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UClncR: Ultrafast and 
comprehensive long non-coding 
RNA detection from RNA-seq
Zhifu Sun   1, Asha Nair1, Xianfeng Chen   1,2, Naresh Prodduturi1, Junwen Wang2,3 & Jean-
Pierre Kocher1

Long non-coding RNA (lncRNA) is a large class of gene transcripts with regulatory functions discovered 
in recent years. Many more are expected to be revealed with accumulation of RNA-seq data from 
diverse types of normal and diseased tissues. However, discovering novel lncRNAs and accurately 
quantifying known lncRNAs is not trivial from massive RNA-seq data. Herein we describe UClncR, 
an Ultrafast and Comprehensive lncRNA detection pipeline to tackle the challenge. UClncR takes 
standard RNA-seq alignment file, performs transcript assembly, predicts lncRNA candidates, quantifies 
and annotates both known and novel lncRNA candidates, and generates a convenient report for 
downstream analysis. The pipeline accommodates both un-stranded and stranded RNA-seq so that 
lncRNAs overlapping with other genes can be predicted and quantified. UClncR is fully parallelized 
in a cluster environment yet allows users to run samples sequentially without a cluster. The pipeline 
can process a typical RNA-seq sample in a matter of minutes and complete hundreds of samples in a 
matter of hours. Analysis of predicted lncRNAs from two test datasets demonstrated UClncR’s accuracy 
and their relevance to sample clinical phenotypes. UClncR would facilitate researchers’ novel lncRNA 
discovery significantly and is publically available at http://bioinformaticstools.mayo.edu/research/
UClncR.

Long non-coding RNAs (lncRNAs) are a new and large class of gene transcripts that do not code proteins. The 
number of known lncRNAs has significantly increased in recent years due to the broader adoption of high 
throughput sequencing platforms1–3. LncRNAs account for roughly 68% of transcribed genes3,4. The unique fea-
tures of lncRNAs, for example, short lengths, regulatory functions and tissue specific expression, make them 
potential better biomarker candidates for disease diagnosis and prognosis5,6. As most of the newly discovered 
lncRNAs are from a limited number of tissue or cell types, it is expected that many new lncRNAs are yet to be 
characterized, particularly in diverse and heterogeneous human diseased tissues such as different types of human 
cancer.

New lncRNA candidates (or loosely “novel” lncRNAs) are generally discovered from RNA-sequencing 
(RNA-seq) data. The sequencing data has to undergo multiple processing steps, starting from sequence read 
alignment, transcript assembly, non-coding potential evaluation to noise filtering and expression quantification. 
There have been no streamlined and easy-to-use public pipelines for the process, particularly for a large number 
of samples. Sebnif (self-estimation based novel lincRNA filter pipeline) provides a certain degree of solution7. It 
takes pre-assembled transcripts (such as from Cufflinks) and predicts “novel” long intergenic non-coding RNAs 
(lincRNAs) for a sample. The major feature of this tool is the filtering of less reliable lincRNA candidates by their 
expression level using statistical models. Additionally, single exon lincRNA candidates are filtered out if they 
overlap too much with a repeat region of a reference genome. The non-coding potential evaluation is achieved 
by iSeeRNA8.

While Sebnif is a useful tool for one or few samples, it becomes inconvenient for a larger study with many sam-
ples. The tool needs pre-assembled transcript candidates, which is the most time consuming and computationally 
intensive operation. Cufflinks9 or Scripture10 is commonly used but they are very slow and not scalable for a large 
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number of samples. Sebnif can only process one sample at time, which is not only cumbersome for a large study 
but also difficult to compare predicted lincRNAs across multiple samples as each sample has a different set of 
candidates. An integrated pipeline that combines all steps and works efficiently is needed.

