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Purpose: Retinal implants (RIs) provide new vision for patients suffering from photore-
ceptor degeneration in the retina. The limited vision gained by RI, however, leaves room
for improvement by training regimes.

Methods: Two groups of normal-sighted participants were respectively trained with
videosor still imagesof daily objects in a labeling task.Object appearancewas simulated
to resemble RI perception. In Experiment 1, the training effect was measured as the
change in performance during the training, and the same labeling task was conducted
after 1 week to test the retention. In Experiment 2 with a different pool of participants, a
reverse labeling task was included before (pre-test) and after the training (post-test) to
show if the training effect could be generalized into a different task context.

Results: Both groups showed improved object recognition through training that was
maintained for aweek, and thevideogroup showedbetter improvement (Experiment1).
Bothgroups showed improvedobject recognition in adifferent task thatwasmaintained
for a week, but the video group did not show better retention than the image group
(Experiment 2).

Conclusions: Training with video materials leads to more improvement than training
with still images in simulated RI perception, but this better improvement was specific to
the trained task.

Translational Relevance:We recommend videos as better training materials than still
images for patients with RIs to improve object recognition when the task-goal is highly
specific. We also propose here that achieving highly specific training goals runs the risk
of limiting the generalization of the training effects.

Introduction

Photoreceptor degeneration in the retina charac-
terizes eye diseases, such as retinitis pigmentosa (RP)
and age-related macular degeneration (AMD), and
often leads to blindness.1 Although photoreceptor loss
is irreversible and thus cannot be effectively treated,
visual function can still be restored by appropriate
electrical stimulation to the remaining intact visual
pathways.2 One of such visual prostheses is the retinal

implant (RI), a photoelectric device which stimulates
the remaining neurons in the retina to restore residual
vision.1,3–5

Clinical studies have shown that, after the implan-
tation, patients’ with RIs visual performance can be
improved from implant off to implant on in a number
of tasks, such as light perception, motion detection,
and object localization.6–8 In contrast to the improve-
ment in the basic visual functions, the restoration of
more complex vision, such as shape discrimination and
object recognition, was limited and variable.9,10 For
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instance, patients’ performance in counting and localiz-
ing tableware significantly improved along with the use
of theRI, whereas their performance in recognizing the
identity of the same tableware barely improved.8 The
limited visual ability of object recognition in patients
with RI contrasts to the usually rather high plasticity
of high-level, compared to low-level vision.11 This asks
for a training regime through which object recognition
can be improved and flexibly generalized.

In a recent study on simulated RI vision, we devel-
oped a training paradigmwhere object recognition was
significantly improved and transferred across differ-
ent contexts.12 Specifically, we simulated object views
mimicking the limited vision of patients with a subreti-
nal implant13,14 and used these simulated object images
as training materials for normal-sighted participants.
Although the simulation was based on physiological
principles of retinal vision and technical features of
RIs, it surely cannot be taken as completely equal to
artificial visual perception. However, the simulation
not only reduces testing burden for patients during
the training paradigm development, but also enables
investigators to conduct well-controlled and replicable
experiments.

By training participants in a labeling task where a
simulated object image was presented and participants
had to choose the correct label among other alternative
labels, we found that the recognition accuracy increased
approximately 18% after a short period of training
(approximately 1 hour). This improved object recogni-
tion persisted over a week and generalized to a different
task context where one label was presented with differ-
ent object images and participants had to choose the
correct object to match the label, suggesting the poten-
tiality of persistent and flexible object recognition in
patients with RIs.12

Although our recent study showed that object
recognition in patients with RIs can be improved and
generalized by training, it remains to be answered if the
trained RI vision can be further optimized. Here, we
address this issue by including videos as the training
material. It is proposed that the ambiguous informa-
tion of an object activates multiple perceptual hypothe-
ses that compete against each other, and object recogni-
tion is implemented by resolving the competition.15 For
instance, the object shown in Figure 1B may be recog-
nized as a cup (handle on the right), a spoon (handle
on the right), a pear (stalk on the right), or a stapler
(head on the left) at first glance. To achieve a correct
recognition of the spoon, the assumptions of it being
a cup, a pear, or a stapler have to be excluded. To this
end, relative to a still image, a video provides ecolog-
ical and coherent information of an object and hence
facilitates the resolution of the competitive perceptual

Figure 1. (A) A video example (upper panel) and an image example
(lower panel) of a simulated banana. For space restrictions, only
the 0, 45, 90, and 135 degree of the rotation are illustrated in the
video example. (B) An example trial of the task. Participants were
asked to choose the correct label for the simulated video/ picture
by mouse click (a spoon is shown in this example). The correct label
was marked with a red box after the mouse click irrespective of the
correctness of the response.

hypotheses of the object. It has already been shown in
previous studies that motion facilitates the recognition
of blurred objects.16 We therefore expected that train-
ing with videos would lead to better object recognition
than training with still images.

