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ABSTRACT

Computational analysis of cellular appearance and its dynamics is used to investigate
physiological properties of cells in biomedical research. In consideration of the great success
of deep learning in video analysis, we first introduce two-stream convolutional networks
(ConvNets) to automatically learn the biologically meaningful dynamics from raw live-cell
videos. However, the two-stream ConvNets lack the ability to capture long-range video
evolution. Therefore, a novel hierarchical pooling strategy is proposed to model the cell
dynamics in a whole video, which is composed of trajectory pooling for short-term dynamics
and rank pooling for long-range ones. Experimental results demonstrate that the proposed
pipeline effectively captures the spatiotemporal dynamics from the raw live-cell videos and
outperforms existing methods on our cell video database.

Keywords: cell dynamics, deep convolutional features, deep convolutional networks, hierarchical

pooling.

1. INTRODUCTION

Characterizing various temporal dynamics of individual cells provides useful cell phenotypic

information and is a powerful approach to modeling cell cycle stages, analyzing migratory phenotypes,

and unraveling cellular response to physiological stimuli (Chechik and Koller, 2009; Spiller et al., 2010;

Xiong and Iglesias, 2010; Zhong et al., 2012; Gordonov et al., 2016; Hu and Yang, 2016; Wang and Cong,

2016; Niederberger et al., 2015; Obayemi et al., 2016; Yuan et al., 2012; Zhong et al., 2016). Recently, the

development of time-resolved cell imaging technology has not only enabled biologists to visualize cellular

behaviors with more details but also brought great potential to analyze the live-cell dynamics based on image

processing and machine learning (Dunkers et al., 2012; Li et al., 2015a; Wang et al., 2015b).

There are several kinds of cell dynamics in videos, such as cell morphology variation, nuclear defor-

mation, and intracellular movement, applied to different applications. For example, subcellular motility is

exploited as a complement of morphological features to distinguish live cells from the dead ones (Dunkers

et al., 2012). Meanwhile, cell morphology dynamics is clustered with temporal constraint to model the

mitosis procedure (Zhong et al., 2012; Gordonov et al., 2016). To encapsulate the cell dynamics in a whole

video, it is not only needed to profile the local dynamics in video segments but also to fuse them into a
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video-wide representation (Zhong et al., 2012; Pang et al., 2015). Therefore, most of the process in the field

of cell dynamics is associated with either of short-term local dynamics or long-term video-range ones.

The key to assessing short-term cell dynamics is to precisely characterize the cellular appearance and its

change on consecutive frames. The shape parameters (such as volume, centroid, and circularity), Zernike

moments, and radial distance can describe cellular morphology, and hence, their variation on several neighbor

frames serves as the index of cell morphology dynamics (Xiong and Iglesias, 2010; An et al., 2012; Li et al.,

2014, 2015b; Tsygankov et al., 2014; Kotyk et al., 2015; Alizadeh et al., 2016). Meanwhile, a spatial

transformation is learned to warp one cellular contour to another, and the parameters of this shape trans-

formation are defined as the measurement of cell deformation or applied to identify the variation modes of

normal Hala nuclei (Rohde et al., 2008; Johnson et al., 2015). Besides the dynamics of cytoplasmic streaming

is modeled by constructing the movement field, whose horizontal and vertical average velocities are used to

classify the cells with different dynamic modes (Huang et al., 2013; Pang et al., 2015; Kaviani et al., 2016).

In recent years, deep learning techniques have achieved great success in many image-based tasks

(Krizhevsky et al., 2012; Simonyan and Zissermann, 2015; Szegedy et al., 2015), and there have been a lot

of attempts to develop deep architectures for cell-related research, such as cell segmentation (Sadanandan

et al., 2016) and classification (Chen et al., 2016). However, these existing cell-related deep neural net-

works may not be directly extended to learning cell dynamics because of the existing temporal domain. In

this article, we introduce two-stream convolutional networks (ConvNets) to automatically learn the con-

volutional feature maps with meaningful dynamics from raw live-cell videos. Then, a kind of temporal

pooling strategy, trajectory pooling, is applied to the discriminative convolutional feature maps instead of

the original video, and it will further enhance the capability of capturing the complex cell dynamic

information over a short time.

