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Topological structure dynamics revealing
collective evolution in active nematics
Xia-qing Shi1,2 & Yu-qiang Ma1,2

Topological defects frequently emerge in active matter like bacterial colonies, cytoskeleton

extracts on substrates, self-propelled granular or colloidal layers and so on, but their dyna-

mical properties and the relations to large-scale organization and fluctuations in these active

systems are seldom touched. Here we reveal, through a simple model for active nematics

using self-driven hard elliptic rods, that the excitation, annihilation and transportation of

topological defects differ markedly from those in non-active media. These dynamical

processes exhibit strong irreversibility in active nematics in the absence of detailed balance.

Moreover, topological defects are the key factors in organizing large-scale dynamic structures

and collective flows, resulting in multi-spatial temporal effects. These findings allow us to

control the self-organization of active matter through topological structures.
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T
opological defects are singular points or lines surrounded
by spatially varying order parameter fields. They emerge as
a local manifestation of spatial heterogeneity of large-scale

order and play a critical role in determining the physical property
of matters ranging from early universe to materials in our daily
life1–4. Recently, they have also been widely observed in active
matter composed of self-propelled entities in states of exotic
collective motion5–16. Active matter represents a new state of
matter where large-scale mass flow emerges through the self-
organization of interacting self-propelled particles. One common
feature in active systems is the abnormal large density
fluctuations, which are accompanied with highly dynamical
collective swirling and swarming motions of active particles15,16.
The nematic state of active matter is of particular interest, where
genuine giant number fluctuations are predicted by theory and
verified in experiment on driven rods10,17.

In the experiment by V. Narayan et al.10, the ballistic motion of
topological defects is first observed and such motion shows the
evidence of curvature-driven flows, which are predicted to be
ubiquitous in active nematics13,14,17. In cytoskeleton mixtures,
nematic aligned extensile microtubule bundles may
spontaneously buckle, accompanied with the unbinding of
topological defects8. It is well-known that, in equilibrium
2-dimensional (2D) system, the spontaneous unbinding of
topological defects is a sign that the system enters into isotropic
state18. In contrast to the well-known physical property of
topological defects in equilibrium, in active system we still lack a
clear picture of the route from the microscopic dynamics of active
particles to their collective evolutions. Especially, despite
knowledge about the collective motion of active nematics, it is
still unclear how topological defects emerge and affect the exotic
non-equilibrium behaviour in active nematics.

Here, to explore the general behaviour of topological defects,
we combine simulation and analytical methods to study a 2D
system of self-driven granular elliptic rods on a substrate, where
we take the effect of collisions among particles explicitly into
account. The model is a particle-based dry active nematic system
without media fluids. It eliminates the effects of fluid dynamics on
particles, which facilitates the construction of a corresponding

kinetic theory. We reveal not only general dynamics of
topological structures but also their roles in large-scale collective
motions in such active media. First, the self-driven motion,
dissipation and mutual collisions among particles break detailed
balance in active media. Without detailed balance, in the process
of spontaneous creation of topological defect pair, local polar
disclination hinders immediate reversible annihilation and
triggers active unbinding of topological defect pair. Collective
motion arises in response to asymmetrical ordered structures near
topological defects, which also drive super-diffusive motion of
polar defects. Second, we find that the time regime for large-scale
relaxation coincides with the regime of super-diffusivity of polar
disclination. The system is in a state of chaos with the emergence
of large-scale particle flows driven by non-static curved nematic
field whose dynamics is governed by the spontaneous excitation,
transportation and annihilation of topological defects. Once they
are spontaneously unbound, topological defects cannot be
eliminated by local adjustment except through mutual annihila-
tion of opposite disclinations. As a result, the dynamics of these
topological structures likely govern the system’s giant number
fluctuations and their relaxations. The close correspondence
between the dynamics of topological defects and multi-spatial
temporal effects of the relaxation suggests a way to control
collective motion in active media through tracking and
manipulating topological defects in real time.