An important goal in perceptual training is to
achieve generalization. In our previous study,12 we have
shown that training effects by the labeling task can
be generalized into untrained viewpoints of the same
object, and into another task context. Here, we also
tested if training with video could lead to the same,
or even better generalizations, than training with still
images. In Experiment 1, we first trained two groups
with the labeling task, with one group trained with
video materials and the other group with still images.
We investigated if and to which extent training with
videos leads to better improvement than training with
still images. In Experiment 2, we trained another two
groups in the labeling task but tested the training effects
in the reverse labeling task and in different viewpoints
of the trained objects to investigate the transfer of
learning.
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Experiment 1

Methods

Participants
Thirty-two healthy students participated in the

experiment, with 16 of them (8 and 8, age = 20–
38 years old) randomly assigned to the video group,
and the other 16 (8 and 8, age = 21–34 years old)
assigned to the image group. All participants had
normal or corrected-to-normal vision, and all of them
were German native speakers. This experiment was
conducted in accordance with the Declaration of
Helsinki and was approved by the local ethics review
board. A written consent form was obtained from each
of the participants prior to the experiment. None of
them had been exposed to the simulated videos or
pictures before the experiment.

Stimuli and Design
In a first step, the 3-D computer graphics toolset

Blender version 2.79 (https://www.blender.org/) was
used to create 8 video clips using 8 3-Dmodels (banana,
cup, hourglass, pear, rose, scissors, spoon, and stapler)
from the Free3D database (https://free3d.com/). Each
original clip had a resolution of 1920*1080 pixels and
the background color was kept constant black (Hex
code: #000000). To ensure equal lighting of all 3-D
objects, an invisible light source was placed above all
models at the same coordinates. To avoid pixel edges
in the original (not simulated) video clips, an anti-
aliasing Mitchell-Netravali reconstruction filter was
used during the rendering process. The frame rate was
kept constant at 30 frames per second and each video
lasted 10 seconds with a constant rotating speed. Eight
clips were made for each of the 8 objects where a
180-degree rotation was recorded. The 8 videos were
generated using the same 360-degree rotation of a
certain object and differed only in the starting point
and the corresponding end point of the rotation.
Videos could start at 0/ 22.5/ 45/ 67.5/ 90/ 112.5/ 135/
and 157.5 degrees rotation, and the rotation hence
ended at 180/ 202.5/ 225/ 247.5/ 270/ 292.5/ 315/ and
337.5 degrees of rotation.

In a second step, the 64 videos (8 objects with 8
starting points each) were then simulatedwith a custom
implementation of the pulse2percept software.13 Each
picture had a resolution of 1369 stimulating electrodes
in an area covering a visual field of 8 degrees visual
angle. The technical parameters were chosen to reflect
the subretinal Alpha IMS cochlear implant (Retina
Implant AG, Tübingen).17 A very low likelihood of
axonal stimulation was chosen (λ = 0.1), as would be

appropriate for a subretinal implant whose electrodes
do not reach the axonal layer on the retinal surface.
See Supplementary Materials for the full set of the
simulated videos.

For the still image group, the first frame of each
video starting point was taken. Therefore, there were
64 simulated images (8 objects with 8 viewpoints each),
which had the same size on the screen as the video (Fig.
1A). The same technical parameters were used for the
video and still image simulation. The still image in each
trial was presented for 10 seconds or until a response
was made.

Procedures
Participants were tested in a sound-attenuated and

dimly lighted room. They were seated in front of a
monitor screen with their head positioned on a chin-
rest, and were required to fixate at the central cross
throughout each trial. The eye-to-monitor distance was
fixed at 65 cm.

Each trial began with a white fixation cross at
the center of a black screen for a duration randomly
selected from 500/ 600/ 700/ 800 ms (see Fig. 1B).
Then the task frame, which contained the video or
picture, was presented until the time limit (10 seconds
to allow a full rotation) was reached. Four labels, with
one of which being the correct label of the presented
video/picture, were presented below the video/picture.
Participants were asked to choose the correct label
for the video/picture by clicking the left button of
the mouse. In cases where more than one click was
given, only the first mouse click was taken into account
as the response. As a feedback, the correct label was
marked with a red box immediately after the mouse
click irrespective of the correctness of the mouse click.
As in our previous study,12 the feedback was presented
in each trial in both the training and the post-test. The
inter-trial-interval was a blank screen of 800ms. Partic-
ipants were asked to respond as fast and accurately as
possible.