Another line of research on cell dynamics attempts to capture the long-term cell dynamics, because a lot

of intracellular signaling processes may take minutes or even hours (Spiller et al., 2010). The straight-

forward method aggregates the short-term dynamic features by the concatenation or accumulation strategy

(An et al., 2012; Huang et al., 2013; Li et al., 2015b; Myers and Rabiner, 1981). To preserve more temporal

structures in live-cell videos, temporal bag of words (TBoW) is introduced to learn a visual codebook based

on frame-level dynamic features and encode the long-term cell dynamics of a particular video as a

histogram corresponding to the word frequency of the visual codebook (Pang et al., 2015). Similarly,

hidden Markov models (HMM) can profile the cell shape dynamics in time series as a temporal sequence of

predefined morphological states, which are regarded as the words in visual codebook (Held et al., 2010;

Zhong et al., 2012; Gordonov et al., 2016). Therefore, HMM is used to annotate the cellular phases during

cell division or mitosis in time-lapsed movies (Held et al., 2010; Zhong et al., 2012). HMM also condenses

the temporal dynamics in live-cell videos into a simpler representation, sequences of morphological states,

for cellular response-based drug classification (Gordonov et al., 2016). However, either TBoW or HMM

needs to specify prior information about the codebook size or cellular states (Hasan et al., 2016).

In comparison with TBoW and HMM, rank pooling captures the latent structure of the whole video by

learning a pooling function via rank machines, which optimize a max-margin objective under the frame

order constraints (Fernando et al., 2017). Rank pooling is not only independent of prior knowledge but also

a more flexible alternative to encapsulating the video-wide temporal information. Therefore, rank pooling

may be more suitable to capture the long-range cell dynamics, and is incorporated into our framework to

learn the temporal evolution of cellular deep convolutional features aggregated by trajectory pooling.

In this article, we propose a novel framework for analyzing cell dynamics as shown in Figure 1. This

framework shares the merits of both the deep learning technique and the hierarchical temporal pooling

method. On the one hand, pretrained ConvNets embed the cell dynamics in video segments into con-

volutional feature maps with biological significance (for details see Section 3). On the other hand, the

proposed hierarchical temporal pooling strategy encompasses the hierarchy of Figure 1 (corresponding to

Section 4). At the short-term level, trajectory pooling first computes trajectories from live-cell videos and

then aggregates the convolutional feature maps along these trajectories. It is able to further boost the

capability of capturing the dynamics over a short time for the above ConvNets. Meanwhile, the long-range

cell dynamics can be modeled by rank pooling. It learns a pooling function to rank the extracted short-term

features of a live-cell video in chronological order, and the parameters of the ranking function are used as

the video-wide dynamic features for the whole live-cell videos.

Overall, there are three key advantages to this work. First, the deep neural network is extended from the

applications based on cell image processing to the tasks of cell video processing, for example, the analysis
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of cell dynamics. The second advantage of this method is that a proposed hierarchical temporal pooling can

facilitate the capability of encoding cell dynamics at both short-term level and long-range level for the deep

neural network. The third advantage is a remarkable performance of the proposed framework and its

convenient extension to various cell investigations.

2. MATERIALS AND DATA SET

This section mainly describes the live-cell video data set for evaluating the utility of the proposed

method. The data set comprised 120 video clips of lymphocytes from male mice undergoing skin trans-

plantation. These video clips are further annotated into four categories by three experts according to the

variation type of lymphocytes. Thus, the details about cell video acquisition and cell data annotation are

explained in Sections 2.1 and 2.2, separately.

2.1. Materials and data acquisition

The experimental data are acquired with skin transplant surgery for male mice in collaboration with

Beijing You An Hospital. During the skin transplantation, there are two kinds of male mice, healthy

C57BL/6 and healthy Balb/C male mice, to be used as donors and hosts, respectively. Both kinds of mice

were 6 to 8 weeks old with the weight of 20 to 22 g and were obtained from Graduate School of the

Academy of Military Medical Sciences (Beijing).

The skin transplant process could be conducted in the following three stages. First, the transplanted skin

was displaced in the zone near the back of donors after they were decapitated and their torso hair was

shaved off. Then the skin was further cut into several 1:5cm · 1:5cm regular squares and preserved in

sterile phosphate-buffered saline. Second, the hosts were injected sodium pentobarbital (70lg=g of body

weight) for anesthetization, and their back hair was also shaved off. The surgical area was cleaned with

alcohol, disinfected with iodine, and then removed. In there, the transplanted skin from the donors was

FIG. 1. Hierarchical structure of the proposed temporal pooling strategy to learn cell dynamics. At short-term level,

trajectory pooling captures cell dynamics from the convolutional feature maps of ConvNets. Meanwhile, rank pooling

can model the long-range cell dynamics by learning the chronological order of the short-term dynamic features.

ConvNets, convolutional networks.
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positioned, covered with vaseline gauze, and fixed with a band-aid. Finally, the hosts are raised individually

in sterile cages in the ventilated environment for seven days.

