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Purpose: Atrial fibrillation (AF) originating from the left atrium (LA) and pulmonary veins (PVs) is
the most prevalent cardiac electrophysiological disorder. Accurate segmentation and quantification of
the LA chamber, PVs, and left atrial appendage (LAA) provides clinically important references for
treatment of AF patients. The purpose of this work is to realize objective segmentation of the LA
chamber, PVs, and LAA in an accurate and fully automated manner.
Methods: In this work, we proposed a new approach, named joint-atlas-optimization, to segment the
LA chamber, PVs, and LAA from magnetic resonance angiography (MRA) images. We formulated
the segmentation as a single registration problem between the given image and all N atlas images,
instead of N separate registration between the given image and an individual atlas image. Level sets
was applied to refine the atlas-based segmentation. Using the publically available LA benchmark
database, we compared the proposed joint-atlas-optimization approach to the conventional pairwise
atlas approach and evaluated the segmentation performance in terms of Dice index and surface-to-
surface (S2S) distance to the manual ground truth.
Results: The proposed joint-atlas-optimization method showed systemically improved accuracy
and robustness over the pairwise atlas approach. The Dice of LA segmentation using joint-atlas-
optimization was 0.93 � 0.04, compared to 0.91 � 0.04 by the pairwise approach (P < 0.05).
The mean S2S distance was 1.52 � 0.58 mm, compared to 1.83 � 0.75 mm (P < 0.05). In par-
ticular, it produced significantly improved segmentation accuracy of the LAA and PVs, the
small distant part in LA geometry that is intrinsically difficult to segment using the conventional
pairwise approach. The Dice of PVs segmentation was 0.69 � 0.16, compared to 0.49 � 0.15
(P < 0.001). The Dice of LAA segmentation was 0.91 � 0.03, compared to 0.88 � 0.05
(P < 0.01).
Conclusion: The proposed joint-atlas optimization method can segment the complex LA geometry
in a fully automated manner. Compared to the conventional atlas approach in a pairwise manner, our
method improves the performance on small distal parts of LA, for example, PVs and LAA, the geo-
metrical and quantitative assessment of which is clinically interesting. © 2019 The Authors Medical
Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in
Medicine. [https://doi.org/10.1002/mp.13475]
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1. INTRODUCTION

Atrial fibrillation (AF) is the most common cardiac electro-
physiological (EP) disorder worldwide. AF commonly origi-
nates from the left atrium (LA), a complex anatomical
structure with large variation in shape and size. Studies have
shown that ectopic beats of AF often have the origin from
within the pulmonary veins (PVs) that are connected to the
LA chamber.1,2 The left atrial appendage (LAA), a vestigial
extension from the LA chamber, is reported to be linked to
the thromboembolic risk in AF patients.3

Circumferential PV ablation is widely performed to treat
AF.2 The procedure aims to isolate the PVs from the LA
chamber, by creating lesions around the PV ostia to block

irregular electrical conduction. To reduce the thromboem-
bolic risk in AF patients, the LAA closure procedure is per-
formed to close the LAA ostium, thereby eliminating the
LAA from the systemic circulation.3,4

Both interventional procedures can largely benefit from
prior assessment of the patient-specific LA anatomy, includ-
ing detailed geometry of the LA chamber, PVs, and LAA.
Reconstruction of their three-dimensional (3D) geometry
enables accurate preprocedural planning, as well as intra-
operative guidance. With development of imaging
techniques, the 3D LA geometry can be noninvasively visual-
ized by computed tomography angiography (CTA)5 or mag-
netic resonance angiography (MRA).6 In clinical practice,
however, viewing the two-dimensional CTA or MRA image
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slices while virtually reconstructing the complex 3D geome-
try of LA chamber, PVs, and LAA is exceedingly challenging
even for the most experienced clinicians. Automated com-
puter methods to segment the structures and reconstruct them
in three dimensions are highly desirable.