For both groups, there were 64 trials (8 object
videos * 8 starting viewpoints for the video group,
respectively 8 object pictures * 8 viewpoints for the
image group) in each of the 3 blocks. In each block, the
64 trials were presented in a pseudorandomorder in the
way that 8 objects from 4 different (starting) viewpoints
were followed by the same 8 objects from 4 additional
different (starting) viewpoints. This arrangement was
to follow the design in our previous study12 so that the
results observed here can be attributed to the inclusion
of the video materials. Within each block, the distract-
ing labels in each trial was randomly selected from
other labels of the eight objects. There was a 1 minute
break after each block.

https://www.blender.org/)
https://free3d.com/


Perceptual Learning of Retinal Implant Vision TVST | October 2021 | Vol. 10 | No. 12 | Article 22 | 4

Table 1. The Performances of Starting Point During Training (Mean Accuracy in%With Standard Errors) in Recog-
nizing the Eight Objects for the Video Group and the Image Group in Experiment 1 (Upper Rows) and the Initial
Performances From the Pre-Test in Experiment 2 (Lower Rows)

Exp. Group Banana Cup Hourglass Pear Rose Scissors Spoon Stapler

Exp. 1 Video 69.6 (7.8) 61.6 (5.1) 53.6 (6.2) 81.3 (4.4) 46.4 (5.6) 58.9 (5.2) 72.3 (4.6) 40.2 (4.8)
Image 65.6 (4.8) 50.8 (3.9) 78.1 (4.9) 75.0 (3.4) 60.2 (3.8) 57.0 (4.4) 74.2 (2.7) 53.9 (4.1)

Exp. 2 Video 51.4 (4.5) 52.1 (5.6) 50.0 (5.2) 54.9 (5.8) 36.1 (3.5) 24.3 (3.1) 66.0 (4.0) 31.3 (3.4)
Image 47.9 (3.4) 56.3 (5.9) 45.8 (4.7) 50.7 (5.2) 32.6 (3.4) 38.2 (4.3) 55.6 (4.4) 18.1 (3.5)

Exp., experiment.

Figure 2. Accuracies with standard errors are shown as a function
of block order and group in Experiment 1. The dashed line indicates
a week between block 3 and the post-test.

An additional block was presented as a post-test,
which included the same 64 trials (8 objects * 8 starting
viewpoints/viewpoints) as in each block of the training.
The post-test took place 1 week after the training.

Statistical Data Analysis
For each participant, the accuracy was calculated

as the percentage of trials with a correct response.
To show the starting point of the training in recog-
nizing the simulated videos/pictures, the accuracy in
block 1 where each of the simulated videos/pictures
was presented for the first time, was calculated for each
object (Table 1).

The mean accuracy in each block for each group
is shown in Figure 2. To test whether there was an
improvement in object recognition during training, and
whether the training effect differed between the two
groups, a mixed logit model18 was carried out to model
the binary choice (correct versus incorrect response) in
each trial using the glmer function in R.19 Specifically,
group (video training versus image training), block
order (1, 2, vs. 3), and the interaction between group

and block order were included as fixed factors, whereas
the individual subjects and the simulated objects were
included as random factors. Following a significant
interaction, post hoc analyses were performed with the
package phia in R.20 The variances of different objects
were included as random effects because our research
question focused on which training regime led to better
training effects. The random effects that contributed by
different objects in each linear mixed model are shown
in Table 2.

To show if the improvement persisted 1 week after
the training, we calculated the retention score by
subtracting the accuracy of block 3 from the accuracy
of the post-test. Given that the persistence of the train-
ing effectmay be based on a null effect (i.e. no difference
between block 3 and the post-test) whereas a null effect
cannot be confirmed by either logit mixed modelling or
paired t-test, we calculated the Bayes Factor (BF)21,22
using JASP22 to quantify the extent to which the null
hypothesis was supported. Here, the BF describes the
relative probability of the data under the null hypothe-
sis that the accuracy in the post-test was equal or higher
than the accuracy in the last training block, relative to
the alternative hypothesis that the accuracy in the post-
test was lower than the accuracy in the last training
block. Per convention, a BF >3 and <10 is taken as
moderate evidence for the tested hypothesis while a BF
>1 and <3 yields anecdotal evidence.23

Next, for both groups, we calculated the retention
score by subtracting the accuracy of block 3 from the
accuracy of the post-test. An independent t-test was
performed on the retention scores to test if one group
had better retention after training than the other group.