On the seventh day after skin transplantation, peripheral blood smears were prepared from the blood

samples collected from the tails of mice. Each blood smear was observed with phase-contrast micros-

copy (Olympus BX51, 0:3l resolution, 16 · 1000 magnification). Each time only one target lympho-

cyte was manually positioned in the center of the field, and its deformation or dynamics was recorded in

a video clip (20–30 seconds, 25 frames per second). Then, a quality control step was conducted be-

forehand to make sure there is no overlap and trajectory cross between the lymphocyte and red blood

cells. These video clips of lymphocytes were collected in the data set,* and several samples are shown

in Figure 2.

2.2. Data preprocessing and annotation

Automated image preprocessing, cell segmentation (Li and Acton, 2007), and cell tracking (Li et al.,

2014) were performed for the acquired experimental data. Then, manual validation is exploited to eliminate

the ambiguity of cell segmentation by human eye if necessary. As we mainly focus on the variation of

cellular appearance, the preprocessed data can serve as a starting point to model the cellular dynamics with

various methods.

The preprocessed data were equally divided into four categories, the labels of which were denoted as

normal, slight activation, moderate activation, and drastic activation, separately. This annotation process

was performed by three experts. Specifically, the experts observed the video clips of lymphocytes and then

annotated each of them with a label according to the dynamic modes of lymphocytes therein. To enhance

the confidence of annotation, the annotations were not only performed by three experts but also performed

by the same expert on two different days.

Therefore, the labels obtained an additional confidence level with respect to the consistency of anno-

tations: (1) those labels that agreed in all six annotation processes were considered suitable for the analysis

of cell dynamics and relatively easy for this classification task; (2) when the number of annotations in the

same category was more than four, these labels could also be used in the classification task, but the

corresponding samples were difficult for the proposed or other mainstreaming approaches; and (3) the rest

of the video clips were removed from the data set. At last, each category in dataset contained 30 video-

clips, and the difficult ones therein were no more than 20%. In this article, our experiments are based on

both easy and difficult samples.

3. DEEP CONVOLUTIONAL FEATURE MAPS FOR CELL DYNAMICS

In this section, the deep ConvNet is regarded as a generic feature extractor for cell dynamics. First, we

present the architecture of the ConvNet and its pretrained model used in our framework. Then, we show the

characteristics of the feature maps from different convolutional layers. Finally, the representation of cell

dynamics can be visualized based on the aforementioned deep learning technology. The cell dynamics

based on deep learning can be visualized, and consistency with the data annotations can be reflected in

some degree.

3.1. Pretrained deep convolutional networks

As two-stream ConvNets have been successfully applied to action recognition and activity recognition,

its two-stream pipeline also becomes one of the popular deep learning frameworks in video analysis field

(Simonyan and Zisserman, 2014; Feichtenhofer et al., 2016; Wang et al., 2015c; Zhao et al., 2015). This

two-stream pipeline assumes that human action or activity can be decomposed into temporal and spatial

components. The temporal part captures the motion or dynamic information, which is an intrinsic property

of action or activity recognition. Meanwhile, the spatial part carries static appearance cues, such as human

dressing or postures and information about scenes, and is beneficial to the recognition tasks. Therefore, the

*Several examples are available at http://isip.bit.edu.cn/kyxz/xzlw/77051.htm
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two-stream pipeline is implemented by two separate neural networks, that is, a temporal net and a spatial

net individually learn the dynamic information and static appearance cues.

However, the research of cell dynamics is usually about the specific type of cells under nearly the same

condition. As a result, the spatial part, for example, cellular morphology, cannot be proved to have a direct

relationship with the variation type of cells. In this article, only the temporal net is introduced from the two-

stream framework provided by Wang et al. (2015c). The temporal ConvNet starts with the dense optical

flow field constructed with TVL1 algorithm (Zach et al., 2007). The optical flow field is calculated between

pairs of consecutive frames, and the values therein are further normalized into the integer range [0, 255],

just like images.

3.1.1. Temporal convolutional network. The aforementioned optical flow fields are stacked into

224 · 224 · 2F (F is the number of stacked flows) volumes as the input. The temporal net is composed of

five convolutional layers, three pooling layers, and two fully connected layers (as shown in Fig. 3). Fur-

thermore, some other details of its architecture are summarized in Table 1. The first and second con-

volutional layers individually have the convolutional size 7 · 7 and 5 · 5, but both have the convolutional

stride 2 and postprocessing of local response normalization. Meanwhile, the following convolutional layers

share the same convolutional size (3 · 3) and convolutional stride (1). Then, there are three pooling layers

(pooling window 3 · 3) cascaded with first, second, and fifth convolutional layers, respectively. Finally, the

last three layers sequentially comprise two fully connected layers regularized by dropout operation, and a

SoftMax layer served as a classifier.

