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As a crucial nonlinear phenomenon, stimulated Raman scattering (SRS) plays multifaceted roles
involved in forward and inverse problems. In fibre-optic systems, these roles range from detrimental
interference that impairs optical performance tobeneficial effects that enables variousdevices suchas
Raman amplifier. To obtain solutions of SRS, various numerical methods customized for different
scenarios have been proposed. However, these methods are time-consuming, low-efficiency, and
experience-orientated, particularly in combined scenarios consisting of both forward and inverse
problems. Inspired by physics-informed neural networks, we propose SRS-Net, which combines the
efficient automatic differentiation and powerful representation ability of neural networks with the
regularization of SRS physical laws, to obtain universal solutions for SRS of forward, inverse, and
combined problems. We showcase the intuitive solving procedure and high-speed performance of
SRS-Net through extensive simulations covering different scenarios. Additionally, we validate its
capabilities in experiments involving the high-fidelity modelling of a wavelength division multiplexing
systemspanning theC+ L-bandwith approximately 10 THz. The versatility of theSRS-Net framework
extends beyond SRS, indicating its potential as a promising universal solution in other engineering
problems with nonlinear dynamics governed by partial differential equations.

Nonlinearphysical systems governedbypartial differential equations (PDE)
are fundamental topics in scientific and engineering disciplines. On solving
PDEs, there are many related challenges with a focus on addressing two
types of problems: forward problems and inverse problems1,2. The forward
problems pertain to predicting system behaviour according to the initial
conditions and governing physical laws, which are important for under-
standing and designing systems. In contrast, the inverse problems relate to
determining the initial conditions or identifying the physical laws from
measurements, which are crucial for optimizing and discovering systems.
The principal difference between forward and inverse problems lies in the
fact that inverse problems require gradient backpropagation to update
system parameters and variables. This difference often renders inverse

problems more challenging to solve, and they generally require multiple
customized methods for solutions, such as the case of field learning in fluid
mechanics3 and topology optimization in nanophotonics4.

As a crucial nonlinear phenomenon in nonlinear optics, Raman
scatteringdescribes the interactionsbetween light and thevibrationalmodes
of molecules5. When amaterial is exposed to a high-intensity incident light,
it undergoes stimulated Raman scattering (SRS), wherein a significant
portion of the incidentfield’s energy can be transferred to the scattered light,
knownas the Stokeswave6. The studyof SRSholds considerable significance
in fundamental scientific research as well as engineering applications of
various fields, including biophysics7, biomolecular imaging8, spectroscopy9,
andnonlinear optics10. In the context offibre-optic systems, SRS plays a vital
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role as nonlinear interference in ultra-wideband optical transmission and
serves as the fundamental physical mechanism behind important optical
devices such as Raman amplifiers and Raman lasers6. In these scenarios, the
forward problems of SRS focus on power evolution prediction based on the
initial conditions (i.e. input power profiles) and prior knowledge (i.e. the
governing SRS PDE with known fibre parameters). In power evolution, the
optical transmission canbe unidirectional or bidirectional depending on the
relative directions between signal and pump waves11–14. For the inverse
problems, the measured input and output power profiles are known, while
the objectives to be determined or optimized are the unknown fibre para-
meters or adjustable pump powers15–17.

Multiple numerical methods have been put forth to address both type
ofproblems inSRS.However,manyof thesemethods tend tobe customized,
primarily providing specific solutions tailored to one type of problemwithin
particular scenarios. For forward problems, classical numerical methods
with split-step iterations are only suitable for unidirectional transmission
scenarios18. In bidirectional transmission, methods such as the shooting
algorithms are required to convert the problems into unidirectional ones,
which increases the computational time and may lead to incorrect
results13,14.When it comes to inverse problems, classical numerical methods
typically lack direct support for differentiation backpropagation19. This
deficiency necessitates the incorporation of additional iterative search
algorithms. Moreover, inverse problems tend to be inherently ill-posed,
resulting in a time-consuming iterative searching process20.

A more important scenario is the combined scenario, which has intri-
cately interconnected forward and inverse problems. In Raman amplifiers,
the inverse pump power optimization is crucial for achieving a target gain
spectrum, which requires iterative verifications of forward power evolution21.
Similarly, in an ultra-wideband multi-channel transmission system, inverse
parameter identification and refinement should be employed before and
during high-fidelity forward power evolution prediction22. Addressing these
combined scenarios requires a combination of classical methods, entailing
extensive expert knowledge to formulate suitable solution approaches with
appropriate parameters1, which highlights the need for a universal solution
framework with easy-to-implement formulations.

Deep learning methods have been proposed as promising solutions for
both forward and inverse problems beyond SRS. In data-driven neural
networks (NNs), forward problems can be easily solved by fitting data23, and
inverse problems can also be addressed by fitting data or utilizing an forward
model with the aid of automatic differentiation (AD) in NNs24. A series of
works utilizing data-driven NNs for the forward and inverse problem of SRS
has been published. Among them, the data-driven NNs were used to predict
the gain and ASE noise profiles under partial loading condition25. To
enhance the generalization ability of forward gain prediction of the Raman
amplifier, fiber characteristic was embedded into the input of data-driven
NNs to construct the general model17. For the inverse problem of pump
optimization, two data-driven NNs were used to learn the forward and
backward relationship between pumps and gain profiles16. The pumps were
first determined by the backwardNNs and then refined by the forward NNs,
which was experimentally evaluated on different fibers26. In another
experimental demonstration27, data-driven NNs were used for both span loss
profiles prediction and backward Raman pump optimization. Three NN
models of forward prediction in Raman amplified links were proposed28. In
addition to two NNs for the power evolution prediction, one NNmodel was
proposed for predicting parameters of a closed-formmodel formula to assist
the performance estimation using the Gaussian noise (GN)model. However,
the acquisition of large training datasets is often expensive and occasionally
prohibitive. In this aspect, a significant challenge of data-driven NNs lies in
ensuring that the collected dataset adequately covers the sample space of
input profiles for forward prediction or target profiles for inverse pump
optimization29. To address this challenge, the numerical integration of the
SRS equation is utilized to replace the decoder part of an autoencoder
structure29. In this setup, the encoder NNs can output optimized pump
powers for the target gain profile under the guidance of the decoder.