Results

Starting Point of Training in Recognizing Each Object
As shown in Table 1, the starting point (i.e. the

accuracy for block 1), in recognizing each of the
8 objects was above the theoretical chance-level (25%),
all p < 0.001, for both groups (one-sided, with Bonfer-
roni corrections for the 8 comparisons). In addition,
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Table 2. The Variance Contributed by the RandomEffect of Object Type, and the Individual RandomEffect of Each
Object that Estimated From the Mixed Logit Model in Each of the Two Experiments

Exp. Session Variance Banana Cup Hourglass Pear Rose Scissors Spoon Stapler

Exp. 1 Training 0.29 0.90 −0.40 0.25 −0.21 −0.19 −0.26 0.62 −0.77
Exp. 2 Training 0.26 0.58 −0.19 0.72 0.47 −0.32 −0.37 −0.19 −0.78

Pre-test vs. post-test 1 0.33 0.30 0.67 0.07 0.41 −0.31 −0.80 0.54 −0.89

The value of the individual random effect indicates the random effect of each object relative to the averaged random effect
across all objects after the fixed effects (i.e., group and session) have been excluded.

Exp., experiment.

the independent t-tests showed that the starting accura-
cies for each of the 8 objects did not differ between
the two groups, all p > 0.1 (two-sided, with Bonferroni
corrections for the 8 comparisons).

Training Effects
Themixed logitmodel revealed a significant effect of

block order, z= 2.18, p= 0.029, and a significant inter-
action between group and block order, z = 3.17, p =
0.002, whereas the effect of group did not reach signif-
icance, z = 1.34, p = 0.180. Further post hoc analyses
on the interaction showed the effect of block (improved
performance from block 1 to block 2, and from block 2
to block 3) for both the video group, χ2(2) = 188.19, p
< 0.001 (mean accuracy = 62.7%, 81.1%, and 86.8%),
and the image group, χ2(2) = 104.82, p < 0.001 (mean
accuracy = 64.4%, 79.1%, and 82.2%). Moreover, the
video group outperformed the image group only in the
third block, χ2(1) = 3.80, p = 0.026 (one-sided), but
not in the first or the second block, both χ2<1.

Retention
For the video group, the BF analysis comparing

the accuracy in block 3 and the accuracy in the post-
test showed that BF = 6.803, indicating that the null
hypothesis (“the accuracy in the post-test was equal
to or higher than the accuracy in block 3”) was 6.803
timesmore likely to be true than the alternative hypoth-
esis (“the accuracy in the post-test was lower than the
accuracy in block 3”). Thus, we havemoderate evidence
that training with the simulated videos improved object
recognition, and this improved performance can last at
least for 1 week.

For the image group, the BF analysis comparing
the accuracy in block 3 and the accuracy in the post-
test showed that BF = 2.778, indicating that the null
hypothesis (“the accuracy in the post-test was equal
to or higher than the accuracy in the last training
block”) was 2.778 times more likely to be true than
the alternative hypothesis (“the accuracy in the post-
test was lower than the accuracy in block 3”). These

results suggested that training with still images also
improved object recognition and lasted for 1 week, but
the improved performance and the persistence seemed
not as robust as the video group. This hypothesis
would be further tested by between-groups compar-
isons below.

The independent t-test showed that the retention
scores (accuracy at post-test - accuracy at block 3)
were comparable between the two groups (1.6% in the
video group versus −0.6% in the image group), t<1.
However, the accuracy of the post-test was higher in the
video group (88.4%) than in the image group (81.6%),
t(30) = 2.33, p = 0.027. These results suggested that
training with videos led to better and more robust
performance than training with still images.

Discussion

In Experiment 1, the results from the 2 groups
showed that training with still images and training with
videos both led to improved object recognition, and the
improved recognition persisted at least for a week. The
improved object recognition through training in the
image group (block 3 vs. block 1: 17.9%) was consistent
and comparable with the improved performance shown
in our recent studies where still images with simulated
RI-vision were used as the training materials (18.4% in
Wang et al.12; 16.0% in Nath et al. unpublished). By
contrast, the improved recognition performance here in
the video group (block 3 vs. block 1: 24.1%) was larger
than the improved performance in the image group.
Importantly, given that the starting point of training
in the two groups was comparable, the larger training
effect in the video group cannot be due to easier object
recognition in videos but rather that videos were better
suited for boosting the perceptual learning inRI vision.