3.1.2. Pretrained model of temporal convolutional network. Since our work cannot satisfy the

excessive requirement of large numbers of annotated samples for training, we use the pretrained temporal

ConvNet reported in the literature (Wang et al., 2015c). Although this model contains the spatial net and

the temporal net, we only focus on the temporal one. The number of stacked flows F is set to 10, and

therefore, the input is a 224 · 224 · 20 subvolume that is randomly cropped and flipped from the training

videos. As the samples of UCF-101 data set are not very sufficient for training, we select high dropout

parameters (0.9 for full6 layer and 0.8 for full7 layer) to improve the generalization of the pretrained model.

The training process needs about 90K iterations: the learning rate is initialized as 10 - 2 before 50K iterations,

then reduced to 10 - 3 during 50K–70K iterations, and finally decreases to 10 - 4 until training is stopped.

3.2. Convolutional feature maps

When pretrained temporal ConvNet learns a new testing sample, particularly a live-cell video in our

work, the raw video stream flows into its bottom-up architectures. The dynamic information in the video is

represented as deep features at several levels of granularity by different layers. The shallower convolutional

FIG. 3. Illustration of the pretrained temporal ConvNet. From bottom to top, this pretrained model mainly consists of

several couples of alternating convolutional and pooling layers, two full-connected layers regularized by dropout

operation (also regarded as dropout layer), and a SoftMax layer for classification.
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layers contain local characteristics of motion, while deeper convolutional layers capture the global dynamic

patterns. As the higher layers obtain more abstracted and discriminative features, the fully connected layers

can express high-level concepts and are naturally applied in classification and recognition tasks (Simonyan

and Zisserman, 2014). Recently, convolutional layers are more widely utilized because of the advantage

that they can preserve the spatial structures (Wang et al., 2015c; Zhao et al., 2015). And this advantage

makes convolutional feature maps more compatible with some hand-crafted methods, for example, tra-

jectory pooling.

Therefore, we will exploit the convolutional feature maps from convolutional layers as dynamic features.

Given a video V, x, y, and t denote the horizontal, vertical, and temporal positions in videos, separately.

Ct
m 2 RHm · Wm · Nm denotes the m-th convolutional feature map of temporal net on frame t, and Hm, Wm, and

Nm stand for its height, width, and the number of channels, respectively. Then, spatiotemporal normalization

and channel normalization are applied on these chosen convolutional feature maps (Wang et al., 2015c). Note

that �Ct
m stands for the m-th normalized convolutional feature map on frame t. Assume that u and v indi-

vidually correspond to the horizontal and vertical positions in convolutional feature maps. �Ct
m(u‚ v) can

express a vector that concatenates the values in each channel of the feature map at position (u, v).

Intuitively, the feature maps from different layers describe the visual content at different levels. Con-

sequently, the combination of convolutional feature maps is further exploited to boost the discrimination of

pretrained temporal ConvNet. In detail, we choose the second and the third convolutional layers for our

task of cell dynamic analysis based on the experimental results in Section 5.3.

3.3. Visualization of the learned feature maps

In this section, we demonstrate a visual inspection of what these convolutional layers learn. We first

randomly choose one sample from both the normal activation category and the drastic activation one. Then,

we put these two lymphocyte video clips into the pretrained network architectures. As a result, we obtain

their feature maps from different convolutional layers, which correspond to the normal activation in

Figure 4a and the drastic activation in Figure 4b. When comparing the Conv1 feature maps in the first row

with the feature maps in other rows, it is apparent that Conv1 feature maps contain more subtile structures,

standing for the local motion of cell dynamics. Therefore, this fact proves that shallower convolutional

layers are inclined to capture local dynamic patterns to some extent. Between Figure 4a and b, the feature

maps in the second, third, and fourth rows possess more discrimination, and the most discriminative feature

maps are from Conv2. In the last row, we can hardly distinguish whether the Conv5 feature maps corre-

spond to the normal activation or the drastic activation. This illustrates that cell dynamics can be re-

presented by the shallower convolutional layers in deep architectures for action recognition.

4. HIERARCHICAL POOLING ON CONVOLUTIONAL FEATURE MAPS

In this section, we describe our hierarchical pooling strategy for convolutional feature maps. In the

beginning, we extract the dense trajectories from short-term video segments and utilize these trajectories

to pool the corresponding convolutional feature maps. Consequently, we can obtain local trajectory-

pooled descriptors for the aforementioned short-term video segments. To further aggregate the spatially

local dynamic descriptors into a global representation, vector of locally aggregated descriptors (VLADs)

method is introduced. Finally, we present the details of rank pooling and use it to capture the long-range

dynamics.