Additionally, a fully differentiable SRS model, enabled by NN-based non-
linear interpolation of the Raman gain coefficient, is proposed30, but limited
to the forward pumping case. Most importantly, the solutions derived
through these data-driven methods lack interpretability. Additionally, the
identification of physical parameters can be hindered by the challenge of
establishing relationships solely from data and may suffer from the issue of
non-unique mapping from outputs to input parameter sets31. To overcome
the limitations of data-driven NNs, the physics-informed neural networks
(PINNs)32 emerged as powerful PDE solvers utilizing NNs. Different from
data-driven NNs, PINNs incorporate physical laws into the loss regular-
ization to guide the training of NNs. By combining the prior knowledge of
physics and representation capabilities of NNs, PINNs have demonstrated
their remarkable efficacy in solving PDEs in diverse fields, including the
Navier-Stokes equations in fluid dynamics3, the diffusion-reaction equation
in chemical reactions33, the Burgers’ equation in acoustics34, and the non-
linear Schrödinger equation (NLSE) in nonlinear optics35,36.

Inspired by PINNs, we propose a universal solution for SRS named as
SRS-Net. Formulating the PINN specifically for SRS-related problems, the
proposed SRS-Net exhibits superior performance compared to classical
numerical methods in the corresponding aspects. In particular, the use of
AD in SRS-Net eliminates the need for step or mesh generation commonly
used in classical numerical methods. Thus, the entire solver domain can be
approached simultaneously under the regularization of physical laws,
naturally overcoming the challenge of bidirectional transmission in forward
problems. Furthermore, the physical parameters and input powers can be
treated as variables in the SRS-Net, thus the AD allows direct identification
of physical parameters and facilitates optimization of input powers in
inverse problems. Most importantly, with the SRS-Net, combined forward
and inverse problems can be effectively solved without designing specific
solutions for different scenarios, alleviating the burden of carefully selecting
appropriate setups for different algorithms.

In this paper, the capabilities of SRS-Net are first demonstrated in
addressing basic forward problems of SRS in fibre-optic transmission. This
includes scenarios ranging from continuous-wave to waveform analyses in
the time-domain andmulti-channel propagation in the frequency-domain,
which verifies the accuracy of SRS-Net on different scales. The proposed
SRS-Net is further applied to tackle forward problems of predicting power
evolution under unidirectional and bidirectional transmission, which holds
particular significance for Raman amplifiers. Moreover, the SRS-Net is
demonstrated for solving inverse problem involving the identification of
fibre physical parameters, including the frequency-dependent attenuation
and Raman gain, and optimization of input pump powers within the uni-
versal framework. In addition to simulations, SRS-Net is experimentally
demonstrated in a wavelength division multiplexing (WDM) system cov-
ering approximately 10 THz on C+ L-band, which is expected to be the
next-generationbackbone information transmission infrastructure37. In this
wideband transmission system, accurately predicting power evolution has
presented a substantial challenge38. On this experimental setup, the inverse
identification of wideband frequency-dependent fibre parameter and for-
ward prediction of high-fidelity multichannel power evolution was simul-
taneously conducted.Comparedwith classical numericalmethods, SRS-Net
offers a substantial improvement in prediction speed, with a speedup of two
orders of magnitude. It also demonstrates enhanced efficiency in optimi-
zation and identification, achieving more than double the convergence
speed while achieving superior stability with easy-to-implement formula-
tions. The SRS-Net methodology transcends its application in SRS, show-
casing its potential extension to diverse engineering systems governed
by PDEs.

Results
Signal propagation with SRS in fibre-optic systems
The signal propagation with SRS in fibre-optic systems can be well char-
acterized by a set of coupled PDEs accounting for the attenuation, group
velocity dispersion (GVD), Kerr nonlinearity, and simplified Raman
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responses39, as expressed:
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∂Ak
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where N represents the number of signal channels, (M–N) represents the
number of pump channels, and M is the total number of channels in
WDM transmission. Ak(z, t) is the complex-valued solution of the kth

channel with k = 1,2, …, M. For channels transmitted forward, the first
term on the left-hand side is positive; for others transmitted backward, it
is negative. Depending on the transmission direction, the initial
conditions of signal and pump channels are specified at z = 0 or z =
zmax. The symbols αk, β2k, and γk represent the coefficient of attenuation,
GVD, and Kerr nonlinearity for the kth channel. The Raman gain
coefficient gjk quantifies the power transfer resulting from the SRS
between the jth and kth waves and is expressed as

gik ¼ ±
1

2Aeff

f k
f j
gRð f j � f kÞ; ð2Þ

If fj > fk, the last term on the right-hand side of Eq. (2) is positive;
otherwise, it is negative. gR(Δf) represents the Raman gain spectrum mea-
sured with respect to the reference frequency, and Aeff denotes the fibre
effective area.

The SRS PDE of Eq. (1) describes the full amplitude propagation in
fiber transmission with SRS. However, it includes more details than
necessary for scenarios with continuous wave (CW) signals and pumps,
where the SRS PDE can be simplified to the coupled SRS ordinary differ-
ential equations (ODEs). The SRS PDE of Eq. (1) effectively captures the
fundamental behaviours of SRS infibre-optic systems, enabling the accurate
investigation among the relationships of inputs, outputs, and physical laws
with known/unknown parameters, as schematically shown in Fig. 1a. The
complex relationships among them lead to various SRS problems, among
which we mainly focus on one forward problem of power prediction and
two inverse problems of parameter identification and pump optimization.
However, to solve these problems, different formulations of customized
numerical methods customized for specific solutions are required as illu-
strated inFig. 1b.When tackling combinedproblemswithboth forward and
inverse problems, the utilization of multiple classical methods not only
introduces complexity but also leads to an inefficient iterative solution
process. Moreover, these approaches often necessitate expert experience-
orientated adjustments of algorithm structures and parameters17,21,22. In

Fig. 1 | Schematic of SRS problems in fibre-optic system and solutions. a The
complex relationships among signals, pumps, and SRS PDE with known/unknown
fibre parameters that cause various SRS problems, among which we focus on one
typical forward problem of signal prediction and two typical inverse problems of

parameter identification and pump optimization. b Inefficient customized solutions
using multiple classical numerical methods. cData-driven NNs trained by collected
labels. d Efficient universal solutions using physics-informed machine learning
through automatic differentiation (AD).
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addition, data-driven NNs learns the black-box model, which lacks inter-
pretability and suffer from generalization problems.

Architecture of SRS-Net
The PINN mainly differs from classical NN in the PDE loss function as
illustrated inFig. 1c. In thePINN, the inputs andoutputs ofNNcorresponds
to the independent and dependent variables of the governing PDEs, which
are typically spatial-temporal coordinates and field amplitude, respectively.
Leveraging the AD of NNs, the differential terms in the governing PDEs,
which involve the differentiation of outputs with respect to inputs, can be
efficiently derived. These differential terms can be utilized in constructing
the PDE loss function, which serves to regularize the updating of NN
parameters.