The technical challenges of automated segmentation of the
LA lay in the high complexity, irregularity, and variability in
its geometry. To segment and differentiate its anatomical
parts, namely, the LA chamber, PVs, and LAA, is even more
challenging. In literature, a number of automated and semiau-
tomated methods have been proposed to address the segmen-
tation of the LA, which can be categorized into contour-
based, model-based, and data-based approaches, that is, the
convolutional neural networks (CNN). Ammar et al.7 pro-
posed an algorithm based on threshold localization and circu-
larity shape descriptors. Daoudi et al.8 proposed a gradient
vector flow active contour model. Margeta et al.9 proposed
an algorithm based on random decision forests learning with
thresholded blood pool as initialization. A shape model-
based method was presented by Ref. [10], consisting of statis-
tical shape models and statistical region growing. Zheng
et al. proposed model-based algorithms including a multipart
model followed by region growing, using marginal space
learning. Besides shape models, atlas-based models have
been used.11 Zuluaga et al. and Sandoval et al. proposed algo-
rithms based on multiatlas segmentation propagation.12,13

Tao et al.14 proposed a fully automatic segmentation method
consisting of global localization by multiatlas registration
and local refinement by 3D level set. In recent years, CNN
shows great potential in segmentation of medical images and
has been successfully applied to various anatomical
objects.15–18 Xiong et al.19 proposed a patch-based CNN for
fully automatic LA segmentation. Mortazi et al. proposed to
segment the LA using the encoder–decoder architecture (U-
NET20) in a multiview framework and combined with an
adaptive fusion strategy.21

Contour-based approaches are generally sensitive to local
image quality, and lacking in global shape constraints. Data-
base approaches are potentially the best-performing ones, but
would demand sufficient annotated data to train the neural
network, which is typically characterized by tens of thou-
sands of parameters. In this work, we focus on model-based
approaches, which can produce reliable segmentation using
limited annotated data. In particular, we aim to address the
“diminishing distal part" problem that we frequently encoun-
ter in practice with the conventional multiatlas approach: the
extruding part of an anatomical structure, that is, the PV from
the LA, often has poor segmentation performance. This is
explained by the fact that the result is a consensus of multiple
image registration, and the agreement on the distal part usu-
ally reduces due to the fact that the border of an object is
more difficult to align than the central part.

In the conventional atlas approach, the method first regis-
ters a set of images with known labels to the given image one
by one (i.e., pairwise), then propagates the labels in these
images to the given image, and finally fuses all labels into a
final segmentation. The idea behind this is that the high

variability in geometry and appearance of the given target
image is represented in the set of atlas images. While some
atlas images will be registered to the target image more accu-
rately than others, subsequent label fusion by simple majority
voting or more advanced methods22,23 are found to be robust
against unsystematic inaccuracies and can produce a fused
segmentation that is typically more accurate than each atlas
image individually produces.

Nevertheless, image registration is known to be an ill-
posed and nonconvex optimization problem, which typically
becomes harder to solve if the appearance and geometries of
the two images are farther apart. As we have observed in our
experiences, there is in general no guarantee of registration
success for all atlas images as each is individually performed;
if some of the registration fails, the accuracy of the final
result, especially on the distal part, would be negatively
impacted. In this light, if the odds of individual registration
failure can be reduced, the accuracy of the multiatlas
approach will be systemically improved. Instead of dealing
with the possible misregistrations at the fusion stage post
hoc, we aim to improve the accuracy at the registration stage.

In this work, we present and evaluate a novel method, called
joint-atlas-optimization, that can systematically boost the
accuracy of multiatlas segmentation for complex, irregular,
and variable objects such as the LA. The rest of the paper is
organized as follows: Section 2 describes the datasets for train-
ing and testing, and the reference standard for evaluation. Sec-
tion 3 presents the joint-atlas-optimization method. Section 4
describes the experimental setting and reports the evaluation
results. Section 5 gives discussions and conclusions.

2. DATA AND REFERENCE STANDARD

We used the LA benchmark database from the MICCAI
2013 challenge24 to develop and test our proposed method.
We focused on the MRA modality as it is radiation-free, and
can potentially be contrast-free with noncontrast techniques.
Moreover, as MRA generally has lower resolution and poorer
image quality than CTA, methods working on MRA can be
readily extended to CTA.