To overcome these limitations and provide a convenient tool, we have developed an Ultrafast and 
Comprehensive lncRNA detection and quantification pipeline named UClncR by taking advantage of a super-fast 
transcript assembly tool, Sebnif ’s features, and parallel computing. Firstly, UClncR incorporates the most recent 
and super-fast StringTie11 for transcript assembly as an integral part of the pipeline, which was demonstrated 
with better performances than its predecessors11. Secondly, in addition to iSeeRNA8 for noncoding potential 
evaluation, we also  added the internally developed and widely used CPAT12 for combined use of coding potential 
assessment (intersection or union) for increased sensitivity or specificity. Thirdly, UClncR predicts lncRNA can-
didates but keeps known (i.e., annotated) lncRNAs intact so that they can all be analyzed together. This is impor-
tant as years of research have characterized many well-known lncRNAs and pure digital prediction may break 
known lncRNA structure and the link between studies, making across-comparison difficult. Fourthly, UClncR 
can process both stranded and non-stranded RNA-seq data. For non-stranded RNA-seq, it is only possible to 
predict and quantify lincRNAs; however, for stranded RNA-seq all lncRNAs (including overlapping transcripts) 
are characterized. Fifthly, when UClncR processes multiple samples together, it merges all predicted candidates 
and generates a unified lncRNA annotation for next step expression quantification. This allows easier comparison 
across samples such as differential expression between conditions. Lastly, UClncR can distribute jobs on a cluster 
of computers to process multiple samples simultaneously. Tens or hundreds of samples can be completed in a 
matter of hours, which dramatically facilitates the analysis for a large project.

Methods
Pipeline overview.  The pipeline has four major modules: de novo transcript assembly, lncRNA candidate 
prediction, known and lncRNA candidate quantification, and reporting (Fig. 1). The de novo transcript assembly 
starts from aligned RNA-seq so that transcript candidates can be built. The aligned bam needs to be produced by 

Figure 1.  UClncR workflow diagram. The workflow starts from aligned bam (right parameters for stranded/
unstranded RNA-seq should be set) for transcript assembly by StringTie. For un-stranded RNA-seq, the 
workflow only works with lincRNAs. Known lincRNAs are simply quantified and novel lincRNAs are predicted 
and quantified. For stranded RNA-seq, overlap transcripts in the opposite strand are quantified and predicted.
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splice-junction aware aligners such as Tophat, Tophat2, HISAT2, or STAR (HISAT2 is preferred as it is faster than 
Tophat and more compatible with StringTie) with correct parameters for stranded RNA-seq. StringTie11 is used 
to perform transcript assembly. Once the transcript candidates are built, the pipeline predicts potential lncRNA 
through two different routes depending on the RNA-seq protocol of non-stranded or stranded as they are han-
dled very differently. The third step of the pipeline is to quantify both known and predicted lncRNAs and the final 
step is to generate consolidated reports across samples with annotations. For non-strand specific RNA-seq, only 
lincRNAs are predicted and quantified; however for stranded RNA-seq, lncRNAs overlapping other transcripts in 
opposite strands are also predicted and quantified.

Non-stranded RNA-seq.  Non-strand specific RNA-seq is commonly used for short read sequencing; how-
ever, the coding strand information of a transcript is not kept in this data. As many lncRNAs are in the coding 
region of other genes but on the opposite strand, it is impossible to distinguish the expression of these lncRNAs 
from their overlapping genes. Therefore, only lncRNAs in the intergenic regions (or lincRNAs) can be predicted 
or quantified correctly in this data because they don’t have any overlap with other transcripts. UClncR performs 
following tasks for non-stranded RNA-seq data (Fig. 1): (1) Conducts non-strand specific transcript assembly 
by StringTie. (2) Predicts lincRNA candidates for each individual sample. (3) Merges predicted lincRNAs from 
multiple samples by the Cuffmerge function of the Cufflinks so that a common predicted lincRNA annotation file 
(GTF) is generated. This step is very important since a study frequently includes multiple samples and the unified 
assembly facilitates downstream comparison between samples. Additionally, when a project contains multiple 
samples, sequence depths can differ where samples with higher depths are more likely to have low expressed 
lncRNAs predicted. Using the consolidated annotation, we can quantify the expression of lncRNAs in the samples 
with lower sequence depths. More importantly, by comparing multiple assemblies from multiple samples, a con-
sensus transcriptome with support from more samples is more reliable. Although Cuffmerge is used by default, 
users can select either the “merge” function of Stringtie or a more recent tool TACO13. This step is skipped if only 
one sample is provided. (4) Quantifies both newly predicted and known lincRNAs (defined in GENCODE) by 
featureCounts14, which generates read level (or fragment) digital expression. The combined known and lincRNA 
candidates can be analyzed by common tools such as edgeR15 or DESeq16. A normalized lincRNA expression by 
RPKM (reads per kilobase per million mapped reads)17 is also provided for quick and across gene comparison. 
(5) Annotates a lincRNA with a nearby protein coding gene along with the genomic distance between them. (6) 
Generates a summary html report with predicted lincRNA information and links to various reports.