Drawing inspiration from PINNs, we propose a universal framework
for solving SRS-related problems, called the SRS-Net, as depicted in Fig. 2a.
First, the regularization f is defined as follows:

f ðz; t;ΛÞ ¼±
∂Ak

∂z
þ αkAk þ

iβ2k
2

∂2Ak

∂t2
� iγk jAkj2 þ

XM
j¼1

2jAjj2
" #

Ak

þ
XM
j¼1

gjk
2
jAjj2Ak:

ð3Þ

The solutionAk(z, t) can be learned by theNNunder the regularization
of f(z, t,Λ). Different from classical PINN, we take some coefficients of SRS
PDE as optimizable parameters denoted by Λ, such as αk and gR. Note that
Ak is a complex-valued signal field and is represented by uk, vk in the output
of the NN, where u denotes the real part of Ak and v denotes the imaginary
part. Thus, there are 2 ×Moutputs of theNNin this setup, corresponding to
a total ofM channels. Ak(z, t) can be represented byA =A(z, t)∊R1x2M, with
boldface representing the vector solution, and the trained NN can be
denoted asAθ =A(z, t, θ), where θ represents the parameters of weights and
biases of the NN. Consequently, the SRS PDE regularization for the NN
becomes f(z, t, θ, Λ), as it is also determined by the parameters of the NN.
The structure of SRS-Net is illustrated in Fig. 2a.

SRS-Net can be trained by minimising the mean squared error (MSE)
of both data terms Lc and physical-law regularization terms Lf:

L ¼ Lc þ Lf ; Lc ¼
1
Nc

XNc

i¼1

jAðDc; θÞ � Cij2; Lf ¼
1
Nf

XNf

i¼1

jf ðDf ; θ;ΛÞj2

ð4Þ

The data term Lc represents the constraint imposed by known or
measured data at coordinates denoted by Dc = {zi, ti}

Nc
i = 1, while the

Fig. 2 | Schematic of the universal solution of SRS-Net. a The proposed SRS-Net
composes of neural networks and physics law regularization of SRS PDE. b The “+”

signs enclosed in a red circle indicate the embedding of physical laws in the three

applications. c Table of three typical problems that can be solved by SRS-Net clas-
sified by required data (problem inputs) and targets (problem outputs).
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physical-law regularization term Lf enforces the regularization of f(z, t,Λ, θ)
in the domain at random collection points denoted byDf = {zi, ti}

Nc
i = 1. The

data termLc typically includes informationof initial/boundary conditions in
the forward problem or the measured outputs in the inverse problem.

The physical-law regularization Lf comprises the differential terms in
PDE, which can be derived by applying the chain rule to differentiate the
NN’s outputAθwith respect to the input coordinates (e.g. z and t) usingAD.
Thus, the physical laws that govern the SRS can be integrated into loss
functions.Different from the data terms,which are regularized at z = 0or z=
Lmax, the physical-law regularization terms Lf are regularized across the
whole solution domain from input to output. For forward problems, the Λ
in physical laws is a priori, and the A is approached by updating the para-
meters ofNN. In this case, the lossLc represents the initial condition and can
be specified at the start or the end of fibre. Note that classical split-step
numerical methods are typically discretized sequential algorithms that
calculate from previous states to later ones, making them only suitable for
unidirectional transmission18. However, SRS-Net is flexible in simulta-
neously obtaining solutions across the whole spatiotemporal domain. The
regularization of physical laws makes SRS-Net possible to obtain solutions
for both unidirectional and bidirectional transmissions, where output
powers can be obtained with input powers and physical parameters, as the
table shown in Fig. 2b and c. For inverse problems, the input and output
powers are required for physical parameter identification. When the input
andoutput signal powerswithphysical parameters are known, the input and
output pump powers can be optimized. For SRS-Net, the incorporation of

physical laws allows the refinement of the unknown or inaccurate physical
parameters Λ towards accurate ones with the aid of measured data. In this
context, the loss Lc represents the measured data, which are typically the
paired inputs and outputs at z = 0 or zmax. In inverse problems, SRS-Net can
approach the field solutionA and the physical parametersΛ simultaneously
with the updatedNNparameters.Ultimately, both the loss ofmeasured data
Lc and physical-law regularization Lf can be minimised.

Energy transfer for continuous-wave
For the first case, we investigated a basic scenario where two waves co-
propagate at two different frequencies: a signal wave at the low frequency
and a pump wave at the high frequency. Under the CW assumption, the
signal rate and format can be ignored. Consequently, the terms in Eq. (1)
that account for dispersion andKerr nonlinearity can be removed, resulting
in the simplified version of SRS-Net as Aθ =A(z, θ, Λ). With this simplifi-
cation, numerical split-step techniques of simpler version should be
employed to solve this set of two coupled SRS ODE with iterative steps.
Obtaining solutions with SRS-Net, the input of SRS-Net is transmission
distance z while the output is the power on different waves. The initial
conditions of both signal and pump are specified through Lc at z = 0.

We selected launch pump powers of 20mW, 40mW, and 60mW,
respectively, alongwith launch signal powers of 2mW,4mW,and8mW.A
standard single-mode fibre (SSMF) is assumed with typical parameter
values, i.e., α = 0.2 dB/km and gR = 1 × 10−13m/W. The power evolution of
the pump and signal waves over the 80 km transmission is shown in Fig. 3a,

Fig. 3 | Results of energy transfer for continuous-wave and waveform propa-
gation on time-domain. The energy transfer between (a) 2mW launch signal and 20/
40/60mW launch pump, b 2/4/8mW launch signal and 40mW launch pump.
c Prediction RMSE of SRS-Net for pump and signal in a and b. The time-domain

waveform propagation of two pulses on the (d) pump wave and (e) signal wave,
respectively, andcross-sectionprofiles at fpumpwaveand (g) signalwaveat z = 0.5/1.5/3
LW. Prediction RMSE of SRS-Net for (h) pump and (i) signal at z = 0.5/1.5/3 LW.
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where the launchsignal power is set at 2mWwhile the launchpumppowers
are increased from 20mW to 60mW, and in Fig. 3b, where the launch
pumppower is fixed at 40mWwhile the launch signal powers are increased
from 2mW to 8mW. Considering the outputs of SRS-Net are complex-
valued signalfieldwith twooutput neuronsu, v representing for the real and
imaginary part for each channel, the root MSE (RMSE) between the SRS-
Net results un, vn and SSFM results us, vs is calculated byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

un � us
�� ��2þ vn � vs

�� ��2q
. In this way, both the accuracy of the amplitude

andphase of thepredicted signal canbe evaluatedby this error.The SRS-Net
solutions exhibited good agreement with numerical results utilizing the
small step size of 100m, demonstrating a maximum error of less than
0.1 dB. It can be observed that the SRS-induced energy transfer occurs faster
when either the pump or signal power is high. The peak power of the signal
can be observed at an earlier distance with a high-power level, and then
decreases due to attenuation. Furthermore, Fig. 3c illustrates the RMSE
between the results obtained from SRS-Net and those from SSFM, along
with the standard deviation of 12 trials. Owing to the relatively simple
scenario involving only two waves co-propagating at two different fre-
quencies, an overall high accuracy is achieved, with RMSE below 3 × 10−4. It
can be observed that theRMSE for both signal andpump is slightly higher at
the beginning of transmission. This can be attributed to the relatively high
pump power at the start, leading to strong SRS effects and resulting in
relatively higher calculation complexity.