The database includes 30 MRA datasets, with using 10 for
training and 20 for testing. MR acquisition was performed on
a 1.5 T Achieva scanner (Philips Healthcare, Best, The
Netherlands). A 3D whole heart image was acquired using a
balanced steady-state–free precession acquisition. The
sequence acquired a nonangulated volume covering the whole
heart with voxel resolution of 1.25 9 1.25 9 2.27 mm3.
Images were acquired during free breathing with respiratory
gating at end diastole with ECG gating. Typical acquisition
time for a complete volume was 10 min. Each dataset repre-
sents a 3D volume image at a single cardiac phase. The data-
sets were selected to provide a variety of quality levels in the
following proportions: nine high quality, ten moderate quality,
six local artifacts, and five high noise datasets.

All dataset are provided with LA segmentation as the
ground truth (GT). The GT segmentations were started by per-
forming an automatic model-based segmentation optimized
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for MRA. After the initial automated segmentation, an experi-
enced observer manually corrected the segmentation when-
ever necessary. Additionally, a second observer also
performed the same manual correction based on initial seg-
mentation to estimate interobserver variability. Ten datasets
were selected as the training set, and the other 20 datasets
were used for testing. The separate labelling of LA chamber,
PVs, and LAA from the segmented LA were realized by the
standardized code provided by the challenge organizer. Four
labels were given to different PVs: left superior PV (LSPV),
left inferior PV (LIPV), right superior PV (RSPV), and right
inferior PV (RIPV). An example in the training dataset is
shown in Fig. 1, in which 3D visualization of different
anatomical labels is given.

3. METHODS

3.A. Multiatlas segmentation

Mutli-atlas segmentation is a powerful image-based approach
to segment complex anatomical structures in medical images.25

Define Ai as the atlas image, with known label Li, i = 1,2,. . .,
N, where N is the total number of atlases. Multiple images with
labels are used as a base of knowledge, to segment a new
image I containing the same anatomical structure. In the con-
ventional setting, the N atlas images are registered to the given
image one by one, to derive N transformations:

l̂i ¼ argmin
li

CðTli ; I;AiÞ; i ¼ 1; 2; . . .;N (1)

denotes the transformation parameters from the ith atlas
image Ai to the given image I. The cost function C usually is
defined as the mutual information between the pair of
images,26 a classical registration metric robust to image inten-
sity and modalities. The resulting transformation Tl̂i is used
to map the known atlas segmentation to the given image
Si ¼ Tl̂iðLiÞ, where Tl̂ið�Þ denotes the transformation with

the optimized parameter l̂i. The N segmentations are then
fused by the simple majority voting, or other more advanced
methods.22,23

3.B. Joint-atlas-optimization

Instead of N separate, independent registration processes,
we propose to register all atlas images in one registration step
to the given image. We formulate it as optimizing a group
objective function that merges the given image with the atlas
images:

l̂ ¼ argmin
l

CðTl; I;A1;A2; . . .;ANÞ (2)

in which the cost function C can be defined in various
ways29,30 as a groupwise registration metric. In this work, we
chose to minimize the variance in the group of images:

CðlÞ ¼ ðTlðIÞ � �IlÞ2 þ
XN
i¼1

ðTlðAiÞ � �IlÞ2 (3)

with �Il named as the “mean-shape” image:

�Il ¼ 1
N þ 1

TlðIÞ þ
XN
i¼1

TlðAiÞ
( )

(4)

where the transformation parameter l is the ensemble of all
transformation applied to N atlas images Ai and the given
image I. For meaningful variance, normalization of image
intensity rangewas applied to eachAi and I prior to registration.

It can be seen that Eq. (3) essentially represents a group-
wise registration,29,30 with the given image merged to the
atlas images as one group. While in most previous work the
groupwise registration minimizes the variance over the time
dimension, we minimize the variance over the “atlas-dimen-
sion” along which the given image is also embedded. The
resulting mean-shape image �Il is an average in terms of
intensity, and more importantly, it is an average in terms of
shape. Figure 2 illustrate the “mean-shape” concept.