Results
Excitation of topological defects in active nematics. In 2D
simulations of active nematics, we drive, typically, several thou-
sands of hard elliptic rods along their own major axes. The
driving force represents a simplification for the micro-driving
along agitated rod or dragged filament7,10. To ensure head-tail
symmetry of every particle, it can switch between forward and
backward directions randomly after t simulation sweeps on
average (see Methods). In active nematic state, our simulations
also observe typical topological defects shown in Fig. 1a–d.
Figure 1e-h displays a process of the spontaneous excitation of
topological defect pairs kd¼ 1/2 and � 1/2, which is created
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Figure 1 | Spontaneous excitation of topological defects and their dynamics. (a–d) Typical order parameter fields near the singular points of topological

defects in 2D nematic state. If we follow a loop enclosing the singular point, we shall experience a total change of order parameter’s angle y byH
G

dy
dsds¼ 2pkd, where s is the distance on the loop G and the disclination number kd indicates the strength of topological defect4. We have disclination

number (a) kd¼ 1/2, (b) kd¼ � 1/2, (c) kd¼ 1 (aster), and (d) kd¼ 1 (vortex), respectively. (e–h) The process of the creation and separation of topo-

logical defects pair of disclination kd¼ 1/2 (red spot) and � 1/2 (cyan spot) for the mean particle number density r¼4.6. The polar disclination kd¼ 1/2

shows directional motion, while disclination kd¼ � 1/2 is relatively idle in moving as required by local symmetry. (i) Average motion of topological

defects in log-log plot and linear plot (inset). In active media, disclinations kd¼ 1/2 (red solid square) show superdiffusivity in long-time regime, while

kd¼ � 1/2 (red square) exhibits weak subdiffusivity. Both kd¼ 1/2 and � 1/2 in equilibrium show sub-diffusivity.
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together obeying topological constraint in a formerly defect-free
region. In the early stage (Fig. 1f), they are close to each other and
distort the order-parameter field locally.

Anomalous dynamics of topological defects. In equilibrium 2D
nematic state, emerging defect pair must be tightly bound and
would be reversibly annihilated18,19. In active nematics, however,
we observe a fast separation of topological defects created
as a pair (see Fig. 1f–h). To further qualitatively characterize
the dynamic disparities between active and non-active media,
we track the motions of topological defects in both systems
(see Methods). Let us define DR� ðtÞ �

P
i jR�i ðtþ t�i0 Þ�

R�i ðt�i0 Þ j Yðt� t�i Þ=
P

i Yðt�T �i Þ as the average distance
travelled by þ 1/2 and � 1/2 disclinations for a period t after
their creation at time t�i0 , respectively. Rþi ðtþi0 Þ and R�i ðt�i0 Þ are
the initial positions of þ 1/2 and � 1/2 disclinations of the
spontaneously created defect pair i, and disclinations’ lifetimes
are T þi and T �i , respectively. Yðt�T �i Þ ¼ 1 if toT �i , else
Yðt�T �i Þ ¼ 0.

In Fig. 1i, after an initial weak diffusive regime, we witness the
supper-diffusive behaviour of þ 1/2 disclination, while � 1/2
disclination exhibits weak subdiffusive behaviour in active media.
In contrast, in non-active system, þ 1/2 disclination exhibits the
same subdiffusive dynamics as � 1/2 disclination. Thus, although
topological defects in active system share the same mathematical
description with their counterparts in non-active system, these
same structures will give rise to totally different dynamical
behaviours.

Effects of micro-driving on the motion of defects. To under-
stand this major difference, let us focus on the microscopic level.
We notice that in active media the presence of persistent micro-
driving along a particle’s long axis breaks the detailed balance
condition. As a result asymmetric structures may induce particle
flows that are forbidden in equilibrium10,20–22. Here the
asymmetric structures are self-emergent in the nematic field
with the excitation of topological defect pairs. Defect of kd¼ 1/2
with local polarity thus tends to move almost unidirectionally
away from defect of kd¼ � 1/2 after their co-emergence. In
Fig. 2a–h, we measure how the kinetics of micro-driving affects
the motion of defects. We start from a configuration with only a
pair of defects (see Fig. 2e) and track their motion. In Fig. 2a–d,
the moving trajectories of defects convince the disparities between
the dynamics of kd¼ � 1/2 (Fig. 2a,c) and kd¼ þ 1/2 (Fig. 2b,d),
as also demonstrated in Figure 1i. Further, with the increase of
average driving velocity v0 and persistent driving time t, the
motion of defect kd¼ 1/2 speeds up significantly. As shown in
Fig. 2g, the end-to-end distance DL for kd¼ 1/2 grows with the
increase of v0 and t.