It has been shown in clinical trials that, without
training, object recognition in patients with RIs was
limited and variable.8,17 For instance, in an early study,
only one of the three patients with RIs was able to
name daily objects, such as tableware and fruits.17
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Although the object naming in a real-world situation
cannot be taken as equal to the labeling task in the
present study, the poor real-world performance asks
for a training regime to improve the newly restored
vision of patients with RIs. In a recent study, object
recognition was barely restored with the use of the
implants, although object counting and localization
was restored to a great extent.8 As a training regime,
the present results and our previous study12 consis-
tently showed above-chance recognition performance
in the first block of training, and the recognition
performance can be further improved and maintained
after a short training process. These results suggest that
the limited and variable object recognition in RI vision
can be improved with lasting effects by optimized
perceptual training.

An important finding in Experiment 1 was that
video materials led to a stronger training effect than
still images, which manifested at the late stage of the
training process.When no prior knowledge of an object
can be obtained (e.g. at the beginning of the present
experiments), the information accumulation is subject
to random fluctuations.24,25 Therefore, although the
different viewpoints of an object were shown in a
video, the information afforded by a video could be as
ambiguous as the information afforded by a still image,
resulting in comparable performances between the two
groups in the first block of the training process. As the
training proceeded, the coherence of the information
in the video boosted the predictive processing26 of the
object, which facilitated the accumulated information
favoring one perceptual hypothesis over the other
alternatives.15 An alternative account for the stronger
training effect in the video group might be that videos
provided more information than still images, as a
video affords all viewpoints along a specific axis in a
full rotation. To this end, the training effects could
have been simply determined by the available number
of viewpoints of a specific object. However, if this
were true, the video group should have shown better
performance than the image group from the beginning
of the training. This prediction could be rejected based
on the observation that the stronger training effect
only emerged as the training proceeded. Therefore,
the improved training effect appears to rely more on
the coherence rather than simply on the number of the
viewpoints.

Experiment 2

Whereas Experiment 1 showed training effects
for both still images and videos as training stimuli,

Experiment 1 did not contain a common test of train-
ing efficiency for both kinds of training. In Experiment
2, we added such a common test as common pre-test
baseline and post-test measure for both still image and
video training. Using still images as training materi-
als, our previous study12 showed that the training effect
in the labeling task transferred to the reverse labeling
task. Therefore, we chose the reverse labeling task as
the common test for still image and video training in
Experiment 2. We expected a replication of successful
transfer for training with still images and we wanted
to test to which extent training with videos could
achieve the same transfer. To answer this question, in
Experiment 2, we included the reverse labeling task
both before (i.e. pre-test) and after the training session
(i.e. post-test) and compared the performance in the
reversed labeling task between pre-test and post-test.

Methods

Participants
The sample size of Experiment 2 was determined

based on the effect size observed in Experiment 1.
Calculated usingG*Power,27 the effect size of the group
difference was Cohen’s d = 0.824 given the between-
group statistics t(30) = 2.23 and n = 16 per group.
Sample size estimation showed that 19 participants
were required for each group, given alpha = 0.05 and
beta = 0.2. Forty participants were recruited, with half
of them randomly assigned to the video group and the
other half to the image group. None of them partic-
ipated in Experiment 1. Due to incomplete data of 4
participants, the final data analysis was based on 18
participants (video group = 14 and 4, 19 to 25 years
old; image group = 16 and 2, 18 to 27 years old) in
each group.

Stimuli and Design
A set of the same eight objects was simulated along

a reference system. Specifically, each object in the video
rotated along the z axis of the 3-D reference system in
Experiment 1 and each frame in the video clip repre-
sented a 2-D image on the x-z plane. In Experiment 2,
each 3-D object was first rotated along the y axis for
45 degrees to get a new viewpoint model. Then the y
axis was fixed, and the object rotated along the z axis.
Each frame in the video clip represented a 2-D image
on the x-z plane. As in Experiment 1, 8 viewpoints were
extracted from the video for each object, rendering 8
objects * 8 viewpoints still images (see Supplementary
Materials for the rotated images). These 64 still images
were used as stimuli in the sessions of pre-test, post-
test 1, and post-test 2. No video was used in these
test sessions. During the training session, the video
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and the image stimuli were the same as the stimuli in
Experiment 1. Therefore, in Experiment 2, the 8 objects
had different viewpoints during the training session
compared to the test sessions.

Procedures
The procedures in Experiment 2 were the same as

the procedures in Experiment 1 with the following
exceptions. A pre-test and a post-test 1 session were
conducted before and after the training session, respec-
tively. In each of these 2 sessions, there were 64 trials of
the reverse labeling task where 4 images were presented
below a label and participants had to choose the correct
image to match the label by mouse click.12 This task
frame was presented up to 3 seconds until the first
mouse click or the 3 second time limit was reached.
After the task frame, a feedback frame was presented
for 2 seconds. The feedback frame was the same as the
task frame except that the correct image wasmarked by
a red box. In each of the two test sessions, each of the
8*8 images appeared as the target image only once. The
distracting images in each trial were randomly selected
from the non-target images, and each of the 8*8 images
appeared as one of the distracting images with equal
probability. The pre-test and post-test 1 sessions were
conducted in the same day as the training session. The
same test session was conducted one week after the
training session as post-test 2.