FIG. 1. Example datasets as provided by the left atrium (LA) benchmark database: left is the two-dimensional images, and right is the three-dimensional mesh.
Colour overlay shows the manual ground-truth, including the LA chamber, pulmonary veins (PVs), and left atrial appendage (LAA). [Color figure can be viewed
at wileyonlinelibrary.com]
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3.C. Hierarchical registration

The complexity of the problem requires careful formula-
tion of registration steps. We used a hierarchical strategy: first
an affine registration was performed, where l in Tl contains
three translational, one scaling, and three rotational parame-
ters, to roughly align the position, size, and orientation of the
objects, then a B-spline nonrigid registration was performed,
where Tl is defined as:

TlðxÞ ¼ xþ
X
x2N x

pkb
3ðx� xk

r
Þ (5)

where xk is the control point, b3 is the cubic B-spline poly-
nomial, pk is the B-spline coefficient vector, r is the B-spline
control point spacing, and N x is the set of all control points
within the compact support of the B-spline at x. The control
points xk are defined on a regular grid k. These parameters
form the set of transformation parameters l. The control
point grid is defined by the amount of space between the
control points r ¼ ðr1; . . .; rdÞ (with d the image dimen-
sion). B-splines have local support (jN xj is small), which
means that the transformation of a point can be computed
from only a couple of surrounding control points. This is
beneficial both for modelling local transformations, and for
fast computation.

To solve Eqs. (1) and (2), a stochastic optimization proce-
dure was used.31 A multiresolution approach was used to per-
form the nonrigid registration in a coarse-to-fine manner. The
same hierarchical strategy and optimization routine can be
applied to both pairwise atlas and joint-atlas registration.

3.D. Label fusion on the mean-shape image

The ten known labels in the atlases were propagated to the
mean-shape image, and fused by majority voting. The inverse
transformation from the mean-shape image �I to the given
image I can be obtained by solving T 0

lðTlðIÞÞ ¼ I.29 Subse-
quently, the segmentation on the mean-shape image �I can be
back-propagated onto the given image I.

3.E. Local refinement

As demonstrated in the LA Segmentation Challenge,24

local contour-based methods can provide incremental
improvement after applying global model-based methods.
Local refinement can adapt the final results to details specific
to the given image, especially in irregular parts such as PVs
and LAA. With the atlas-based segmentation as initialization,
the level set32 was applied with the energy function formu-
lated as:

FIG. 2. The concept of mean-shape: the upper panel shows the atlas images in a group, the lower left panel shows the mean-intensity image of the atlas images,
and the lower right panel shows the mean-shape image of the atlas images. Note that the computation is in three dimension, and for ease of illustration we showed
only a two-dimensional slice containing left atrium.
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Fð/Þ ¼ l
Z
X
rHð/Þj jdXþ m

Z
X
Hð/ÞdX

þ k1

Z
X
Iðx; y; zÞ � c1j j2Hð/ÞdX

þ k2

Z
X
Iðx; y; zÞ � c2j j2ð1� Hð/ÞÞdX

(6)

where / is the level set function. The model assumes that the
image I is a 3D image with piecewise constant values. It
defines the evolving surface Ω = 0 as the boundary of object
to be detected in image I. c1, c2 are the average values inside
and outside the boundary, respectively. H is the Heaviside
function. l ≥ 0, m ≥ 0, k1; k2 [ 0 are weighting factors of
the four terms. The first term denotes the surface area, and
second term denotes the volume inside the surface. The last
two terms are the variance inside and outside the boundary.

The complete workflow of the proposed segmentation
approach is given in Fig. 3.

3.F. Evaluation criteria and statistical analysis

Following the guidelines from the LA benchmark data-
base,24 we evaluated the segmentation accuracy using two
metrics: surface-to-surface distance (S2S) and Dice index.
S2S describes the average distance of each point from the
automatically segmented surface to the GT surface. Low val-
ues of S2S represent high accuracy. We evaluated segmenta-
tion accuracy in the LA geometry, as well as in its anatomical
parts, namely, the LA chamber, LSPV, LIPV, RSPV, RIPV,
and LAA. To evaluate our method on a fair basis against

previously published methods, we used the standardized code
for computing the S2S distance and Dice index, as well as for
differentiating the PVs and LAA. Details of the computation
in the evaluation can be found in Ref. [24].

Continuous variables are expressed as mean � standard
deviation. Paired variables were compared using the Student
t-test. P < 0.05 was considered statistically significant.