Waveform propagation in time-domain
Without the assumption of CW, numerical methods, such as the split-step
Fourier methods (SSFM)6, are required to solve the full form of Eq. (1). For
the proposed SRS-Net, the input covers both distance z and time t, and the

output is the corresponding waveform A(z, t, Λ, θ). We start with the
example of pulse propagation. The initial pulse for both signal and pump is
50 ps width and is learned by SRS-Net at z = 0 through Lc. The full reg-
ularization of f(z, t, Λ, θ) is applied on the entire temporal-spatial domain.

The evolutions of two pulses on the pump and signal waves for
three walk-off lengths Lw are shown in Fig. 3c and d; the cross-sectional
profiles of the pump and signal pulses at threewalk-off lengths are shown in
Fig. 3e and f. The signal pulse is initially seeded at z = 0 and is weaker than
the pump pulse with 2mW launch power by a factor of 1 × 10−5. The signal
pulse begins to build up after one walk-off length, and the energy transfer is
almost complete by three walk-off lengths; subsequently, the pulses are
separated owing to the group-velocitywalk-off. In the normal GVD regime,
the energy for SRS originates from the leading edge of the pump pulse,
which is evident from the two-peak structure of the pump pulse at
z = 1.5LW. As a portion of the energy from the pump pulse is transferred to
the signal pulse, the pump pulse undergoes narrowing and increased
asymmetry compared to its input state. The RMSE between the pulse
evolution results obtained using SSFM and SRS-Net are shown in Fig. 4h
and i. Overall RMSE below 6×10−3 indicates the high accuracy of SRS-Net.
The calculation error is most noticeable at transmission around 1.5LW,
coinciding with the transmission distance of buildup of the signal wave and
stronger SRS effects. The agreement between the pulse evolution results
obtained using numerical methods and SRS-Net shown in Fig. 4a and b
indicates the accuracy of SRS-Net.

We further conducted tests of long bit sequence propagation on the
pumpand signalwaves rather than a single pulse, as displayed in Fig. 4a. The
symbol rate was 20 GBaud with 16-Quadrature amplitude modulation
(QAM) format, and the sequence length was 16 symbols resulting in 800 ps
time scale. The baseline numerical results after 80 km transmission are

Fig. 4 | Results of symbol sequence transmission in time-domain and multi-
channel power evolution in frequency-domain. a SRS-Net, (b) SSFM, and (c)
RMSE of SRS-Net. For (a–c), x-, y-, and z-axis represent the normalized

transmission distance, time scale, and optical power. d 60% random partial loading
on 40/80 km. e Error distribution of full and 40/80% random partial loadings from
20 to 120 km. 12 cases are calculated for both partial loadings.
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shown in Fig. 4b, and the RMSE between the SRS-Net and the numerical
results are shown in Fig. 4c. The maximum RMSE was found to be smaller
than 0.06, confirming the exceptional accuracy of the SRS-Net. The process
of energy transfer from the pump wave to the signal wave during the
transmission can be clearly observed.

Multi-channel power evolution on frequency-domain
In fibre-optic communications of WDM systems, each channel receives
energy from all high-frequency channels and transfers its energy to all low-
frequency channels. In such a situation, fast and precise calculations are
critical, but classical split-step methods are inefficient in calculating wide-
bandmulti-channel transmissions40. Here, we selectedN =M = 96 channels
with a 100-GHz channel space propagating across the C+ L band. The
transmission bandwidthoccupies theL-band from186.1 THz to 190.8 THz,
and the C-band from 191.4 THz to 196.1 THz, which is the default C+ L-
band simulation setup used in this paper. In this case, the number of outputs
of SRS-Net is large, which requires thematrix of regularization of f(z, t,Λ, θ)
to be solved in the SRS-Net.

For partial loading depicted in Fig. 4d, 60 out of 96 channels were
randomly selected, and for each channel, the launch power was randomly
set from 1mW to 2mW. The corresponding results for 40 km and 80 km
transmission distances are also displayed. The input channel power spec-
trum, which is the only label data required for SRS-Net, is also presented,
and the matching results suggest that the initial conditions are successfully
learned. A detailed evaluation of the accuracy of SRS-Net solution is pre-
sented in Fig. 4e, depicting the error distributions for 40% and 80% loading,
and full loading, spanning from 20 km to 120 km. The root MSE (RMSE)
was used for error estimation of 12 random channel configurations for both
40% and 80% loadings. It can be observed that the standard deviation of the
error slightly increases with a longer distance. This can be attributed to the
fact that longer transmission will introduce more distortions and increase
the difficulty of solving. However, all the RMSE are below 2 × 10−3, which is
a satisfactory level of accuracy.

Bidirectional power evolution prediction in forward problems
In fibre-optic system, it is well known that the SRS can be leveraged for
optical amplification, known as Raman amplification. During the amplifi-
cation, the power of pump waves on high frequency is transferred to signal
waves on low frequency. There are three common pump conditions clas-
sified by the propagation directions of the pump, including the case where
the signal and pump co-propagate (CO) from one end to another and the
casewhere the signal and pump counter-propagate (CT) fromboth ends. In
the bi-direction (BI) condition, the input pumps are assigned at both end of
the fibre and transmitted forward and backward, whereas the powers of
initial signal were specified at the beginning of the fibre and transmitted
forward. For scenario of CT and BI condition, including bidirectional
transmission signals and pumps, shooting algorithm combined with split-
step methods are generally required13,14. Whereas in the SRS-Net, the phy-
sical law regularization canbe satisfied simultaneously on the entire domain,
which naturally allows the solving of bidirectional transmission.

We setup a simulation for 100 km fibre transmission with Raman
pumps under the above three conditions, and the frequencies of pumps are
summarized in Table 1. The default C+ L-band simulation setup covering
approximately 10 THz bandwidth is used. For the SRS-Net, the outputs are
the signal power of allN channels combinedwith the pumppower at (M-N)
higher frequencies. For the loss function, the initial conditions for pumps
and signals are assigned at z = zmax and z = 0, respectively. We simulta-
neously enforced the physical law regularization across the entire spatial-
frequency domain with known fibre parameter Λ.