The step 2 is the key for lincRNA discovery. Once transcripts are assembled, the pipeline compares the can-
didate transcripts with the provided known gene annotation (GENCODE by default) and selects those without 
any overlap with the known transcripts as novel transcript candidates. These candidates then go through several 
filters. The candidates that are shorter than 200 bp or single exon transcripts greater than 10000 bp are removed. 
For single exon candidates, those overlapping with repeat/low complexity regions of the genome (“simpleRepeat” 
downloaded from UCSC table browser at http://genome.ucsc.edu/cgi-bin/hgTables) are also filtered out. As tran-
script candidates at very low or high expression may be technical noises, the pipeline utilizes the statistical models 
of Sebnif to remove those transcripts not fully constructed (for multi-exon transcripts) or at extremely low or high 
expression (for single exon candidates) using the known multi-exon and single-exon transcripts as reference7. 
Noted is that the expression cut-off for single exon candidates is dynamically generated for each sample and is 
thus sample specific. Samples with low sequence depths would have lower absolute expression cut-offs than sam-
ples with higher sequence depths. The final step of the lincRNA prediction is protein coding potential evaluation. 
In addition to using Sebnif ’s iSeeRNA module8, we provides CPAT, a popular tool developed by our group12 to 
allow users to choose the combination of the two for increased sensitivity (the union of non-coding transcripts 
from both) or specificity (intersection of the two). The reason we implemented these two tools was motivated 
by their observed complementarity. By default, we set non-coding potential greater than 0.9 for both programs; 
however, this can be reduced to as low as 0.5 for increased sensitivity as we learned from the known lincRNAs.

Stranded RNA-seq.  Strand specific RNA-seq protocol provides the coding strand information of each tran-
script. This protocol provides several advantages over the non-strand specific RNA-seq18,19 and is getting more 
common. It allows distinguishing the transcription activity of overlapping transcripts on the different strands 
so that all known lncRNAs (not just lincRNAs) can be more accurately quantified. It also can help to discover 
a new lncRNA candidate overlapping with other transcripts on the opposite strand. To utilize the features, the 
RNA-seq aligners have to have the capability to handle the strand specific data and a correct parameter is set in 
the alignment step. Both Tophat (2) and HISAT (2) can be used but HISAT2 is generally recommended as it is 
dramatically faster.

The pipeline goes through the similar steps as the non-stranded RNA-seq data except for the following: (1) 
the lncRNA candidate prediction would include the assembled transcripts that are overlapping with coding tran-
scripts; (2) in the known lncRNA quantification, it includes all lncRNAs defined in the GENCODE annotation, 
which doubles the number of lincRNAs from non-stranded RNA-seq protocol.

LncRNA annotation.  LncRNAs are largely involved in the regulation of nearby or overlap protein coding 
genes (cis), although they can also regulate distant genes located on a different chromosome (trans). Hence, it is 
important to identify nearby genes with which lncRNAs may interact with, for downstream analyses. For this, we 
annotate all lncRNAs, both known and predicted, with nearby protein coding genes including their distance from 
its transcription start site (TSS).

http://genome.ucsc.edu/cgi-bin/hgTables
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Pipeline implementation.  The pipeline is developed in Linux environment using Java and shell scripts 
with third party modules (python, R, and C++). All needed modules and parameters are specified in configure 
files which allow users to customize their analysis. The workflow takes advantage of paralleled computing using 
Sun Grid Engine (SGE) for processing multiple samples simultaneously. The entire computing time and maxi-
mum memory usage are generally determined by the sample with the highest sequence depth and do not change 
too much to the number of input samples (but may be affected by the cluster load and performance). Thus, it 
normally takes a few hours to process hundreds of samples. Comprehensive log files are generated to monitor 
processes and report errors which help users to identify problems. It has been developed and fully tested with 
human reference genome hg19 but also works with hg38. The UClncR package and a test dataset can be down-
loaded from our website (http://bioinformaticstools.mayo.edu/research/UClncR). To avoid tedious installation 
for simple testing or to accommodate those without access to a cluster environment, a virtual machine version is 
also available where all dependencies are pre-installed.