4. EXPERIMENTS AND RESULTS

4.A. Experiment setting

To evaluate the proposed joint-atlas-optimization method,
we also implemented the conventional pairwise atlas
approach as a reference. For fair comparison, we used identi-
cal registration parameters whenever applicable. In both
cases, affine registration was first applied to roughly align
objects, followed by a nonrigid B-spline registration with the
same number of pyramids (4) and grid size [r = 10 mm in
Eq. (5)]. The same optimization method was used in both
cases, and the same fusion method, that is, majority voting,
was used. In addition, the same level set refinement was
applied afterward. The only difference was that our method
performed one single registration to minimize the variance
over the atlas-dimension in the group of 11 images, while the
conventional method performed the registration ten times to
maximize mutual information in pairs.

All registrations were implemented using the Elastix tool-
box26,33. We used a spline grid size of 10 mm, three image
resolutions, and a fixed number of iterations for each resolu-
tion (1000). The variance-over-last-dimension metric was

FIG. 3. The diagram of the proposed segmentation workflow, including joint-atlas-optimization, label fusion on the mean-shape image, and level set refinement.
[Color figure can be viewed at wileyonlinelibrary.com]
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used after normalizing the image intensity to a fixed range of
0–255. The stochastic gradient descent approach was chosen
for optimization. Evaluation and statistical analysis were per-
formed in the Matlab environment (R2015b, MathWorks,
Natick, MA, USA).

4.B. Segmentation accuracy of LA

A visual check showed that all LAs in 20 testing data-
sets were successfully segmented using the proposed
method. Table I reports the LA segmentation accuracy in
terms of Dice and S2S distance. We listed the results before
the level set refinement to show the difference caused by
the atlas approach alone, and the results after level set
refinement to show the influence of atlas approach on the
final results. It can be seen from Table I that the joint-atlas-
optimization approach improved the segmentation accuracy
over the pairwise approach both before and after applying
the level set.

The Dice of LA segmentation using joint-atlas-optimiza-
tion was 0.92 � 0.04 and 0.93 � 0.04, before and after level
set refinement, respectively, while using the pairwise atlas,
the Dice was 0.84 � 0.20 (P = 0.05) and 0.91 � 0.04
(P < 0.05), respectively. The mean S2S distance for joint-
atlas-optimization was 1.53 � 0.54 mm and 1.52 � 0.58
mm, before and after level set refinement, while using the
pairwise atlas, the mean S2S distance was 2.29 � 0.79 mm
(P < 0.05) and 1.83 � 0.75 mm (P < 0.05), respectively.

We further compared the outcome of the LA segmentation
between MRA images of different quality levels. The 20 test-
ing data were separated into two groups of ten high-quality
MRA datasets and ten low-quality MRA datasets by an estab-
lished image-quality evaluator: the blind/referenceless image
spatial quality evaluator (BRISQUE).34,35 The method pro-
vides a holistic measure of image quality based on image
statistics. The BRISQUE score typically has a value between
0 and 100, with 0 representing the best quality, and 100 the
worst.34 According to the ranking of BRISQUE scores, we
divided the 20 testing data in two groups of 10: high quality
and low quality with a threshold of 40. Figure 4 shows two
examples quantified by the BRISQUE score. The Dice
indices of the high-quality group were 0.93 � 0.02, ranging
0.89��0.96. The Dice indices of the low-quality group

0.92 � 0.03, ranging 0.89��0.95. Unpaired Wilcoxon test
showed no significant differences between the two groups
(P = 0.3). The mean S2S distances were 1.28 � 0.27 mm
for the high-quality group, and 1.58 � 0.3 mm for the
low-quality group (P = 0.1).

4.C. Segmentation accuracy of LA chamber, PVs,
and LAA

We also separately evaluated the segmentation accuracy
for the LA chamber, four PVs, and LAA, as reported in
Table II. The final results after level set refinement was fur-
ther compared to the best performance in the LA bench-
mark.24 Interobserver variability as provided by the LA
benchmark database is also given. It can be seen from
Table II that in terms of atlas segmentation, the proposed
joint-atlas-optimization approach outperformed the conven-
tional pairwise atlas approach in all PVs, while for the LA
chamber and LAA the difference was not statistically signifi-
cant. After applying the refinement, the results were
improved for both approaches, but the joint-atlas-optimiza-
tion approach outperformed the pairwise atlas approach con-
sistently given its more accurate initialization. The proposed
workflow, that is, joint-atlas-optimization followed by level
set, outperformed the best in the benchmark. In particular, the
standard deviation was lower for all LA components, suggest-
ing more robust performance with MRA data of different
quality.