The classical numerical solution of bidirectional transmission can be
unstable and fail to converge, especially with high pump power levels11. The
failure can be attributed to the inherent defects of shooting algorithms, where
the conversion from bidirectional transmission to unidirectional ones is an
approximation process. Here we try to obtain the solution using SRS-Net in
theBI conditionwith a total power of pump is 400mW.As shown in theplain

training loss of Fig. 5a, these losses donot converge.However, for the SRS-Net,
this failure can be attributed to the inappropriate initialization of NN para-
meters and can be easily solved by initializing the NN parameters to an
appropriate point. To realize this, we conduct the adaptive weight training on
thisBIcondition,andthe training lossesare illustrated inFig. 5(a).The training
isdivided into three stageswithdifferent lossweights. First, theweightofpump
loss is reduced, andSRS-Net is solely trainedunder the constraints of the input
signal at z= 0 and the physical laws for 2 × 103 iterations. In this step, only the
loss of the initial signal condition decreases because of its large weight. This
leads the training of theNN to an appropriate startingpoint. Subsequently, for
another 2 × 103 iterations in the second stage, the weight on the initial pump
loss is gradually increased, and the pump loss can continue to converge.
Finally, at the third stage, the weights of the initial conditions of signals and
pumps are equal, and the SRS-Net keeps training until convergence.

Using the adaptive training strategy, the SRS-Net is demonstrated to
effectively solve the three cases under pump conditions of CO, CT, and BI,
and the longitudinal power profiles are shown inFig. 5b-d,with amaximum
error <0.3 dB compared to the ground truths. In17, it is reported that the
maximum prediction error of predicted gain profiles of a 100 km fiber was
around 0.22 dB; while in ref. 28, the trained generative model can predict
loss profile with RMSE less than 0.51 dB for 95% of the predictions. In
comparison, the proposed SRS-Net achieves similar performance without
using any labelled data.

Fibre physical parameter identification in inverse problems
The task of parameter identification is relevant to a broad topic of scientific
discovery and physical system monitoring41. In fibre-optic systems, the
frequency-dependent attenuation and Raman gain spectrum are the two
most important physical parameters that impact the power evolution. Thus,
it is important to identify their accurate values from the measurements,
which typically are pairs of input and output signal spectra measured in
system. First, we demonstrate the identification of Raman gain profile. In
this case, the Lc loss function constrains the measured input and output
signal spectra at z = 0and z= zmax, and the accurateRamangain spectrum gR
is unknown. To validate the effectiveness of SRS-Net for parameter iden-
tification, we conducted a simulation with 130 channels across 13 THz
based on three different types of fibres: SMF, dispersion-compensatingfibre
(DCF), andpure-silica-corefibre (PSCF),whichpossess different gRprofiles.
Other default frequency-independent parameters were used for these fibres.
Thefibre lengthwas 80 kmand the launchpower for each channelwas set to
0 dBm. The input and output signal spectra were collected for each type of
fibre and used for gR identification.

In previous studies, genetic algorithm (GA) with a time-consuming
iterationprocesswas required forparameter identification17. Theuseof SRS-
Net can significantly reduce the calculation time. Initially, and default linear
gR (theΛhere)was assigned to thePDE loss of SRS-Net.During the training,
the NN parameters θ are updated to minimise the total loss. As the gR is
incorrect, the PDE loss cannot be minimised properly when the corre-
sponding initial and final conditions (themeasured input and output signal
spectrum) are rigorously learned. After every 100 epochs, the assumed gR
was also updated to progressively converge towards its true value and thus
further minimise the loss. The identified gR for these three types of fibres is
presented in Fig. 6a, and the accuracy of parameter identification using SRS-
Net was demonstrated with an RMSE below 0.2.

Table 1 | Pump configuration of pump conditions of co-
propagate (CO), counter-propagate (CT), and bi-direction (BI)
condition

CO CT BI

Forward pump frequency (THz) 201/207 - 201/207

Backward pump
frequency (THz)

- 201/205/
207/208

201/205/
207/208

Pump powers (mW) 400 250 200
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Pump power optimization in inverse problems
Inultra-widebandfibre-optic system,flat amplifiedoutput power spectrum is
often necessary for a balanced performance. The optimization of Raman
pump powers to obtain a target output signal power spectrum has been a
prominent subject of discussion. However, this task has proven to be an
intractable challenge due to the complex nonlinear interactions between the
pumps and signals. Classical prediction methods are non-differentiable,
necessitating the use of iterative searching algorithms for pump power
optimization21. Data-driven NNs have also been proposed, but massive
amounts of data are typically required15,16. In contrast, the SRS-Net allows for
efficient ADwith high degrees of freedom,making it well-suited for this task.

To facilitate the optimization of pump powers, the input pump powers
are used as additional NN inputs for SRS-Net as shown in the Fig. 2a. The
SRS-Net outputs become Aθ =A(z, t, Ci, θ) with i =N, N+ 1, …, M. The
target flat output signal spectrum is specified as z = zmax, while the input
signal spectrum is specified as z = 0. The Λ is known and the loss function
becomes:

L ¼ Lc þ Lf ; Lc ¼
1
Nc

XNc

i¼1

AðDc;Cj; θÞ � Ci

��� ���2; Lf
¼ 1
Nf

XNf

i¼1

f ðDf ;Cj; θ;ΛÞ
��� ���2; j ¼ N; :::;M

ð5Þ

Initially, these input pumppowers are set to somedefault values, which
are incorrect, and it becomes impossible to satisfy signal spectrum (at z = 0
and zmax) and the constraints of PDE simultaneously with these inap-
propriate input pump powers. To ensure strict adherence to these con-
straints, the pump power must be updated during training to minimize the
total loss. Throughout the trainingprocess,where both theNNparameters θ
and pump powers are updated, the pump powers can converge to optimal
values while ensuring the satisfaction of PDE constraint and target signal
spectrum.The regularizationof the total pumppowerwas incorporated into
the loss function to avoid excessively high pump powers.