Test Data and pipeline evaluation.  To evaluate the performance of UClncR, we used an ENCODE 
RNA-seq sample GM12878 (https://www.encodeproject.org/experiments/ENCSR000AEF), which was generated 
from stranded and PolyA enrichment protocol and sequenced at a high depth of 250 million pair-end 100 base 
reads. Sequence reads were aligned to the human reference genome (hg19) using HISAT220 (v2.0.4, with follow-
ing parameters–rna-strandness RF and –dta options). The aligned bam file was then processed by UClncR twice, 
one with intact GENCODE annotation (v19) to predict new potential lncRNAs not defined in the database and 
another with one third of lincRNAs removed to recover the known lincRNAs for performance evaluation.

Complete UClncR function test using GM12878.  This test was run with the complete GENCODE gene 
annotation (v19) and was used to evaluate the complete functionality of UClncR, as described above. When the 
complete annotation was provided to the pipeline, UClncR treated any transcript in it as known and predicted 
novel ones not defined in that annotation, which were either located in intergenic regions (lincRNAs) or in genic/
intronic regions but on the opposite strand of known transcripts. The expression patterns of these predicted 
lncRNAs were compared with the known lncRNAs. The histone modification states of the coding regions of 
these lncRNAs were checked with the genome segmentation file generated by chromHMM algorithm21 for the 

Figure 2.  Pipeline output example. (A) Summary novel prediction for a sample. (B) Known lncRNA expression 
table. (C) Novel lncRNA expression table.

http://bioinformaticstools.mayo.edu/research/UClncR
https://www.encodeproject.org/experiments/ENCSR000AEF
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exact same cell line, downloaded from UCSC (https://genome.ucsc.edu/cgi-bin/hgTables). The individual histone 
modification marks of H3K4me1, H3K27ac, H3K27me3 and H3K9me3 were also downloaded and compared 
with both known and predicted novel lncRNAs of this cell line.

LincRNA candidate prediction by withholding part of known lincRNAs.  Evaluating the accuracy of 
lncRNA prediction is very challenging since true lncRNAs are not known in a particular sample being predicted. 
To provide a solution, we applied a validation strategy where one third of known lincRNAs in GENCODE anno-
tation (v19) were removed for UClncR to predict these lincRNAs using sample GM12878. To get a clean lincRNA 
set (note not all lincRNAs in GENCODE annotation pass filtering criteria) for the validation, we first ran all 
lincRNAs through the filtering of coding length, repeat region overlap, protein coding potential score and overlap 
with other transcripts and only kept those meeting the criteria, of which one third were withheld and remaining 
were passed to the pipeline along with all other genes. Among the withheld lincRNAs, we checked their coverage 
and only those with at least one read coverage were used as “truth set” to compare with the prediction result from 
the pipeline.

TCGA lung adenocarcinoma.  To illustrate the usability of the UClncR for a project with a large number of 
samples, we processed 583 TCGA LUAD (lung adenocarcinoma) RNA-seq samples of which 524 are from tumors 
and 59 from adjacent normal lung tissues. The downloaded fastq files were aligned using HISAT2 (2.0.4) with the 
non-stranded option as they were generated from non-stranded PolyA enrichment protocol. The aligned bam 
files were provided to UClncR for processing to identify both known and predicted lincRNAs.

Results
UClncRNA output (GM12878 as example). UClncR completed processing the high sequencing depth (~250 M 
reads) sample in less than an hour in our computing environment with 33GB max memory usage. The result is 
summarized in an html index page that starts with project description, configuration settings, and analytical 
workflow. The summary table provides information for number of transcripts assembled, number of lncRNA 
candidates after removing known transcripts, number of predicted single exon/multi-exon lncRNA transcripts 
after various steps of filtering and evaluations (Fig. 2A). The html page links to the main result of lncRNA expres-
sion matrix tables, which include both known and predicted lncRNAs at raw and normalized values (Fig. 2B,C).  