To elucidate the structural basis for the anomalous dynamics of
topological defects, we calculate the distribution of local polarity
field p(r) by coarse-graining and short-time averaging the
simulation system. Figure 2f shows the snapshot of the polarity
field p(r) near topological defect pair, where the maximum of p(r)
locates near the discontinuity of defect kd¼ þ 1/2. For a finite t, a
simple analysis of Equation (7) shows that the distorted nematic
alignment will induce the emergence of local polarity, which
depends linearly on v0 and t (see supplementary Equation (15) in
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Figure 2 | The motion of a single pair of topological defects. (a–d) Moving trajectories of topological defects. (a) (kd¼ � 1/2) and (b) (kd¼ 1/2) are the

trajectories for a fixed t (¼6.0) and v0 varying from 0.002 to 0.02. (c) (kd¼ � 1/2) and (d) (kd¼ 1/2) are the cases where t varies from 2 to 20

with v0¼0.012. All the simulations start from the same configuration as shown in (e), and run 2� 105 simulation sweeps. Every trajectory is obtained by

averaging 10 independent runs. (e) Configuration of topological defects pair at the beginning of simulations. (f) Polarity field near topological defects. To

obtain the polarity field in simulation, the system is coarse-grained into 60� 60 periodic square lattice cells, each with side length 0.5 in particle

length. The polarity field is obtained by averaging hn
j un

j (which represents instantaneous driving direction of particle, see Methods) of particles whose

centre of mass locate in local unit cell. The average is performed over 5� 103 (ct) continuous simulation sweeps and 100 independent runs starting

from (e). Arrows indicate polar field in local unit cells. Both the colour scale and length of arrow indicate the magnitude of local polarity. (g) End-to-end

distances DL of the moving trajectories of topological defects. (h) The maximum local polarity pmj j near þ 1/2 defect extracted from the polar

field as shown in (f).
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Supplementary Discussion). In Fig. 2h, with the increase of t and
v0, we show the monotonic increase of maximum local polarity
pmj j. Corresponding to the growth of DL as shown in Fig. 2g,

such behaviour manifests that the weak but statistically significant
polar arrangement of particles near kd¼ þ 1/2 defect favours to
push the þ 1/2 defect away from � 1/2 defect.

The interaction and annihilation of topological defects. With
the excitation and active separation of disclinations, the interac-
tion between disclinations and their mutual annihilations are
unavoidable23,24 (see Supplementary Movie 1). In Fig. 3a–c, we
show typical snapshots for the collision process between polar
disclinations ðkd ¼ 1=2Þ and the formation of transient aster-like
structure with disclination number kd¼ 1. After that, in Fig. 3d,
the aster degrades into two polar disclinations again. In Fig. 3e,f,
annihilation of kd¼ 1/2 and � 1/2 takes place, resulting in
remarkable transformation of local nematic director field.
Figure 3g shows the number of defects with significant
fluctuations, revealing dynamical equilibrium between excitation
and annihilation of disclinations.

The annihilation process of disclination pair is not a simple
reversion of its creation in such active media. Dynamical
irreversibility will hinder the immediate annihilation of disclina-
tion pairs generated together. We notice that the configuration of
disclination pair before its annihilation is different from that after
its creation, as shown in Fig. 3e and Fig. 1f, respectively, which are
also illustrated in Fig. 3h,i for clarity. After the spontaneous
creation, the polar defect kd¼ 1/2 is always on one of the apolar
defect’s three branches (as shown in Fig. 3i) and tends to move
away from kd¼ � 1/2. In the annihilation configuration (as
shown in Fig. 3h), the polar defect approaches the � 1/2 defect
through the valley between the latter’s two branches. Dynami-
cally, these configurations greatly facilitate the corresponding
processes.

Instability and the microscopic collision processes. A direct
consequence of the spontaneous excitation of topological defect
pairs and their irreversible separations is the breakdown of quasi-
long-range nematic order. In Fig. 4a,b with the increase of mean
particle number density r, we find that the order properties of

active nematics are directly related to the quantities of topo-
logical defects. The measured appearant nematic order parameter
hSi is defined as the positive eigenvalue of matrix Qab ¼
N � 1h