Table 1. Temporal Convolutional Network Architectures

Layer Conv1 Conv2 Conv3 Conv4 Conv5 Full6 Full7 SoftMax

Size 7 · 7 5 · 5 3 · 3 3 · 3 3 · 3 — — —

Stride 2 2 1 1 1 — — —

Channel 96 256 512 512 512 4096 2048 101

Normalized LRN LRN — — — — — —

Pool 3 · 3 3 · 3 — — 3 · 3 — — —

LRN, local reponse normalized.
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4.1. Trajectory pooling for short-term dynamics

To capture more accurate short-term dynamics, trajectory pooling is applied to the stacked convolutional

feature maps. It can incorporate the trajectory information learned from raw videos based on dense

trajectories{ (Wang et al., 2013), as shown in Figure 5. Given a cell video V, we exploit the pretrained

temporal ConvNet to learn its corresponding convolutional feature maps �Ct
m, which stand for the m-th

normalized convolutional feature map on frame t.

For subsequent trajectory pooling on convolutional feature maps, we first compute dense trajectories from

raw videos. A set of feature points is densely sampled on a grid with multiple spatial scales, in which the grid

step size is 5 pixels and the number of levels in the pyramid is 5. The spatial scales corresponding to different

levels are individually 1=2, 1=
ffiffiffi
2
p

, 1,
ffiffiffi
2
p

, 2 times of the video spatial scale. Besides, feature points in

homogeneous areas have no structure information, so they cannot be tracked through the video and should be

removed. Specifically, these points on the grid are eliminated, if the eigenvalues of the autocorrelation

matrices are smaller than a threshold (Shi et al., 1994). At last, the rest of the feature points are tracked frame

by frame in dense flow fields.

Suppose x = (ut‚ vt) is a dense flow field between frame t and frame t + 1. For a feature point Pt = (xt‚ yt)

at frame t can be tracked by median filtering with a 3 · 3 filter kernel M:

Pt + 1 = (xt + 1‚ yt + 1) = (xt‚ yt) + (M � x)j(�xt‚ �yt)
‚ (1)

where * is convolutional operation and (�xt‚ �yt) is the rounded position of (xt‚ yt). The point is tracked in the

subsequent frames, denoted as Pt + 2‚ Pt + 3‚ . . .. Then, a trajectory is formed by concatenating these tracked

points (Pt‚ Pt + 1‚ Pt + 2‚ . . . ). To overcome the drifting problem, the trajectory length N is set to 15 frames

(the same parameter setting as literature (Wang et al., 2013). Therefore, given a video V, the extracted

dense trajectories can be denoted as T(V) = fT1‚ T2‚ . . . ‚ Tk‚ . . . ‚ TKg, where Tk stands for the k-th

trajectory with 15 points:

Tk = f(xk
1‚ yk

1‚ tk
1)‚ . . . ‚ (xk

15‚ yk
15‚ tk

15)g: (2)

Once dense trajectories are extracted, we will exploit them to pool the convolutional feature maps.

Specifically, a series of tracked points from trajectory Tk is mapped to the corresponding normalized feature

map set f �Ct
mjm 2 [2‚ 3]‚ t 2 [tk

1‚ . . . ‚ tk
15]g, so that we can obtain a trajectory-pooled descriptor

TDk = fTDk
mjm = 2‚ 3g, and TDk

mtherein can be denoted as

TDk
m =

XN

i = 1

�C
tk
i

m(xk
i · a‚ yk

i · a): (3)

Here a = Ht
m=Hv = Wt

m=Wv is a mapping ratio, Ht
m and Wt

m are the height and width of the m-th con-

volutional feature maps, while Hv and Wv denote the height and width of video frames, respectively.

4.2. Spatial aggregation for trajectory-pooled descriptors

For a video segment, its dynamics can be captured by a variety of trajectory-pooled descriptors. Thus, the

global dynamics of this video segment has to spatially aggregate these descriptors by feature encoding

methods, or VLAD in particular. As shown in Figure 6, the video segments in the training data set and a

testing video segment are transformed into trajectory-pooled descriptors, denoted as fTD1
train‚ TD2

train‚ . . . ‚ g
and fTD1

test‚ TD2
test . . . ‚ TD

q
test‚ . . .g, respectively. The following pipeline of VLAD can be summarized into

two phases. In the training phase, training descriptors fTD1
train‚ TD2

train‚ . . . ‚ g are clustered into L coarse

centers fc1‚ c2‚ . . . ‚ cl ‚ cLg by K-means ( Jegou et al., 2012). In the testing phase, testing descriptors

fTD1
test‚ TD2

test . . . ‚ TD
q
test‚ . . .g are assigned to the L coarse centers. Then, we can obtain the difference

vector vl with respective to the l-th center cl for these trajectory-pooled descriptors by the following:

vl =
X

q:NN(TD
q
test) = cl

(TDq
test - cl) (4)