Statistical Data Analysis
The initial performance in recognizing the simulated

objects was calculated in terms of the accuracy in the
pre-test (see Table 1). It should be noted that the initial
performance in pre-test was calculated to show the
starting point for the training/generalization effect. In
Experiment 1, the starting point was calculated as the
accuracy in block 1 because the training effect was
measured as the difference between block 3 and block
1. In Experiment 2, the initial performance was calcu-
lated as the accuracy in pre-test because the general-
ization effect was measured as the difference between
post-test 1 and pre-test.

The mean accuracy in each block/session for each
group is shown in Figure 3. To replicate the effect
during training in Experiment 1, a mixed logit model
as in Experiment 1 was carried out to model the binary
choice (correct versus incorrect response) in each trial
during the training session. As in Experiment 1, group
(video training versus image training), block order (1,
2, vs. 3), and the interaction between group and block
order were included as fixed factors while the individ-
ual subjects and the simulated objects were included as
random factors.

Figure 3. Accuracies with standard errors are shown as a function
of session and group in Experiment 2. Post-test 2 was conducted a
week after the other sessions.

To test whether the performance in a different
task can be improved after training, a mixed logit
model was performedwith group (video training versus
image training), test session (pre-test versus post-test
1), and the interaction between group and test session
being included as fixed factors, whereas the individual
subjects and the simulated objects being included as
random factors.

To show if the persistence of the improvement after
training, as in Experiment 1, the accuracy in post-test
1 and the accuracy in post-test 2 were compared using
BF analysis for each of the two groups. The retention
score of each group was obtained by subtracting the
accuracy in post-test 1 from the accuracy in post-test 2.
An independent t-test was then conducted to compare
the retention scores of the two groups.

Results

Initial Performance in Recognizing Each Object
For the video group, the initial performances in

recognizing 6 (banana, cup, hourglass, pear, rose, and
spoon) of the 8 objects were above the theoretical
chance-level (25%), all p < 0.05, (one-sided, with
Bonferroni corrections for the 8 comparisons), whereas
the initial performance in recognizing the scissors and
stapler did not exceed the theoretical chance-level, both
p > 0.1. For the image group, the initial performance
in recognizing 6 (banana, cup, hourglass, pear, and
scissors) of 8 objects were above the theoretical chance-
level (25%), all p < 0.05 (one-sided, with Bonferroni
corrections for the 8 comparisons), whereas the initial
performance in recognizing the rose and stapler did
not exceed the theoretical chance-level, both p > 0.1.
In addition, the independent t-tests showed that the
initial accuracies for each of the 8 objects did not differ
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between the 2 groups, all p > 0.09 (two-sided, with
Bonferroni corrections for the 8 comparisons).

Training Effects
During training, the mixed logit model revealed a

significant effect of Block order, z = 7.36, p < 0.001,
and a significant interaction between group and block
order, z = 3.45, p < 0.001, whereas the effect of group
did not reach significance, z = 1.17, p = 0.244. Further
post hoc analyses on the interaction showed the effect
of block (improved performance from block 1 to block
2, and from block 2 to block 3) for both the video
group, χ2(2) = 152.20, p < 0.001 (mean accuracy =
74.6%, 88.2%, and 91.7%), and the image group, χ2(2)
= 90.33, p < 0.001 (mean accuracy = 64.5%, 77.1%,
and 80.6%). Moreover, the video group outperformed
the image group in all of the 3 blocks, block 1: χ2(1)
= 11.51, p < 0.001, block 2: χ2(1) = 24.99, p < 0.001,
and block 3: χ2(1) = 33.53, p < 0.001. The significant
interaction between group and block order shown by
the mixed logit model, together with the increasing χ2

values shown by the post hoc analysis, indicated that
the video group improved more than the image group
as the training proceeded (accuracy difference between
groups: 10.1% at block 1, 11.1% at block 2, and 11.1%
at block 3). These results are consistent with the results
in Experiment 1 that the training effect increased as a
function of the block order.

The mixed logit model that focused on pre-test
(mean accuracy = 44.4%) and post-test 1 (mean
accuracy = 56.4%) showed only a significant effect of
test session, z = 3.20, p = 0.001, whereas the group
effect and the interaction did not reach significance,
both |z| < 1. These results suggested that the object
recognition in the reverse labeling task was improved
after training for both groups, and the improvement did
not differ between the two groups.