Here, we used the CT pump condition with four pumps to amplify the
multi-channel signal in the sameC+ Lbandwith96channels through80 km
transmission. The update process of the four pump powers using SRS-Net is
shown in Fig. 6b, and the optimized output signal channel power spectrum is
shown in Fig. 6c with the initial and target spectra. The results of the GA,
utilizing the same configuration in ref. 21, are also presented for comparison.
The cost function for optimization is defined as the deviation from the target
spectrum.Thepower level of the targetoutput signal spectrumwas set slightly
higher toensurepropergain. It canbeobserved that SRS-Net can significantly
improve the flatness with ripples reduced from 6.5 dB to 2.2 dB on the
C-band and from 2.5 dB to 0.8 dB on the L-band. The optimization results of
GA show 2.3 dB and 1.8 dB ripples on the C- and L-band, respectively. The
flat target spectrumat 0 dBm is shownas the black line in Fig. 6c. The average
difference between optimized spectrum of SRS-Net and target spectrum is

Fig. 5 | Results of multi-channel evolution under different pump conditions.
a Training loss under the BI condition starting by applying on initial pump loss a
small weight, which begin to increase from iteration 200. Longitudinal power profile

of signal and pump wave for (b) co-propagate (CO), (c) counter-propagate (CT),
and (d) bi-direction (BI) pump condition.
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0.8 dB. However, this difference between optimized spectrum of GA and
target spectrum is 1.7 dB, indicating the better performance of SRS-Net.
However, both SRS-Net and GA fail to achieve satisfactory optimization
results at the high-frequency segment of theC-band. The results presented in
Fig. 6c of our original manuscript suggest insufficient pump at the high
frequency of the C-band. Given that the Raman gain strength due to SRS is
strongest at a frequency offset around 13 THz, the insufficient pump at high
frequency of C-band can be attributed to that the selected pump frequencies
are slightly low, causingmostpumps to concentrate in the low-frequencypart
of the C-band and L-band. Consequently, achieving a flat gain profile,
especially at the high frequency of the C-band, becomes challenging. Under
the new pump configuration with frequencies set at 200/205/207.5/209 THz,
the optimized power spectrum is shown inFig. 6(d). It is evident thatwith the
adoption of this new pump frequency configuration, both SRS-Net and
conventional GA exhibit improved performance. The maximum deviation
from the target spectrumhas decreased from5.4 dB to 0.86 dBwith SRS-Net.
For GA, the maximum deviation to the target spectrum is 1.3 dB, indicating
satisfactory optimization performance achieved by SRS-Net.

Universal solution of SRS-Net on experimental C+ L-band fibre-
optic transmission
The capability of SRS-Net has been demonstrated in the above simulations
of different forward and inverse problems. Here, we set up a C+ L-band
WDM transmission experiment to show SRS-Net’s ability in solving for-
ward problems of power prediction and inverse problems of parameter
identification in the universal framework. The WDM transmission system

operating in theC+ L-band is currently undergoing extensive investigation
and is anticipated to serve as the next-generation information transmission
infrastructure37. The experimental setup comprises eight spans of 75-km
SSMF, except for the second span with a length of 85 km, as illustrated in
Fig. 7. The transmission bandwidth occupies the L-band from 186.1 THz to
190.8 THz and the C-band from 191.4 THz to 196.1 THz with a total of 96
channels. Twocommercial frequency-tuneable transponderswith 400-Gb/s
dual polarization (DP)-16QAM signals were deployed to measure the
transmission performance for corresponding channel, and all the other 94
channels were filled with shaped amplified spontaneous emission (ASE)
noise to emulate the effects of interfering channels in a cost-effective
manner.Thewavelength selective switch (WSS)deployed after thefifth span
was not activated, and all channels experiencedequal attenuation afterWSS.
Signals in the C- and L-bands were decoupled at the end of each span,
amplified by separate C- and L-band EDFA, and then combined before
launching into the next span. The connector losses for each coupler and
frequency-dependent gain profiles of each EDFA were measured in
advance.

Accurate power-evolution prediction is necessary for system design
and performance estimation. However, for C+ L-band transmission, the
power distribution across the wideband is severally imbalanced mainly due
to the strong SRS and frequency-dependent attenuation, which makes it
difficult to obtain accurate transmitted power spectrum. Here, we demon-
strate the use of SRS-Net to first identify the frequency-dependent
attenuation and Raman gain spectrum, and then predict the power evolu-
tion along the experimental link based on these identified parameters.

Fig. 6 | Results of SRS-Net in inverse problems of parameter identification and
pump optimization. a Raman gain spectrum identification on three types of fibres,
including single-mode fibre (SMF), pure-silica-core fibre (PSCF), and dispersion-
compensating fibre (DCF). bPumppower optimization process by SRS-Net for four

pumps under CT condition and comparison with the final GA results. Comparison
of amplified power spectrum under pumps w/o optimization, w/ GA and SRS-Net
optimization for (c) old pump frequencies and (d) new pump frequencies.
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To accurately identify the αf and gR of eachfibre, few pairs of input and
output power spectra were measured under different regular input power
distributions. Here, we consider fibre#7 as an example, and only six pairs of
input and output channel power spectra were used to identify αf and gR
simultaneously. The actual αf of fiber#7 was measured using low input

power in advance, and it can be observed in Fig. 8a that the initial assumed
αf, which is constant at 0.21 dB/km, is gradually updated towards the actual
αf, till coinciding well with the actual one in the end. To optimize gR, the
initially assumed linear function with respect to frequencywas optimized to
the actual ones with black dash line, as shown in Fig. 8b. To visualise the

Fig. 7 | Experimental setup for dynamic C+ L-band systems. WSS: wavelength selective switch, ASE: amplified spontaneous emission noise source, Och: 400 G DP-
16QAM signal, EDFA: erbium-doped fibre amplifiers.

Fig. 8 | Results of SRS-Net for parameter identification of the experimental link.
Identification of frequency-dependent (a) attenuation spectrum and (b) Raman
gain spectrum for fibre#7. Visualization of the importance of accurate fibre

parameters with (c) incorrect initial αf and gR, (d) incorrect αf and correct gR, (e)
correct αf and incorrect gR, and (f) correct αf and gR. Split-step numerical solutions
are also shown to show the accuracy of SRS-Net.
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importance of the accuracy of αf and gR, we conducted SRS-Net to predict
four different scenarios, as shown in Fig. 8. In the first one (c), the assumed
incorrect initial αf and gR are used; in the second one (d), the identified gR
and assumed initial αf are used; in the third one (e), the identified αf and
assumed initial gR are used; and finally (f), both identified ones are used. It
can be observed in Scenarios 1 and 2 that when an incorrect initialαf is used,
the error is large; in Scenario 3, the maximum absolute error is approxi-
mately 1.0 dBowing to an incorrect gR. Onlywhen both the identifiedαf and
gR are used in Scenario 4, can the maximum absolute error be reduced to
below 0.1 dB, proving that accurate identification of both physical para-
meters is essential for obtaining a high-fidelity power evolution model.