{In comparison with action recognition, there is usually no motion about the microscopy during the recording
process of cell dynamics. Therefore, here we only use dense trajectories rather than improve dense trajectories, whose
modifications are about taking camera motion into account (Wang et al., 2015a).
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where NN(TD
q
test) indicates TD

q
test’s nearest neighbors among L coarse centers. The VLAD encoding vector

for trajectory-pooled descriptors i concatenates vl over all the K centers with size D0K, and the post-

processing uses the power and ‘2 normalization.

4.3. Rank pooling for long-range dynamics

One way to understand the video dynamics is to consider it as the relative ordering of the frames in the

video, which can indicate the evolution of the frame appearance. Therefore, the learning-to-rank paradigm

is introduced to fit the temporal variations in a video by ranking the frame-level features in chronological

order (shown in Fig. 7). In details, a rank pooling function is optimized via ranking machines (Smola and

Vapnik, 1997; Liu, 2009; Fernando et al., 2017) and its parameters serve as a robust new representation for

video dynamics.

For a video sequence V, we can denote the ordering of two frames therein as f t + 1 > f t if f t + 1 is followed

by f t. As such, the frame order constraints of a video sequence, that is, fn > � � � > f t > � � � > f1, can be

formulated as a series of pairwise order constraints according to the transitivity property of video frames. In

other words, the constraints fn > � � � > f t > � � � > f1 can be equivalent to these pairwise constraints:

fn > fn - 1, � � �, f t + 1 > f t, � � �, f2 > f1. Hence, ranking the frame order in a video is transformed into a

pairwise rank pooling problem for consecutive frames.

When using pairwise rank pooling to model the video dynamics, we exploit pairwise ranking machines to

learn a linear function w(f; u) = uT � f, where u 2 RD is the parametric vector and regarded as a new video

representation. For each frame f t, its corresponding ranking score is w(f t; u) = uT � f t. The rank pooling tries to

learn the parametric vector u to make all these constraints 8ti‚ tj‚ f ti > f tj 5uT � f ti > uT � f tj satisfied. In

this article, a live-cell video can be represented as a series of encoding vectors, fvtd1‚ . . . vtdt‚ . . . ‚ vtdng.
We seek a direct mapping from vtdt to its time variable t with the following objective function.

w(vtdt; u)1t (5)

arg min
u

Xn

t

t - uT � vtdt

�� ��:

The direct mapping w(vtdt; u)1t ensures that Eq. (5) satisfies the constraints 8ti‚ tj‚ vtdti >
vtdtj 5uT � vtdti > uT � vtdtj (Fernando et al., 2017). As a robust extension of Eq. (5), support vector

regression (SVR) also learns a parametric vector u to represent how the short-term encoding vectors evolve

over time in the live-cell video, or alternatively, the long-range cell dynamics.

5. EXPERIMENTS

In this section, we present a detailed experimental evaluation of our proposed framework based on the

live-cell data set in Section 2. First, several exploration experiments are conducted to discuss the key

parameters. Then, we evaluate the convolutional layers and pooling strategies. At last, our method is

compared with other existing methods.

5.1. Experimental setup

Some important parameters for deep convolutional feature extraction and trajectory pooling are men-

tioned in Sections 3 and 4.1, while the rest is set as default parameters in the literatures (Wang et al., 2013,

2015c). The codebook size in VLAD method is discussed in the following Section 5.2. We use the SVR

solver of Lib-linear toolkit{ (Fan et al., 2008) to learn rank pooling, and the penalty coefficient is set as a

constant C = 1. In view of the high dimension of the final rank pooling vector, we apply linear support

vector machine (SVM) as the classifier. It can be easily implemented with the SVM solver in Lib-linear

toolkit, and the penalty coefficient is determined on the training set using fivefold cross-validation. As the

proposed framework is a machine learning process, the data set should be divided into training set and test

set. We use 30 random splits of the data, while considering 20 random video clips per class for training and

{https://www.csie.ntu.edu.tw/cjlin/liblinear/
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the rest for testing. Therefore, the classification procedure is repeated for 30 times according to the splits,

and we compute and report mean average precision (mAP), precision, recall, and F-score measures on the

test set. The code of our proposed framework is provided at https://github.com/fengqian1989/HPDCF_code

5.2. Exploration experiments

5.2.1. Dimension reduction. The principal component analysis (PCA) method is usually introduced

to decorrelate the local descriptors, such as dense trajectories or trajectory-pooled descriptors in this article.