Given the consistent patterns during training in the
two experiments, data of block 3 in both experiments
were pooled to show the effect size of the achieved
training effect, such that it can be helpful to evaluate
how much the recognition accuracy can be improved
after video training more than after image training.
Here, only the data in block 3 but not data from all 3
blocks were pooled for the following reasons: (1) block
3 was the final block to show the achieved effect size
of the training block; and (2) although post-test can be
used to show the achieved effect size, the task types and
viewpoints in the post-tests were different between the
two experiments and it is thus inappropriate to collapse
the data. The mixed logit model on the performance in
block 3 showed that the performance in the video group
(89.4%) was better than the performance in the image
group (81.4%), z = 2.61, p = 0.009.

Retention
For the video group, the BF analysis comparing the

accuracy in post-test 1 (57.2%) and the accuracy in
post-test 2 (59.9%) showed that BF = 9.662, indicat-
ing that the null hypothesis (“the accuracy in post-test
2 was equal to or higher than the accuracy in post-
test 1”) was 9.662 times more likely to be true than
the alternative hypothesis (“the accuracy in post-test
2 was lower than the accuracy in post-test 1”). These
results suggested that the improved performance by
video training can last at least for 1 week.

For the image group, the BF analysis comparing
the accuracy in post-test1 (55.6%) and the accuracy in
post-test 2 (62.6%) showed that BF = 14.265, indicat-
ing that the null hypothesis (“the accuracy in post-test
2 was equal to or higher than the accuracy in post-test
1”) was 14.265 times more likely to be true than the
alternative hypothesis (“the accuracy in post-test 2 was
lower than the accuracy in post-test 1”).

The independent t-test shows a trend that the reten-
tion score (post-test 2 versus post-test 1) in the image
group (7.0%) was higher than the retention scores
(2.2%) in the video group, t(34) = 1.80, p = 0.081.

Discussion

In Experiment 2, we first replicated the findings in
Experiment 1 that training with videos led to better
improvement in object recognition than training with
still images, as shown by the significant interaction
between group and block order during the training
session. However, in contrast to Experiment 1, the
better performance in the video group emerged earlier
(i.e. from the first block). This pattern may be due to
that the experience of the pre-test - despite different
viewpoints - functioned as “training” and helped to
build up the prior knowledge of the simulated objects.
This prior knowledge could further boost the utiliza-
tion of the coherent information in the videos, leading
to a stronger training effect in the video group.

An alternative account could be that the starting
point of training of the two groups was not equal in
the labeling task used for training, although they were
comparable in the reverse labeling task used in the pre-
test. Based on this account, the better performance of
the video group in block 1 was due to higher starting
point rather than due to stronger training effect. To test
this alternative account, the trials in block 1were sorted
into 4 bins according to the trial order (1–16th trials as
bin 1, 17–32th trials as bin 2, 33–48th trials as bin 3,
and 49–64th trials as bin 4), and the recognition accura-
cies between the two groups in each bin were compared
with BF analysis (Fig. 4). If this alternative account
were true, the video group would have outperformed
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Figure 4. Accuracies with standard errors are shown as a function
of the trial bin in block 1 of Experiment 2.

the image group from the very first bin. In violation of
this prediction, the video group showed reliably higher
accuracy (BF >3) than the image group only in bin 3
and bin 4. Specifically, based on the BF analysis, the
hypothesis “the accuracy of the video groupwas higher
than the accuracy of the image group” was 2.65 times
more likely to be true than the hypothesis “the accuracy
of the video groupwas equal or lower than the accuracy
of the video group” in bin 1, 1.97 times more likely to
be true in bin 2, 6.71 times more likely to be true in bin
3, and 9.44 times more likely to be true in bin 4. There-
fore, the better performance of the video group in block
1 is unlikely due to a better starting point than for the
image group. Moreover, the better performance of the
video group that emerged as the training proceededwas
also consistent with the pattern in Experiment 1, point-
ing to the role of information coherence in leading to
the improvement.

The performance in post-test 1 showed an overall
improvement over the performance in the pre-test and
this improvementwasmaintained 1week after training.
Importantly, given that the viewpoints of the objects
and the task context in these test sessions were different
from the viewpoints and task context in the training
session, these results suggested that perceptual training
leads to persistent and flexible improvement in object
recognition that transfers to new viewpoints and new
task contexts.12

The improved performance in the post-test might
be simply due to the experience of the pre-test rather
than the experience of the training. However, the main
purpose of Experiment 2 was to assess differential
improvement due to the training tasks measured on a
common task that is different from both training tasks.
In answering this question, the current results did show
slightly better retention of the generalization by image
training than by video training to the reverse label-
ing task in the post-test (see general discussion for the

potential mechanism), although the two groups went
through the same amount of training trials.