Figure 5 illustrates the segmentation performance in terms
of mean S2S distance, comparing the joint-atlas-optimization
and pairwise atlas approaches before and after level set
refinement. In all cases, the level set refinement either low-
ered the mean or standard deviation of the S2S distance, or
both. Compared to the pairwise atlas approach, the joint-
atlas-optimization approach performed consistently better,
both before and after the level set refinement.

An example is given in Fig. 6 showing the two-dimen-
sional slices and reconstructed 3D volumes of the GT, pair-
wise atlas, and joint-atlas-optimization segmentation results.
The results were the direct outcome of the atlas segmentation,
without level set refinement. The proposed approach showed
improved segmentation accuracy, in particular in the PVs,
producing a better initialization for the level set.

In Fig. 7 we show an example of the intermediate results
from the pairwise atlas and joint-atlas-optimization
approaches. It can be seen that the pairwise atlas, although
good enough to localize and segment the complex structure,
could fail in individual pairwise registration. Consequently,
the “disagreement” of voting is especially pronounced at the
small distant part of the structure, that is, the PVs, where the
segmentation accuracy was clearly negatively impacted. In
comparison, with the cost function optimizing the matching
of all atlases, the joint-atlas-optimization approach could
achieve more consistent registration performance across indi-
vidual atlases, thereby achieving higher segmentation accu-
racy, even at the distant part.

TABLE I. The Dice and surface-to-surface (S2S) of the left atrium (LA) seg-
mentation results using two different atlas approaches. The Dice and S2S
after applying the level set refinement are also reported.

Pairwise atlas Joint-atlas P-value

Results after atlas segmentation

Dice 0.84 � 0.20 0.92 � 0.04 0.05

S2S (mm) 2.29 � 0.79 1.53 � 0.54 <0.001

Results after level set refinement

Dice 0.91 � 0.04 0.93 � 0.04 <0.05

S2S (mm) 1.83 � 0.75 1.52 � 0.58 <0.01
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4.D. Execution performance

For joint-atlas segmentation, the typical computation time
was 554 s, in comparison to 684 s by the pair-wise atlas
method, on a computer with a CPU of Intel Xeon E5-2687W
processor (3.00 GHz) and 64 GB RAM. In both these cases
ten atlases were used, and except for the optimization metric,
all configurations of registration (e.g., optimization method,
grid size, number of iterations, multiscales) were set to be
exactly identical.

5. DISCUSSION

In this work, we have developed and validated a new
method, called joint-atlas-optimization, to segment the com-
plex LA geometry from 3D MRA images. The method fur-
ther differentiates the LA chamber, PVs, and LAA. Trained

and evaluated on the public LA benchmark database,24 the
proposed method showed improved performance over the
best in Benchmark in terms of both accuracy and robustness.

The LA is a complex anatomical structure with large varia-
tion in shape and size. It is the origin of AF, the most preva-
lent cardiac disorder worldwide. Clinical studies have shown
that different components of the LA likely underlie different
aetiological mechanisms. Ectopic beats of AF often originate
from the connection between PVs and LA chamber. Myocar-
dial fibrosis on the LA chamber is critically linked to the
severity of AF and prognosis.36 The LAA, an appended struc-
ture to the LA, is associated with the formation of thrombus
and hence risk of stroke. Interventional procedures, such as
circumferential PV ablation and LAA closure, have been
developed to treat AF patients targeting specific anatomical
locations. The procedures require careful localization to deli-
ver the therapy (i.e., RF power or clipping). To assess not

(a) (b)

FIG. 4. Two examples quantified by the blind/referenceless image spatial quality evaluator (BRISQUE) criterion: (a) an example of high-quality image
(score = 23.15), (b) an example of low-quality image(score = 48.83).