Figure 3.  Novel lncRNA profile of the ENCODE RNA-seq sample. (A) Expression range (boxplot) of known 
and novel lncRNAs. (B) Expression density plot of known and novel lncRNAs. (C) Examples of predicted novel 
lncRNAs, including a multiple-exon one, a single exon one without overlapping and a simple exon one with 
overlapping in the opposite strand.

https://genome.ucsc.edu/cgi-bin/hgTables
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The table contains the transcript coding location, length, number of exons, nearby protein coding gene, and 
expression level for individual lncRNAs. Detailed information for each sample can be found under the “samples” 
directory. The final predicted lncRNAs with their transcript level expression, CPAT and iSeeRNA prediction 
scores can also be found in the “merge” subdirectory.

Predicted lncRNAs in GM12878.  UClncR predicted 22,121 lncRNA transcript candidates from this 
ENCODE sample, 800 multi-exon and 21,321 single exon ones (Fig. 2A), which represent 21,794 unique lncRNA 
candidate genes. Only 5,568 out of 13,886 (40%) lncRNAs listed in GENCODE v19 had at least one read mapped 
(gene level expression > 0). Compared to the expression of known lncRNAs, the predicted ones had slightly 
higher median overall expression (3.1 vs. 2.38, Wilcoxon rank sum test p value < 2.2e-16; the mean of 3.24 vs. 
3.16, t test p value 0.015) but narrower range (interquartile range) (Fig. 3A). Most of these lncRNAs were at low 
expression (log 2 values of 2~4, Fig. 3B). While the majority were single exon lncRNAs, 800 were multi-exon ones 
with exon-exon junction read support (i.e., a decent number of sequence reads mapped to the two exons which 
have been joined together, Fig. 3C). With the stranded RNA-seq, the pipeline was able to predict 5,459 lncRNA 
candidates that overlap with other coding genes (Fig. 3C), which would be missed in non-stranded RNA-seq data.

When the distances of the predicted lncRNAs to the closest protein coding genes were compared to those from 
known lncRNAs, we found similar distribution, i.e., the vast majority of them are within 250Kb of TSS of coding 
genes (Fig. 4A). We also compared the chromatin states of the predicted and known lncRNAs by overlapping 
chromatin segmentation states for the same sample and found that almost all the known or predicted lncRNAs 
(>99.9%) overlapped with one of the 15 chromatin states. About 55% of predicted lncRNAs were associated with 
active histone states (state 1–7) while about 65% were associated with known ones (Fig. 4B). For example a pre-
dicted lncRNA STRG.50238.1 is completely overlapped with Flanking Active TSS (2_TssAFlnk) region (Fig. 4C). 
Some of lncRNAs may be enhancer-derived RNAs (eRNAs), thus we also checked the overlap of these predicted 
multi-exon lncRNAs with each of the following histone modification marks: H3K4me1, H3K27ac (active marks, 
more in enhancers), H3K27me3, and H3K9me3 (repressive marks). Not surprisingly, we found that 90.3%, 82.4%, 
32.6%, and 72.3% of these novel lncRNAs overlapped with above marks, respectively, while the overlap with the 
known lncRNAs was 86.4%,71.6%, 54.3%, and 65.8%.

Figure 4.  Novel lncRNA profile in relation to other genes and histone modification states. (A) Distances of 
novel and known lncRNAs to protein coding genes. (B) Overlap with chromHMM states. (C) An example of 
novel lncRNA with chromHMM states indicating its active transcription.
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LincRNA prediction by withholding part of known lincRNAs.  Out of the 1793 lincRNA transcripts 
withheld for novel prediction, 102 had some read coverage in GM12878 RNA-seq data and therefore could be 
potentially predicted. Upon completion of the pipeline, 86 transcripts had sufficient expression and were suc-
cessfully assembled by StringTie, of which UClncR reported 66 “novel” lincRNA transcripts and 12 lncRNAs 
overlapping with nearby genes (the recall rate of 90.7%). The missed transcripts included 1 that was filtered out 
due to overlap with a repeat region of the genome and 7 that did not pass the expression level filter of the pipeline 
(Fig. 5), which is a configurable parameter. Lowering the threshold would increase the sensitivity but reduce the 
specificity in real practice.