PN
i¼1½2uaðiÞubðiÞ� dab�i and nematic spatial correlation

g2ðrÞ ¼ h
Pi4j

i;j dðr� jri� rj jÞcos½2ðyi� yjÞ�i=h
Pi4j

i;j dðr� jri� rj jÞi,
where N is total particle number, ua(i) is the ath component of the
ith particle orientation vector u(i)¼ (cosyi, sinyi) and ri is the
position of its centre of mass. h�i represent temporal average. As
shown in Fig. 4a,b, to our surprise, we observe the breakdown of
quasi-long-range nematic order in high density regime; in low
density regime, however, the system achieves such order as indi-
cated by the well-known power law decay, that is, g2(r)pr�Z.
The non-active system, on the contrary, shows opposite tendency
and attains topological order in high density regime. In accor-
dance with the behaviours of hSi and g2(r), we identify that the
mean topological defect number increases with the breakdown of
quasi-long-range order in active simulations (see the inset of
Fig. 4a and snapshots of Fig. 4c,d).

As illustrated in Fig. 4e–h, we show the microscopic collision
processes leading to order and dynamic instability in low and
high density regimes, respectively. Figure 4e,f shows two basic
modes of collision-induced rotations, which depend on relative
positions and angles between particles25–29. Particles in Fig. 4e
rotate in the same direction upon collision, which actually has no
contribution to local alignment. The collision in Fig. 4f, however,
causes a net alignment. This nematic alignment collision is
extensively studied by simulation and kinetic theory25,29,30;
however, the effect of the collision process as shown in Fig. 4e
on collective motion of active system is not well-understood. In
Methods and Supplementary Discussion we give a detailed
account of collision-induced rotations based on dynamic mean-
field analysis. As given by Supplementary Equations (8) and (9) in
Supplementary Discussion, the first terms on the right sides of
these two equations give the rotations of the colliding (red)
particles in Fig. 4e,f, whereas the second terms give the effect of
rotations of the collided (blue) particles. Since the system is highly
dissipative, the angular information exchanged upon collision
holds long enough to facilitate order in low density, which
causes enhanced ordering effect26. As shown in Supplementary
Equation (23) in Supplementary Discussion, the isotropic nematic
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transition could take place at extremely low density if the
rotational self-diffusion Dr approaches zero. In simulations Dr is
set as 0, thus this analytical result explains the low density
nematic order in simulations as shown in Fig. 4a.

The calculations in Supplementary Discussion further reveal
two typical ways causing dynamic instability in high-density
regime. Supplementary Equation (28) in Supplementary
Discussion shows that the linear instability of bending
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(e,f) Driving-induced collision processes in highly dissipative system. The blue arrows indicate the direction of motion for particles on collision. Grey

particles indicate the configurations before collision. Particle rotations depend on relative positions and angles between particles. In e, the colliding particle

(red) tends to align with the collided particle (blue), while the collided particle tends to rotate away. In f, both particles align with each other. (g,h) Two

different processes causing the instability of nematic alignment. Black lines indicate the bulk nematic alignment. Blue curves indicate the bending

deformations of nematic alignment caused by fluctuations. Yellow arrows indicate the direction of motion for particles on collision. Green arrows indicate

the direction of particle’s rotation caused by collision.
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deformation leads to the breakdown of nematic order, and such
instability has two contributions as illustrated in Supplementary
Equations (18)–(20) in Supplementary Discussion. As shown in
Fig. 4g, one process deforming nematic alignment is the rotation
of particles triggered by collisions from two sides of the inflection
region of bending fluctuations. Another process enhancing
bending is shown at the peak or valley region of bending
fluctuations in Fig. 4h. When particles in these region are
colliding particles on their flanks, they tend to align with particles
on each side, which further sharpens the local curvature.

Abnormal density fluctuations and relaxations with defects.
The instability leads to the nonlinear spontaneous excitation of
topological defect pairs. The separation of created topological
defects induces large-scale bending and splay of nematic director
field, which further drive large-scale particle flows10,17,31–33. The
system is characterized by the nonperiodic recurrence of
collective particle flows that span spatial-temporal scales much
larger than that can be achieved by the individual constituent (see
Supplementary Movie 2). Such state distinguishes from
conventional steady state which requires constant fluxes.