After parameter identification using SRS-Net for each fibre in the link,
we obtained SRS-Net predictions for the entire link and compared the
results with the experimental optical channel monitor (OCM)-measured
results under the same conditions. As shown in Fig. 9a and b, SRS- Net
predictions with identified αf and gR for each fibre coincide well with that of
experiments for various input power distribution. Even with partial loading
scenarios, the maximum power deviation is below 0.3 dB. This proved that
the SRS-Net predictions with the identified coefficients were sufficiently
accurate under various loading conditions. With the accurate power pre-
diction, we further tested quality of transmission (QoT) estimation for this
experimental link. The widely used Gaussian noise (GN) model42 for cal-
culating nonlinear interferencewas adopted to derive the generalised signal-
to-noise ratio (GSNR), which considers both linear and nonlinear distor-
tions. We obtained the pre-forward error correction (FEC) bit error ratio
(BER) for two channels in the L-band and five channels in the C-band,

which were then converted into GSNR by the pre-characterized trans-
ponder according to back-to-back BER-SNR response43. The prediction of
GSNR is shown in Fig. 9c and d for both partial and full loading condition,
and the maximum error is reduced from more than 3 dB to below 0.8 dB,
which is attributed to the accurate power prediction and parameter iden-
tification of SRS-Net.

Based on this experiment, high-fidelity WDM power evolution pre-
diction (forward problem) based on fibre parameter identification (inverse
problem) are simultaneously realized through the proposed universal
solution SRS-Net. The SRS-Net training for identification and prediction
was performedwithin 10minutes on a Tesla T4GPU.Note that we have do
our best to minimize other factors that may affect the prediction accuracy,
including fluctuating laser power, changing connector losses, and load-
dependent EDFA gain profiles.

Discussion
In this study, we presented SRS-Net, a deep learning method with physical
constraints, for providing universal solutions to SRS under different sce-
narios. SRS-Net leverages the flexibility of AD in NNs to satisfy the con-
straints of SRS PDE and different measurements simultaneously by
updating theNNparameters, SRS PDE coefficients, and pumppowers. This
enables the SRS-Net to handle multiple problems related to SRS, including
powerevolutionprediction,fibreparameter identification, andpumppower
optimization. Previously, these tasks typically required different numerical
and searching methods, which were complex, time-consuming, and
unstable. SRS-Net provides a universal solution for different SRS problems

Fig. 9 | Power andGSNR results aftermulti-span transmission.Power evolution prediction of (a) full and (b) partial loading conditions. GSNRprediction of (c) full and (d)
partial loading conditions.
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with a consistent solution procedure and high accuracy, as demonstrated by
both simulations and experiments. Moreover, SRS-Net is more flexible and
faster than conventional methods. It can realise full-field multichannel
power prediction in milliseconds and is insensitive to the distance and
channel count owing to the parallel computation of theNNs. For parameter
identification, SRS-Net differs from certain PDE coefficient discovery
methods44, which use measurement data collected from the entire spatio-
temporal domain. Here, we required only the input and output data, which
are significantly easier to collect in practical scenarios. The noise associated
with SRS can be further incorporated into the SRS-Net to enhance the
precision of its results in practical scenarios45. The efficacy of SRS-Net is
showcased through experimental validation in a C+ L-band fiber-optic
transmission system, effectively addressing forward power prediction and
inverse parameter identification simultaneously. The methodology of SRS-
Net that combines the power of NN and physical laws has the potential to
extend its applicability beyond SRS and is anticipated to address both for-
ward and inverse problems in various other domains.

A distinctive feature of the PINN is its ability to satisfy the underlying
physical laws. In this study, we demonstrate this attribute of the SRS-Net by
comparing it with data-driven NNs. A classical NN is used to learn the
mapping from the transmission distance to the transmitted waveforms in a
data-drivenmanner. For the data-driven techniques, a total of 1200 pairs of
16-symbol long bit sequences are collected, out of which 1000 are used for
training and the remaining 200 for testing. The symbol rate is 20 GBaud
with 16-QAM format, and the maximum transmission distance is 80 km,
consistent with the configuration of SRS-Net driven by physical laws. It
should be noted that the SRS-Net is trained by minimizing the physical law

regularizationwith no labelled training data while the data-drivenNN (data
NN) is trained by minimizing the data loss calculated from baseline labels.

The training loss is shown in Fig. 10a, and it can be observed that the
SRS-physical law regularization converges to approximately 1 × 10−8,
implying that the physics law is strictly satisfied by SRS-Net. Meanwhile, the
SRS-Net testing loss of predicted data between the collected labels approx-
imates to 3 × 10−4, which is also sufficiently accurate. For the data NN, the
data loss is approximately 1 × 10−4, showing high accuracy in the learning of
transmitted waveforms; while the SRS-physical law regularization was
relatively high and unstable, suggesting that the data NN failed to learn the
underlying physical laws from these data. Through the incorporation of
physics, the proposed SRS-Net can effectively constrain itself to a lower-
dimensional manifold, enabling generalization to unseen inputs with high
accuracy1. However, using data-driven models for extrapolation without
imposing any constraints based on physical knowledge can be dangerous,
particularly when the underlying physical laws are not learned. Although
SRS-Net cannot mathematically guarantee convergence to the correct
solution during inference, it effectively trades a minor decrease in accuracy
for a significant increase in computation speed when properly trained.

SRS-Net has been demonstrated to achieve satisfactory accuracy
compared to other classical numerical methods for multiple tasks. As a
universal solution framework, SRS-Net also exhibited superior performance
with respect to calculation speed and performance stability. For forward
problems, the calculation speed of power evolution is critical for a multi-
channel transmission simulationwith a large channel count.The calculation
speeds of SRS-Net and SSFMfrom40 to120 channels from20 to 120 kmare
compared inFig. 10(b) using the sameTeslaT4GPU. It canbeobserved that

Fig. 10 | Results of SRS-Net physics consistency, testing speed, and performance
comparison. aLoss during the training of PINNand dataNN.bTesting time of SRS-
Net and split-step Fourier method (SSFM) for 40/80/120 channels from 20 to

120 km. c Convergence speed of SRS-Net and DE for Raman gain spectrum iden-
tification. d Convergence speed of SRS-Net and GA for pump optimization.
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the calculation time required for SRS-Net is independentof the transmission
distance and only slightly increases for more channels owing to the larger
NN inputs and outputs. In comparison, the calculation time of the SSFM
continues to growwith the increasement of both transmission distance and
channel amount. When there are 120 channels and the transmission reach
120 km, the calculation time reduced by SRS-Net is approximately a factor
of two orders. Note that the calculation time refers to the time cost by
inference after training.