TCGA Lung Adenocarcinoma.  UClncR completed the processing and analysis of the 583 TCGA LUAD 
samples in less than 3 hours in our parallel computing environment. As the RNA-seq is non-stranded, only lin-
cRNAs were quantified and predicted. The highly variable sequencing depths from sample to sample (ranging 
from 24 to 136 million pair end reads) led to varied novel predictions in each sample (ranging from 35 to 9,762), 
underlying the impact of sequencing depth on novel lincRNA discovery (Fig. 6A). The total number of novel 
lincRNA candidates from the 583 samples was 51,877, of which 5,014 were multi-exon ones.

When compared with the known lincRNAs, the predicted lincRNAs had lower overall expression (Fig. 6B). 
Based on the expression of these lincRNAs, we conducted unsupervised clustering analysis for all the samples 
and found that tumor and normal samples formed distinct clusters (Fig. 6C). The same analysis was performed 
using all known genes and similar cluster patterns were observed (Fig. 6D), suggesting that similar to the anno-
tated genes, these predicted lincRNAs had different expression patterns between tumors and normal samples. 
We further conducted correlation and co-expression analysis between lincRNAs and their associated protein 
coding genes. The correlations were mostly positive for both predicted and known lincRNA (Supplementary 

Figure 5.  Prediction evaluation of the withheld known lincRNAs in sample GM12878. One third of known 
lincRNAs were withheld and their expression was evaluated. Only those with expression were kept for 
assessment. The number in each box is the number of transcripts remaining from the previous step and the text 
at right indicates the specific step in the pipeline with the number filtered out at that step within parenthesis.
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Figure S1). The lincRNAs and their corresponding genes also demonstrated similar expression patterns from the 
heatmap (Supplementary Figure S2). Majority of the predicted lincRNAs were differentially expressed between 
tumors and normal lung tissues (32,271 out of 51,877 at FDR < 0.05; 5487 with fold change > 2 and differential 
p value < 0.001, Fig. 7A). As a comparison, 32,400 out of 55,726 (Gencode v19, with expression in at least one 
sample) known genes were differentially expressed between tumors and normal lung tissues at FDR < 0.05 (58.2% 
for all genes and 52.7% for known lincRNAs), which is the similar proportion as the predicted lincRNAs. For the 
5,487 differential novel lincRNAs with greater than 2 fold changes, 1,900 known protein coding genes were within 
10KB of distance. Pathway analysis of these genes showed that they were highly enriched in cancer process and 
immune response (Fig. 7B).

Discussion
Herein we describe UClncR, a comprehensive lncRNA discovery and analysis pipeline, which takes advantages 
of the fast transcript assembly tool, more complex lncRNA prediction algorithms, and parallel computing. Both 
predicted and known lncRNAs are reported for comprehensive lncRNA profiling. When RNA-seq is stranded, 
not only lincRNAs but also overlapping transcripts (i.e., all lncRNAs) are detected, which doubles the number of 
transcripts. For a project with many samples, UClncR can complete analysis in a matter of hours and generate a 
consolidated report for all samples so that further analysis will be dramatically facilitated using analytical tools 
routinely used for protein coding genes.

Although several studies report “novel” lncRNA discovery from RNA-seq with description of their meth-
ods4,22–25, none of them have an implemented software package in the public domain that can be easily accessible 
for comparison. Noted is that almost all use the older Cufflinks as transcript assembler, which is extremely slow 
(took nearly a week for a typical RNA-seq library) and the new StringTie provides significant performance gains 
in terms of speed and assembling accuracy11,26. In our testing for the NA12878 RNA-seq sample, StringTie com-
pleted assembly in 40 minutes while Cufflinks took 4 days and 5 times more usage of memory (Supplementary 
Table S1). For assembled transcripts/genes, Cufflinks generated three times more transcripts but fewer unique 
genes than StringTie (Supplementary Table S2), consistent with the previous evaluation that StringTie produces 
more complete and accurate reconstructions of transcripts/genes compared to Cufflinks12,26. With the integration 
of StringTie into the workflow, UClncR not only significantly reduces assembling time but also would increase 
prediction accuracy. However, evaluating lncRNA prediction accuracy from a real sample is really challenging 
as the truth is not known. In this manuscript, we selected a subset of known lincRNAs defined in Gencode as 
the “truth”; however, majority of them were not expressed in this particular sample and for those with some 
expression, it was difficult to define which ones had sufficient expression that could be assembled as a transcript 