The collective swarming and swirling motions lead to highly
dynamic density inhomogeneity and abnormal density fluctua-
tions. To quantify the spatial property of such density
inhomogeneity, we measure the root mean square deviation DN
of a given area A by using the relation

DN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hNiþr2

0

Z

A

dr1

Z

A

dr2½gð jr1� r2 jÞ � 1�
vuut ; ð1Þ

where g(r) is the radial distribution function and the integrals
are performed over a region A with mean particle number hNi
(ref. 4.) It is also measured directly by its definition DN ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðN �hNiÞ2i

q
(ref. 10). These two methods give the same

results as shown in Fig. 5a, where DN/
ffiffiffiffiffiffiffiffi
hNi

p
versus hNi is

plotted. In the regime hNioo1 (that is, Ar0oo1), DN/
ffiffiffiffiffiffiffiffi
hNi

p
varies as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�hNi

p
, since g(r)¼ 0 (for rob, b is a particle’s

semiminor axis) as a result of exclude volume effect. It explains

why all the curves coincide and exhibit the first drop when
hNio1 in Fig. 5a34,35.

Abnormal large fluctuations in active nematics are clearly
illustrated when their curves diverge from the equilibrium cases
for hNi41. Giant number fluctuations are observed for the case
where quasi-long-range alignment becomes unstable. The green
line in Fig. 5a, indicating DNphNi0:85, represents the most sharp
increase of fluctuations we observe. With the increase of density,
the system becomes more compact and the fluctuations decrease
accordingly34. The giant number fluctuations found here is a
result of the large-scale dynamic evolution of the strongly
segregated patterns shown in Fig. 4d and Supplementary Movie 2.
Such evolution is driven by the deformation of nematic director
fields as a consequence of the emergence of topological defects.
The large voids found in Fig. 4d and Supplementary Movie 2
actually are just vortex defects or the combination of two þ 1/2
defects on the void’s boundary.

To investigate the relaxation processes of abnormal fluctua-
tions, we measure the autocorrelation fL(t)¼hðnLðtþ t0Þ�
hnLiÞðnLðt0Þ� hnLiÞi/L4, where nL(t) is the particle number
in a given square of side length L at time t and hnLi is its average
number. We also measure the particle’s time-dependent mean-
square-displacement hDr2ðtÞi ¼ h jrðtþ t0Þ� rðt0Þ j 2i, which
characterizes the dynamic property of particle motion.

In short-time regime for to200 t, as shown in Fig. 5b, the
autocorrelation fL(t) shows fast logarithmic decay10.
Correspondingly, as shown in Fig. 5c, hDr2ðtÞi in this regime
first exhibits super-diffusive and consequent subdiffusive
behaviour as a result of driving- and collision-induced local
caged adjustments, respectively. In the long-time regime, the
logarithmic decay of fL(t) slows down after about 200 t.
This regime of slow decay coincides with the super-diffusive
regime of topological defect kd¼ 1/2 (Fig. 1i), and the
height of the slowly declining floor is positively related to the
strength of density inhomogeneity shown in Fig. 5a. They
suggest a mutual correspondence between the relaxation
of density inhomogeneities and the dynamics of topo-
logical defects. Furthermore, once topological defects are
generated, they cannot be easily eliminated except through
mutual annihilation. Such a conservative property make them
play an important role in the large-scale collective dynamics of
the system.
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After 105t, fL(t) approaches zero and hDr2ðtÞi approaches the
final diffusive behaviour, indicating that density inhomogeneities
are not static and no stable constant global particle flows exist in
the system, in accordance with seemingly random spontaneous
behaviours of topological defects. Furthermore, the inset of Fig. 5c
shows that the self-diffusivity decreases exponentially with the
increase of particle density. This notable effect is also observed in
experiments36.

Discussion
The following two aspects are of extreme importance for both the
understanding and further application of active matter. The first
is the emergence of new dynamic structures in active matter,
which is impossible or difficult to realize in equilibrium. The
second is the novel dynamics and functionality of specific
structures in active matter. The study of active media thus is
useful both for generating structures and realizing dynamical
properties to fulfil novel functions unachievable in non-active
media. In this study, we just focused on the above two aspects of
topological defects in active nematics.

Although topological defects may emerge both in active and
non-active media, the dynamics of disclinations is qualitatively
different in these two situations: polar disclination (kd¼ 1/2) in
non-active nematics is found bound with disclination kd¼ � 1/2,
while in active nematics, it shows strong super-diffusive motion
(see Fig. 1i). In recent experiments of both driven granular rods
and microtubules7,10, polar topological defects do show evidence
of super-diffusive motions, although they are not critically
determined by statistical measurement. On the other hand, the
transportation behaviour of polar disclination in active nematics
shows strong dynamical irreversibility that hinders the immediate
annihilation of co-emerging polar and apolar disclinations. Local
configuration of disclination pair determines the path to their
annihilation or unbinding.