To specify the reduced dimension of trajectory-pooled descriptors, we explore PCA dimensions varying

from 64 to 1014 on different convolutional layers and VLAD centers. In this exploration experiment, the

mAP over all classes is calculated to evaluate the performance of the proposed method with different

parameters. Figure 8a and f corresponds to the results of different VLAD centers (16*512), separately. For

each convolutional layer, we obtain the corresponding trajectory-pooled descriptor, which is denoted by the

distinctive line type and maker. It can be inferred that each line in Figure 8 has an ascending tendency when

the reduced dimension decreases. This illuminates that a lower dimension achieves a higher performance

and dimension 64 is chosen as the default parameter in the rest of our experiments.

5.2.2. Vector of locally aggregated descriptor centers. The number of centers K is an important

parameter of VLAD encoding. Intuitively, if the codebook size is too small, the histogram feature may lose

the discriminative power, while if the codebook size is too large, the histograms from the same class may

not possess enough similarity. Therefore, we perform trajectory pooling on five different convolutional

1024
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Network Layer conv2
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FIG. 8. Exploration of PCA dimension. From (a) to (f), we present the results of different VLAD centers (512*16).

The different type of lines stand for different trajectory-pooled descriptors. For each line, the performance (mAP) is

improved as PCA dimension decreases. mAP, mean average precision; PCA, principal component analysis.
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layers, and individually summarize the classification results (mAP) for different VLAD centers in the group

histogram, as shown in Figure 9. On the group histogram, the bars with the identical color belong to the

same kind of trajectory-pooled descriptors. When the convolutional layer Conv2 is chosen, the performance

corresponding to K = 256 or 512 reaches the peak of the performance. In considering trajectory-pooled

descriptors from all convolutional layers, K = 512 is specified as the default parameter in the remainder of

this section.

5.3. Evaluation of different layers

In this section, we investigate the performance of different convolutional layers in temporal net on the

live-cell video data set. For the pooling strategies, we only apply trajectory pooling on convolutional

feature maps. The results are summarized in Figure 10a–e, and each subfigure corresponds to a table with

respect to the parameter PCA dimension and VLAD centers. The different colors in Figure 10 stand for the

different convolutional layers of ConvNets. Figure 10a presents which convolutional layers can reach the

highest mAP scores for each parameter combination, while Figure 10b–e shows the convolutional layers

with the second highest, the third highest, the second lowest, and the lowest mAP scores, respectively. As the

color of Conv2 is in the majority in Figure 10a, it means that the Conv2 has the best performance among the

convolutional layers. Similarly, the Conv3 and Conv4 achieve better performance than the Conv1 and Conv5.

These experimental results are consistent with the visualization of convolutional layers in Section 3.3.

Then, we explore the performance of different combinations in Conv2, Conv3, and Conv4. Table 2 shows

the performance of convolutional layers and their combinations with best parameter PCA dimension and

VLAD center. From Table 2, we can see that Conv2 and its combinations achieve better performance than

the others, which means it has higher discrimination. Among Conv2 and its combinations, Conv2 + Conv3

achieves the best performance 83.33. The combination of three layers decreases 1.25% performance from

Conv2 + Conv3, because Conv4 is noncomplementary to Conv2 or Conv3 in some degree. Therefore, we

choose the convolutional maps of Conv2 + Conv3 in the proposed framework.

5.4. Evaluation of pooling strategies

Based on the above experiments and discussions, we pool the Conv2 and Conv3 layers of temporal net.

In this section, we compare the performance of two short-term pooling strategies and their combinations

with long-term pooling. The results are summarized in Table 3. Different from trajectory pooling based on

trajectories, line pooling directly pools stacked features from the convolutional feature maps along the time

line (Zhao et al., 2015). From the results, we can see that the trajectory pooling improve 3.17% perfor-

mance compared with the line pooling, due to the trajectory priority. From the first and the third rows (the

second and the fourth rows) in Table 3, it is interesting to see a trend that the short-term pooling methods

with rank pooling bring a substantial increase over themselves (2.08% for line pooling and 0.84% for

trajectory pooling). This validates the effectiveness of long-term pooling for capturing the video-level

dynamics. Overall, our hierarchical pooling strategy achieves the best performance 84.17% mAP.