Figure 6.  Novel lincRNAs in TCGA lung cancer (adenocarcinoma) samples. (A) Sequence depths (millions of 
reads) vs. number of novel lincRNAs predicted. (B) Expression profile of novel lincRNAs vs. known lincRNAs. 
(C) Unsupervised clustering for all samples using novel lincRNAs shows clear separation of tumors from 
normal tissues. (D) Unsupervised clustering for all samples using known genes shows the similar patterns as 
those from novel lincRNAs.
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by the tool like StringTie or Cufflinks. When these factors were considered, UClncR demonstrated the prediction 
accuracy of 90%. In real practice, many parameters can be adjusted for increased sensitivity or specificity in the 
pipeline.

Although Cuffmerge is used as default in our pipeline for meta transcript consolidation across samples, 
users can choose “merge” function implemented in StringTie or a more recent tool TACO13 as they may pro-
vide improved accuracy. However, from our initial testing, they appear to perform quite similarly. Among 2,947 
predicted transcripts from 10 normal lung samples, 2831 (96%) were commonly assembled by all three tools 
(Supplementary Figure S3).

While UClncR provides a convenient way to discover and analyze both known and novel lncRNA candidates, 
novel lncRNA discovery is a challenging task and several important factors that potentially affect the discovery 
need to be considered. Most novel lncRNAs are expressed at a low level and high sequence depth is needed to 
discover them. Although there are no well-established requirements, our experience suggests a minimum of 100 
million reads may be needed for reliable lncRNA prediction. Longer sequence reads (at least 100) is also recom-
mended for more accurate alignment and transcript assembly. RNA-seq library preparation methods/protocols 
also have a significant impact. While PolyA selection method is clean and highly enriched for mRNA transcripts, 
lncRNAs that are not PolyA tailed do not get sequenced for discovery and quantification as a result. Total RNA 
with ribosome RNA removal method provides a better opportunity for novel discovery; however, even higher 
sequence depth is required as data from this protocol tends to contain more unusable reads (such as higher pro-
portion of ribosome RNAs, un-spliced transcripts, and etc.). Stranded RNA-seq is more preferred to detect and 
quantify overlapping transcripts.

RNA-seq data quality may also have an impact on novel lncRNA discovery. The pipeline itself does not have 
capability to distinguish true transcripts from artifacts such as DNA contamination. Transcript assembly does not 
work well on degraded and fragmented RNAs as it is very difficult to assembly original and complete transcripts.

Lastly but importantly, one has to bear in mind that UClncR provides the first step of novel discovery for 
uncharacterized lncRNAs; however, they are only lncRNA candidates and they need to be further analyzed, fil-
tered, and validated either by a different technology or in a new set of samples. The initial candidate list can be 
very long when a fair number of samples are predicted together, particularly for single exon ones. In our lung 
cancer dataset, over 50,000 candidates were predicted but only 5,000 were multi-exon lincRNAs. One of the com-
mon approaches is to limit those detected in multiple samples or focus on multi-exon lincRNAs only as single 
exon candidates can be artefactual background noise, un-spliced pre-mRNA or gene extensions24,25. UClncR just 
relieves the daunting work of initial discovery and allows investigators to spend more time on further analysis and 
interpretation of these findings.

Conclusions
UClncR is a fast and convenient pipeline for users to detect and analyze long non-coding RNAs from RNA-seq, 
both known and predicted ones. It works with both stranded and un-stranded RNA-seq protocols and is particu-
larly useful for a project with many samples so that they can be analyzed together swiftly.
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