Furthermore, the abnormal dynamics of topological defects not
only drives the instability of quasi-long-range nematic order but
also plays a critical role in the collective motion and giant number
fluctuations in the system. After the spontaneous excitation, the
polar disclination point will move away from the co-emerging
apolar disclination. This process inevitably induces large-scale
bending and splay of nematic director field, which further drive
large-scale particle flows. Since the spontaneous excitation, active
separation and annihilation of disclinations are genuinely
aperiodic and endless, the system can only stay in a dynamical
state with ever evolving large-scale particle flows. It distinguishes
from conventional steady state which requires constant fluxes.
The system is characterized by the non-periodic recurrence of
collective particle flows that span spatial-temporal scales much
larger than that can be achieved by its individual constituent.
These collective swarming and swirling motions lead to highly
dynamic density inhomogeneity and abnormal density fluctua-
tions. More interestingly, by measuring the autocorrelation of
local density and comparing with the corresponding spatial
fluctuations, we reveal that the time regime for large-scale density
relaxation coincides with the regime of super-diffusivity for polar
disclinations. The density relaxation thus is organized by the
motion of topological defects, which can be eliminated only by
mutual annihilation.

The dry system simulated here is different from active nematics
in fluid media37–40. As a result of momentum conservation, in
such wet active nematics, fluid flows driven by the activity of self-
propelled particles play important roles in the collective motion
of the system. Giomi et al.39 recently show the drift motion of
topological defects of kd¼ 1/2 in extensile wet active nematics,
and the so-called backflow is found playing an important role in

defects dynamics. Alignment parameter (that is, flow aligning
parameter38) that serves as a feedback of fluid flow on nematic
order is also found to be important for the emergence of
topological defects37,40. The dry active nematics here, however,
suggest a different mechanism for anomalous behaviour of
topological defects. Collision-induced rotation is found important
for the emergence of topological defects. Interestingly, we further
identify weak polarity field near the topological defects, and its
strength is found closely related to the drift speed of topological
defects of kd¼ 1/2. Such polarity field is enslaved to the spatial
variation of nematic order and might play an important role in
the evolution of topological defects, similar to the role of fluid
flows in wet active nematics.

In addition, the mean-field theory is used to helpfully
understand the above nematic ordering and dynamic instability
in low and high-density regimes, respectively. The present theory
is similar to that of Baskaran and Marchetti on self-propelled
rods26–28, and the major difference is that here a reversal rate of
driving directions is applied. Furthermore, during the collision
process, in their model they apply energy and momentum
conserving law upon collision, but here we directly start from
simple collision rules. In active system, due to the complexity of
self-propelling entities and the frictions of substrate, the collision
process does not conserve the kinetic energy and momentum.
The present collision rules allow us to examine the effects of
different collision processes on collective behaviours. There are
two major collision processes in our theory. The nematic
alignment collision process shown in Fig. 4f is widely used to
explain the nematic ordering in driven rods system25,29,30,32. To
our knowledge, the previous models that only include nematic
alignment collision will not drive the active unbinding of
topological defect pair as described here. On the other hand,
our theory shows that the instability in the high-density regime is
mainly caused by the collision process as shown in Fig. 4e. With
such instability, the hydrodynamic theory of Ramaswamy et al.17

on active nematics that predicts giant number fluctuations in 2D
is not applicable in our situation. However, the observation of
curvature driven flows still plays a critical role in large-scale
relaxations.

The major results of this paper can be readily tested in systems
of driven granular rods and mobility assay experiments6–8,10. For
further applications, our study suggests a way to control collective
evolution in active media through tracking and manipulating
topological defects in real time. For example, we could speed up
or slow down the relaxation of density fluctuations by directly
driving or pinning polar defects, respectively. It would be more
interesting, if these could be achieved by adding particles of
different dynamic properties. Such manipulations could be
implemented both in future experiments and theoretical studies.

Methods
Simulation. In active simulation, the state of an ellipse particle j at simulation step
n is denoted by the position of its centre of mass rn

j and the angle of major axis yn
j .