Regarding the time advantage of SRS-Net, SRS-Net can be trained
offline using physics-informed deep learning techniques for the forward
problem of direct propagation. The trained SRS-Net demonstrates the
ability to generalize to the unseen initial conditions, as indicated in Fig. 4d
and e. In practical scenarios, a large number of direct propagation predic-
tions are often required, such as in Raman amplifier design and optical
network management. In such cases where multiple inferences are neces-
sary, SRS-Net offers fast calculation speed at the expense of relatively long
training time, similar to models trained by data-driven methods s1, s2.
However, conventional methods typically require iterative split-step cal-
culations for each inference, resulting in time-consuming processes. Fig-
ure 10b compares the speed of SRS-Net with conventional methods,
highlighting the speed advantage of SRS-Net inmaking inferences.When a
large number of forward predictions are required, the speed advantage of
SRS-Net is clear even with its training time. For the inverse problem of
optimization applications, the time benefit of using SRS-Net is evident from
Fig. 10c, d. In such cases, where optimization of pump powers or identifi-
cation of parameters is conducted during training, the total optimization
time of SRS-Net is less than conventional methods.

For inverse problems, the performance stability and convergence
speed are critical. Particularly for fibre parameter identification, classical
methods require time-consuming iterations. In a similar task for iden-
tifying the fibre Raman gain, the differential evolution (DE) algorithm,
which is a derivative-free optimization method based on the concepts of
GA, was used to identify the peak of the Raman gain coefficient gR

17. It is
reported that the complete optimization required approximately 30mins
to run 12 parallel instances of forward simulations17. We applied this
algorithm to the same task with similar DE configurations17, and then
compared the convergence speed with SRS-Net for gR identification, as in
the previous section of fibre physical parameter identification. In parti-
cular, both methods exhibit similar performances, with an RMSE with
respect to the actual gR of approximately 0.1 dB. However, the DE
method was significantly slower, taking nearly 40mins convergence, as
shown in Fig. 10c. With the same computation setup, SRS-Net only
requires less than 16mins. From the normalized time comparison in Fig.
15(c), the SRS-Net is 2.5 times faster than DE method.

For pump power optimization, we compared the GA used in ref. 33
with the proposed SRS-Net, and the convergence curve is shown in Fig. 10d.
It can be found that the simultaneous optimization of the four pumppowers
was slightly unstable. Thus, the distribution of the standard deviation of the
12 optimizations conducted by both SRS-Net and the GA is depicted. The
SRS-Net converges with only approximately 15mins, whereas the GA
requires approximately 45minswith the same computation setup. Since the
RMSE is calculated in linear scale, it is observed that the GA achieves only
marginally better performance than SRS-Net towards the end. This suggests
the satisfactory performance of SRS-Net, coupled with its faster
computational speed.

Methods
Automatic differentiation in the SRS-Net
AD serves as the foundational element of the proposed SRS-Net, enabling
the incorporation of PDEs into its loss functions. Typically, in the training of
NNs, AD is employed through the backpropagation algorithm, which
computes gradients in the NN weight space to minimize the loss function.
While the comprehensive exploration of AD constitutes a substantial topic
within computer science, here we focus on its application in NN training
and extend its utility to the context of SRS-Net.

During the training of NNs, the backpropagation algorithm corre-
sponds to the AD in the reverse mode, wherein derivatives with respect to
NN weights are computed in the second phase of a two-phase process.
Herein, we consider a simpleNNwith only one hidden layer of twoneurons
(denoted by y1 and y2). The inputs of this NN are denoted by x1 and x2, and
the output is denoted by y3. The weights ω of this NN are shown in the
following calculation graph:

y1 ¼ x1 � ω1 þ x2 � ω3

y2 ¼ x1 � ω2 þ x2 � ω4

y3 ¼ y1 � ω5 þ y2 � ω6

ð6Þ

The above calculation can also be regarded as the initial phase, where
the original function code of NNs is executed forward, generating inter-
mediate variables (such as y1 and y2) and capturing the dependencies in the
computational graph through a bookkeeping procedure. In the second
phase, derivatives are calculated by propagating adjoints in reverse, from the
outputs to the inputs. We are interested in computing the contribution of
the change in eachweight to the change in the output y3. Specifically,we seek
to update the NN weights to align the output y3 with the target label t. To
achieve this, we define the loss function as E(y3, t), which is a function
dependent on the NN weights. By computing the derivatives of E with
respect to the weights, we can determine their influence and iteratively
adjust them to minimize the loss function. Here, we take the weight ω5

between neuron y1 and y3 as an example.

∂E
∂ω5

¼ ∂E
∂y3

� ∂y3
∂ω5

¼ ∂E
∂y3

� y1 ð7Þ

The term ∂E=∂y3 can be directly calculated. For example, whenE(y3, t)
= (y3 - t)

2, this term equal to 2 (y3 - t). For weight ω1, the chain rule can be
expressed as

∂E
∂ω1

¼ ∂E
∂y3

� ∂y3
∂y1

� ∂y1
∂ω1

¼ ∂E
∂y3

� ω5 � x1 ð8Þ

The preceding calculations demonstrate the standard practice of
training NNs by adjusting their weights through gradients to align the NN
output with the target label. This represents the most common and widely-
used application ofAD. In ourmanuscript, the SRS-Net takes the utilization
of AD a step further. Within the SRS-Net framework, incorporating dif-
ferential terms into the loss function necessitates the use of AD. Typically,
the differential terms of PDE to be integrated into the loss functions contain
derivatives of the output (y3) w.r.t the input (x1 and x2). This process can be
effectively implemented using the chain rule, which can be expressed as
follows:

∂E
∂x1

¼ ∂E
∂y3

� ∂y3
∂y1

� ∂y1
∂x1

þ ∂E
∂y3

� ∂y3
∂y2

� ∂y2
∂x1

¼ ∂E
∂y3

� ω5 � ω1 þ
∂E
∂y3

� ω6 � ω2

ð9Þ

Consequently, the differential term can be directly computed and
integrated into the loss function. Subsequently, the NN parameters can be
further optimized to minimize this physics-informed loss function.

For the physics regularization outlined in Eq. (3), the derivatives of the
output signal field A with respect to the input distance z and time t can be
computed using the aforementioned calculation logic. In our code imple-
mentation, we utilize the JAX library for derivative calculations, where the
aforementioned chain rule calculation is inherently embedded. This allows
us to obtain derivatives by the “grad” function.
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Hyper-parameter settings
In all cases considered in this work, the branch net and the trunk net are
equippedwithhyperbolic tangent activation functions (Tanh).The SRS-Net
is trained using Adam optimizer with default settings. A learning rate of
0.001 and a learning rate decay of 0.9 after each 3000 iterations is used. All
networks are trainedusing a singleNVIDIATeslaT4GPU.Thearchitecture
of SRS-Net used in different cases is summarized in Table 2.

Data availability
The data that support the plots within this paper are available from the
corresponding author upon reasonable request.

Code availability
The code accompanying this manuscript will be made publicly available at
https://github.com/IntelligentOpticalNetworkLab/Physics-informed-
SRS-Net.
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