One may note that the initial recognition perfor-
mance in Experiment 2 did not exceed chance-level for
all of the 8 objects, as compared with the all-above-
chance starting point in Experiment 1. One poten-
tial explanation of the poorer performance is that
the viewpoints of the object models that were used
to simulate RI vision in Experiment 1 are common
in daily life. After the rotation, the viewpoints in
Experiment 2 might be less common, and hence more
difficult to recognize.

General Discussion

In two experiments, we consistently showed that
both training with videos and training with still images
led to better object recognition. Importantly, in both
experiments, the group difference (performance of the
video group versus performance of the image group)
increased as a function of block order during train-
ing, as shown by the significant interaction between
group and block order, suggesting that training with
videos led to more improvement than training with still
images. These results suggested that videomaterials can
be used to optimize the object recognition of patients
with RIs.

Although the persistent and flexible improvement
can be achieved by both videos and still images, the
video group did not show better generalization than
the image group. Instead, the image group even showed
slightly better retention of the generalization after
1 week than the video group. This counterintuitive
pattern resembles the model “over-fitting” in machine
learning where maximizing the predictive power of
a model on the trained dataset limits the generaliza-
tion power of this model on untrained dataset.28 In
the present study, the video materials provided more
specific information about a particular object than the
imagematerials.16 Relative to the still images, the videos
not only contained coherent information of a specific
object, but also coherent information of the visual
noise that went along with the object. This specific
information was beneficial for the performance when
the tested objects (i.e. post-test in Experiment 1) were
the same as the trained objects (i.e. training session in
Experiment 1), leading to higher accuracy of the post-
test in the video group than in the image group. By
contrast, when the tested objects and context changed
(post-test in Experiment 2), the object-specific informa-
tion of the trained object was not beneficial anymore
and could even constrain the recognition of the new
stimuli. As a result, the video group did not show better
performance in the post-test sessions. Therefore, it is
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crucial to balance achieving specific training effects and
the generalization of the training effects when applying
the training regime in clinical interventions. Another
factor, however, could be that the task in the common
test was more similar to the training task in the image
group. It is unknown which group would have shown
better generalization if a video-based task had been
used as the common test.

In both experiments, the video group and the image
group showed comparable starting points in recogniz-
ing the simulated objects. This equivalent performance,
however, was inconsistent with findings by Pan and
Bingham16 who showed that the performance in recog-
nizing blurred objects improved immediately when the
objects moved. Similar findings were also observed for
reading texts.29 It should be noted that in the present
study, all simulated objects were presented against a
blank background. By contrast, in the study by Pan
and Bingham,16 each moving object was embedded in
a natural context to render a meaningful event (i.e.
optic flow30), providing more prior knowledge about
the presented object. Such prior knowledge thus can
be helpful to the recognition of the blurred object.

In the present study, we aimed to test if and to
which extent training with video could optimize the
object recognition in simulated RI vision. We used the
same design (i.e. feedback was always presented after a
response) and the same task (labelling task and reverse
labeling task) as in our previous study12 so that the
results of our present study can be attributed to the
inclusion of the video materials. Future experiments
with different design and training context are expected
to advance the understanding of the training effect
and to develop a more ecological training regime. For
instance, in addition to the video group and still image
group, multiple still images of the same object with
different viewpoints could be simultaneously presented
for a new group of participants during training. For
this third group,multiple viewpoints are available in the
same trial as the video training but the object informa-
tion shown is not as coherent as the video. The inclu-
sion of such a group could further test whether the
training effect by video was due to the accumulated
information of object viewpoints or to the coherence
of an object in the video.

Although the effect size of group difference was
small (7% difference in accuracy based on the pooled
data in block 3 from the two experiments), this should
not be taken to be the ultimate improvement that
patients with RIs can achieve through video training
in real situations. It should be noted that the training
sessions in our study were short (3 blocks of 64 trials).
It is yet to be investigatedwhether the improvement can
be further enhanced by optimizing the training regime,

for instance, by including longer training sessions or
repeated training.

In summary, we extend previous studies on the
training regimes for patients with RIs by showing that
video materials led to a better and more robust train-
ing effect than still images. However, this better train-
ing effect was specific to the trained viewpoints and
task context. When it came to new viewpoints and new
task context, although both materials led to general-
ization, the video materials were not superior to still
images. Currently, we recommend video as superior
training material only when the training goal is highly
specific. However, future studies with actual patients
may investigate if video training is more efficient for
object recognition in real-life situations, where objects
can be viewed with changing perspectives.
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