We perform three basic trial operations on the position and angle of particles:

Dr0nj ¼ 2v0hn
j un

j Z
n
j ð2Þ

Dr00nj ¼ slg
n
j z

n
j ð3Þ

Dy0nj ¼ srgn
j x

n
j ð4Þ

where v0 is the average velocity along the particle axis and un
j ¼ ðcosyn

j ; sinyn
j Þ. hn

j
is þ 1 or � 1, indicating that the particle is moving in the direction of un

j or � un
j ,

respectively. hn
j will change or maintain its sign randomly every t simulation

sweeps on average through abiding by the Poisson distribution. zn
j is a delta-

correlated vector white noise with its norm ðz2
x þ z2

yÞ
1=2r1, and Zn

j and xn
j are

scalar white noises (Z 2[0,1] and x 2[� p/2,p/2]). In Equation (2), 2v0Zn
j gives an

average driving velocity v0. hn
j and Zn

j together give a coloured noise with mean zero
and a finite correlation time t. Collision event takes place if the renewed space
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occupied by particle j overlaps with other particles. gn
j is 1 if particle j collides with

or is collided by other particles during major-axial driving operation Equation (2)
in step n� 1, otherwise it is 0. Thus operations Equations (3) and (4) are collision-
induced translational and rotational motions caused by major-axial driving. s1 and
sr are two parameters controlling the strengthes of translational and rotational
motions, respectively. Taking hard-core interactions into consideration, the trial
movements in Equations (2)–(4) are set to zero if the corresponding updated
configurations overlap with other particles. Finally, the states of particles are
updated as:

rnþ 1
j ¼ rn

j þDr0nj þDr00nj ; ð5Þ

ynþ 1
j ¼ yn

j þDy0nj : ð6Þ
In active simulations, the elliptic particles have the same aspect ratio as particles

used in previously reported experiments10, that is, a/b¼ 5.75, where a and b are
semi major and minor axes of the particle, respectively. The major axis L¼ 2a is
used as unit length. Periodic conditions are used in simulations with system size
d¼ 30. The dynamic parameters v0¼ 0.012, s1¼ 0.004, sr¼ 0.015, and t¼ 6 are
used in simulations unless otherwise indicated.

We also perform classic equilibrium Monte-Carlo simulation using the same
hard elliptic particles as those in active simulations. In equilibrium simulation,
particles only perform translational and rotational movements conforming detailed
balance to track physically most probable and realistic kinetic process.

Defect identification and tracking. To identify topological defects in simulations,
we first assign an angle f(r) on every site r of a square lattice. f(r) is given through
tanf(r)¼

P
i wðr� riÞsin2yi=

P
i wðr� riÞcos2yi, where w(r� ri) is a weight

function and ri and yi are the location and angle of the ith particle, respectively. In
practice, we choose a gaussian form, w(r� ri)¼ expð� r2

k=d
2
k � r2

?=d
2
?Þ, where r8

and r> are the parallel and normal components of r� ri relative to the major axis
of particle i19. Topological defects are identified by observing a net change of f
when we follow a closed loop on the lattice. The location of þ 1

2 � 1
2

� �
topological

defects is determined by the centre of the smallest square with 2p (� 2p) clockwise
changes of f. In analysis, the size of lattice is L/4, d8¼ 2a¼ L, and d>¼ 2b.

Dynamic mean-field theory. To describe the spatial and angular number density
distributions of particles, we introduce one-body distribution function f±(r,u,t) for
the particles that are driving in the direction of u or �u at time t, respectively.
Further, we denote o±(r,u,t) as the collision-induced rotation rates of particles that
are driving in the ± direction when the collision takes place. The most simplified
dynamic mean-field equations that include the driving- and collision-induced
rotation processes in the approximation of Itô-formalism41 are given by

@t f� þ kðf� � f� Þ � r � ðvf� Þ ¼ DrR
2f� �Rðo� f� Þ; ð7Þ

where R¼u� qu. The second term on the left-hand side of the equation
represents the switching between two driving states with rate k (p1/t in
simulation) and the third term is the instantaneous drift term with an average
velocity v (¼h2v0Zn

j inu, where h� � �in represents time average in simulation). On
the right-hand side, the first term represents the self-rotational diffusion caused by
driving noises, and the second term is the contribution of collision-induced
rotations. Detailed analysis is given in Supplementary Fig. 1 and Supplementary
Discussion.
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