0.68

0.73

0.78

0.83
m

A
P

512 256 128 64 32 16
VLAD centers

PCA dimension 64

Network Layer conv1
Network Layer conv2
Network Layer conv3
Network Layer conv4
Network Layer conv5

FIG. 9. mAP scores for different VLAD centers. On this group histogram, the bars with the same color belong to the

same kind of trajectory-pooled descriptors from certain convolutional layers.
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5.5. Comparison with the existing methods

In this section, we evaluate the performance of our proposed framework in comparison with several

existing algorithms. These algorithms are divided into three groups. The first one focuses on extracting the

frame-level features for the cellular morphologies, containing shape parameters, Zernike moment, radial

distance, and tree graph (Xiong and Iglesias, 2010; An et al., 2012; Alizadeh et al., 2016; Tsygankov et al.,

2014). Then, we can obtain the cell dynamics for video clips by concatenating the variation (e.g., Euclidean

distance) of frame-level features. The frame interval is specified as 20, while the Zernike moment up to 30.

The second group is to profile the short-term cell dynamics on several neighbor frames, such as shape

context, optical flow, and our proposed trajectory-pooled deep-convolutional (TPDC) feature (Huang et al.,

2013; Li et al., 2015b; Pang et al., 2015). In Huang et al. (2013), the short-term cell dynamics is represented

by combining the radial distance and optical flow (RDOF) feature. Meanwhile, shape context and scale

invariant feature transform flow are introduced in the TBoW framework (Pang et al., 2015). The subsequent

temporal aggregation is also the straightforward concatenation or accumulation strategy. The rest methods

concentrate on modeling the long-term cell dynamics based on the forementioned features. HMM for the

long-term cell dynamics was reported in SAPHIRE (Stochastic Annotation of Phenotypic Individual-cell

Responses) framework (Gordonov et al., 2016), while TBoW and local deformation pattern in our previous

work (Pang et al., 2015; Li et al., 2015b). Our proposed framework is denoted as hierarchical-pooled deep-

convolutional (HPDC) feature.

The experimental results (recognition precision, recall, and F-score measures) on test set are summarized

in Table 4. In the first group, radial distance reaches higher performance than shape parameters and Zernike

moment, because radial distance may preserve more subtle information of the cellular morphology. Tree

graph is a variant of radial distance designed for the variation of cell protrusions. It does not achieve as

good performance as radial distance, since lymphocytes in our data set may not have the explicit protru-

sions. From Table 4, we can find out that the methods in the second group possess better performance than

those in the first group. It might be because these methods focus on the short-term cell dynamics instead of

cellular morphology. Our TPDC feature improves more than 17.27% precision, 17.48% recall, and 18.43%

F-score over Radial distance and RDOF feature.

As the approaches in the third group further model the long-term cell dynamics, most of them obtain

better performance, except SAPHIRE. The reason might be that SAPHIRE uses shape parameters as the

Table 2. Performance Comparison

of Convolutional Layer Combinations

Convolutional layer mAP (%)

Conv2 82.5 – 2.68

Conv3 81.24 – 2.82

Conv4 79.58 – 2.78

Conv2 + Conv3 83.33 6 2.65

Conv3 + Conv4 80.41 – 2.92

Conv2 + Conv4 81.25 – 2.75

Conv2 + Conv3 + Conv4 82.08 – 2.71

mAP, mean average precision.

Bold values are the best performance in the corresponding

experiments.

Table 3. Performance Comparison

of Different Pooling Strategies

Pooling strategies mAP (%)

Line pooling 79.16 – 2.76

Trajectory pooling 83.33 – 2.65

Line pooling+rank pooling 81.24 – 2.71

Trajectory pooling+rank pooling 84.17 6 2.67

Bold values are the best performance in the corresponding

experiments.
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feature of short-term cell dynamics, which can only roughly characterize cell dynamics. Therefore, we

introduce our deep-convolutional feature into SAPHIRE framework (denoted as DC-SAPHIRE). The fact

that DC-SAPHIRE reaches the third highest performance in Table 4 also proves the significance of

capturing the long-term cell dynamics. At last, our proposed framework achieves a better performance

(84.08% precision, 84.17% recall rate, and 79.29% F-score) in comparison with other existing algorithms.

6. CONCLUSIONS

In this article, we have presented a novel framework to analyze temporal dynamics of cells. This

framework can automatically learn the video-wide cell dynamics with significant biological meaning from

raw live-cell videos, because it shares the merits of both deep-learning technique and hierarchical temporal

pooling algorithm. On the one hand, we have transferred a pretrained optical flow-based temporal net to the

task of cell dynamic analysis, which embeds the cell dynamics into biologically meaningful feature maps.

On the other hand, we have proposed hierarchical temporal pooling strategy to facilitate capturing short-

term cell dynamics and modeling the video-wide evolution of temporal dynamics. Experimental results

demonstrate that the proposed framework effectively captures the long-term spatiotemporal dynamics from

the raw live-cell videos and outperforms existing methods on the cell video database.
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