulation of 
heparanase is closely associated with albuminuria and renal 
damage in diabetic mice (29). The inhibition of Egr1 may be an 
effective strategy for preventing DN in diabetes. In the present 
study, other TFs, such as Nr4a1 and Pparg were found to play 
regulatory roles in the differential expression of genes. Nr4a1 is 
a member of the nuclear orphan receptor family of TFs. Nr4a1 
has been found to play a significant role in atherosclerosis, 
psoriasis and other chronic inflammatory diseases (30). As we 
all know, hypertension is closely related with the progression 
of DN. Nr4a1 has been found to be differentially expressed in 
the kidneys of hypertensive patients (31). Nr4a1 is a susceptible 

Table IV. The significant pathways enriched by 24 significant nodes in the protein-protein interaction network.

Term	 P-value	 Genes

mmu04010: MAPK signaling pathway	 0.005210429	 Dusp1, Map3K8, Tgfb3, Nr4A1, Egf
mmu05200: Pathways in cancer	 0.010457331	 Cdkn1A, Bmp2, Pparg, Tgfb3, Egf
mmu04115: p53 signaling pathway	 0.015340116	 Cdk1, Cdkn1A, Serpine1
mmu04350: TGF-β signaling pathway	 0.023759324	 Bmp2, Smad6, Tgfb3
mmu04110: Cell cycle	 0.048314969	 Cdk1, Cdkn1A, Tgfb3

Table V. Differentially expressed transcription factors in diabetic 
samples.

TF family	 TF gene symbol

bHLH	 Atoh8
bHLH	 Hey1
HMG	 Tox2
Homeobox	 Meox1
Homeobox	 Six4
IRF	 Irf6
MH1	 Smad6
Nuclear orphan receptor	 Nr4a1
PPAR receptor	 Pparg
Thyroid hormone receptor	 Vdr
zf-C2H2	 Klf6
zf-C2H2	 Egr1

Table III. Top 15 significant nodes in the protein-protein interaction network based on degree, betweenness and subgraph centralities.

Node	 Degree	 Node betweenness	 Betweenness	 Node subgragh	 Subgragh

Serpine1	 16	 Serpine1	 2905.323	 Egr1	 337.665
Egr1	 15	 Egr1	 2433.539	 Serpine1	 337.1419
Mdk	 14	 Mdk	 2319.191	 Mdk	 285.9198
Nr4a1	 12	 Pparg	 2105.681	 Icam1	 209.8053
Icam1	 12	 Lrp2	 2064.846	 Cdkn1a	 187.7399
Cdkn1a	 12	 Cdh16	 1583.724	 Nr4a1	 178.7159
Tlr4	 11	 Umod	 1440.558	 Tlr4	 147.8937
Cdk1	 10	 Ltf	 1421.087	 Dusp1	 119.8608
Bmp2	 10	 Ggt1	 1384.699	 Bmp2	 117.067
Dusp1	 9	 Tlr4	 1286.763	 Cyr61	 104.8729
Pparg	 8	 Slc12a1	 1250.098	 Pparg	 85.67106
Ltf	 7	 Nr4a1	 1248.253	 Cybb	 68.2394
Egf	 7	 Icam1	 1223.037	 Smad6	 63.11027
Cybb	 7	 Cdk1	 1119.84	 Cdk1	 56.22912
Tgfb3	 7	 Wfdc15b	 1082.356	 Map3k8	 52.32016
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gene in chronic kidney disease and a deficiency in Nr4a1 has 
been shown to be involved in kidney injury and renal func-

tion disorder (32). Otherwise, the other TF, Pparg, from the TF 
PPAR receptor family has been found to be associated with 

Figure 6. Interactions between transcription factors (TFs) and target genes. Red, upregulated genes; green, downregulated genes. Triangle represents TFs and 
the box plot represents target genes. 

Figure 5. Hierarchical clustering analysis for the gene expression profiles of 24 significant genes in the protein-protein interaction (PPI) network. 
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DN. Previous studies have demonstrated that Pparg variation 
contributes to DN development in type 2 diabetes (33). Thus, 
the significant genes identified in our study may be candidate 
therapeutic targets in DN.

Although we predicted the significant genes and pathways 
involved in the pathogenesis of DN, the lack of experimental 
validation was a limitation in our study. Experimental studies 
need be conducted to validate the differential gene expression 
profile and gene interaction pairs in the future.

In conclusion, we proved the significant role of the 
p53  signaling pathway, the TGF-β signaling pathway and 
the MAPK signaling pathway in the progression of DN. The 
significant genes, such as Egr1, Serpine1, Mdk, Nr4a1 and 
Pparg may prove to be potential therapeutic targets for the 
treatment of DN. Our findings need be further validated by 
experimental evidence.
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