TABLE II. Experiments on the atlas set to compare the registration strategies (groupwise and pairwise) and the improvement after applying the level set on the
image segmentation in terms of the DC of left atrium (LA) body, left atrial appendage (LAA), and pulmonary veins (PVs).

Pairwise atlas Joint-atlas P-value

Dice indices after atlas segmentation

LA chamber 0.84 � 0.20 0.92 � 0.03 0.07

LSPV 0.38 � 0.16 0.67 � 0.13 <0.001

LIPV 0.49 � 0.21 0.68 � 0.12 <0.001

RSPV 0.17 � 0.11 0.52 � 0.17 <0.001

RIPV 0.14 � 0.13 0.39 � 0.19 <0.01

LAA 0.81 � 0.21 0.91 � 0.03 0.07

Pairwise atlas Joint-atlas P-value Best in benchmark Interobserver

Dice indices after level set refinement

LA chamber 0.90 � 0.04 0.92 � 0.03 <0.05 0.91 � 0.09 0.92 � 0.04

LSPV 0.50 � 0.14 0.73 � 0.15 <0.001 0.72 � 0.28 0.78 � 0.03

LIPV 0.59 � 0.16 0.75 � 0.12 <0.001 0.76 � 0.38 0.78 � 0.04

RSPV 0.28 � 0.15 0.57 � 0.19 <0.001 0.35 � 0.28 0.77 � 0.03

RIPV 0.26 � 0.15 0.46 � 0.17 <0.01 0.46 � 0.29 0.76 � 0.04

LAA 0.88 � 0.05 0.91 � 0.03 <0.01 - 0.92 � 0.03
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only the LA geometry but also the separate anatomical parts
such as PVs and LAA, is clinically interesting. However, the
high complexity, irregularity, and variability of the compo-
nents put forward high requirements on the accuracy, robust-
ness, and flexibility of the automated algorithm.

Extensive evaluation in the MICCAI LA challenge24 has
demonstrated the superior performance of the multiatlas
approach over other contemporary methods. In most atlas-
based methods, the registration was performed in a pairwise
manner. The approach is generally robust to localize the object
but can be inaccurate in following fine structures of the object,
where the voting is likely to diverge. As observed in our exper-
iments, this is a process with an certain degree of unpre-
dictability: some registration might fail. The failing ones do
not destroy the final result, but do negatively impact it accu-
racy, especially in small distant structures such as the PVs.

In theory, the atlas images, plus the given image, all reside
in a complex high-dimensional image manifold. Depending
on similarity between the given image to the individual
atlases, the difficulty to register differs. In principle, there are

two ways to address the problem: (a) to increase the number
of atlases, and to design advanced rules to select suitable
atlases or to fuse the labels based on their reliability,37,38 (b)
to improve the accuracy of atlas registration. The proposed
groupwise-atlas approach falls into the second category, since
in many applications as this particular one, the number of
available atlases is limited and it is important to make good
use of each one. Therefore, we formulated a registration prob-
lem between the given image and all atlas images. By merg-
ing them into one group, we take advantage of the aggregated
information from the point set instead of scattered points in
the manifold, as illustrated in Fig. 8. Optimizing the similari-
ties among all images acts as a regularization, making it less
likely to be trapped in local minima as it is in the pairwise
registration. While an individual atlas image might be too far-
away from the given image to register correctly in a pairwise
manner, its proximity with other atlas images can help con-
verge them all to a mean-shape image. The mean-shape
image virtually lies in the middle of the point set, which has
an optimized overall distance (hence confidence to register

FIG. 5. Box-plots of the mean S2S error for different components of left atrium (LA): LA chamber, left atrial appendage (LAA), left superior pulmonary veins
(LSPV), left inferior PV (LIPV), right superior PV (RSPV), and right inferior PV (RIPV). For each component, four methods were compared. (1) pairwise: pair-
wise atlas, (2) pairwise+: pairwise atlas plus level set refinement, (3) joint: joint-atlas-optimization, and (4) joint+: joint-atlas-optimization plus level set refine-
ment. [Color figure can be viewed at wileyonlinelibrary.com]
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correctly) to all individual points. In this way, we expect to
systematically boost the performance of the multiatlas seg-
mentation, and this was demonstrated by our experiment with

the LA benchmark database. The method is expected to also
work well in similar problems where the anatomical structure
is complex and the number of atlases is limited.

FIG. 6. Comparison of the segmentation results before applying the level set refinement: (a) ground truth, (b) pairwise atlas, and (c) joint-atlas-optimization.
[Color figure can be viewed at wileyonlinelibrary.com]

FIG. 7. Intermediate registration results of individual atlases by (a) the pairwise atlas approach and (b) the proposed joint-atlas-optimization approach. Unsuc-
cessful registrations are marked with red circles. [Color figure can be viewed at wileyonlinelibrary.com]
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From Tables I and II, we have not only observed a signifi-
cant increase in the average Dice but also a large decrease of
the standard deviation, which suggest improved accuracy as
well as robustness. In particular, for the PVs, the improve-
ment was pronounced. The underlying mechanism can be
appreciated from Fig. 7: compared to the LA chamber, failing
cases of pairwise registration has a relatively large impact on
the accuracy of distant structures such as PVs; by eliminating
the failing cases, our method resulted in a better agreement of
the atlases even at the small distant part, leading to a signifi-
cant boost of the PV segmentation accuracy.

Traditionally we consider improving the segmentation accu-
racy at the distal part by local methods such as the level set.
However, it is known that the level set method, although flexi-
ble and attending to details, is sensitive to initialization and
tends to be trapped by local noises (as is typical of
MRA images). We have observed that the proposed approach
still significantly outperformed the pairwise atlas approach after
refinement, suggesting the importance of accurate initialization.

In our experiments, we have shown that the proposed joint-
atlas-optimization approach systematically outperformed the
conventional pairwise atlas approach. However, as can be
inferred from Fig. 8, the methodology works well only when
the atlas images nicely spans the image manifold for the LA. If
the atlas images are chosen as such that the given image is far
away from all of them, registration failure can occur in a similar
way as in pairwise registration. To take advantage of the mutli-
atlas approach, however, it is a general rule that the atlas images
should well represent the mean and scattering of the shapes.
Another limitation of the work is that in order to evaluate our
method against previous methods, we have used the standard-
ized code provided by the LA Challenge database to differenti-
ate the PVs and LAA, while in principle we could differentiate
them based on the label values, without postprocessing.

In the past few years, the data-based CNN segmentation
methods have achieved very high performance in LA seg-
mentation, surpassing atlas-based methods. Xiong et al. used
a patch-based CNN for fully automatic LA segmentation,
and achieved a Dice score of 0.940 and 0.942 for the LA

epicardium and endocardium, respectively.19 The method,
however, was data intensive, employing a dataset of 154 AF
patients. Mortazi et al. used the encoder–decoder U-net in a
multiview framework, and achieved a Dice value of 0.951
using leave-one-out cross validation on the same dataset (29
used for training and 1 used for testing).21 Deep-learning-
based approaches have great advantages in accuracy and
speed when there is sufficient training data. Nevertheless, in
scenarios where the annotated dataset is scarce and where
the training and testing datasets may have different proper-
ties, the atlas-based approach can still be the method of
choice to provide reliable and robust segmentation; our pro-
posed joint-atlas-optimization further refines the segmenta-
tion at the border, producing more accurate anatomical
depiction.

In conclusion, we have presented a method called joint-
atlas-optimization to improve the accuracy of multiatlas seg-
mentation, especially at the distal part of the anatomical
structure. We evaluated it in segmentation of the complex LA
structure, including LA chamber, PVs, and LAA. Trained
and tested on the public LA benchmark database, the pro-
posed method showed improved performance over the best in
the Benchmark in terms of both accuracy and robustness. In
particular, it produced significantly improved segmentation
accuracy in the PVs and LAA, the small distant part of LA
geometry that is intrinsically difficult to follow by the con-
ventional pairwise atlas approach. Accurate segmentation of
LA chamber, PVs, and LAA potentially provides clinically
interesting reference for guidance and evaluation of the
interventional procedures in AF patients.

a)Authors to whom correspondence should be addressed. Electronic mails:
q.tao@lumc.nl; yywang@fudan.edu.cn.
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