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Summary 
We have previously shown that long-term in vitro proliferating fetal liver pre-B cell lines de- 
rived from autoimmune-prone (NZB • NZW)F1 (BW) mice, but not normal (B6 • DBA/ 
2)F1 mice, can differentiate in severe combined immunodeficient (SCID) mice to produce el- 
evated levels of serum immunoglobulin (Ig) M and IgG, and high titers ofantinuclear antibodies. 
The contribution of parental NZB and N Z W  strains to B cell abnormalities of BW hybrid 
mice was investigated here by preparing pre-B cells and transferring them into immunodefi- 
cient SCID- and RAG-2-targeted mice. We show that transfer of  NZB pre-B cells led to a 
marked lgM hypergammaglobulinemia and to the production of  limited amounts of IgG2a. 
On the other hand, the transfer o f N Z W  pre-B cell lines led to moderately elevated IgM levels 
and marked hypergammaglobulinemia of IgG2a. High IgM and low IgG anti-DNA titers are 
found in the recipients of  NZB pre-B cells, whereas those receiving N Z W  pre-B cells con- 
tained lower levels of IgM and high titers of IgG anti-DNA. In marked contrast, essentially 
identical titers of antibodies directed against a non-self-antigen, DNP, are found in all groups 
ofpre-B cell recipients. Thus, B-lineage cells of both NZB and N Z W  parental strains manifest 
abnormalities associated with the development of this lupus-like disease. Therefore, the present 
study strongly suggests a complex inheritance of B cell abnormalities in autoimmune-prone 
(NZB • NZW)FI mice and emphasizes the critical importance of intrinsic B cell defects in the 
development of routine systemic lupus erythematosus. 

M ice of  the hybrid (NZB • NZW)F1 (BW) sponta- 
.neously develop an autoimmune disease closely re- 

sembling SLE (1). The disease is characterized by the ap- 
pearance of elevated serum levels of  IgG antibodies with 
reactivities to nuclear antigens such as histones and DNA 
and by IgG antiretroviral envelope glycoprotein gp70 anti- 
bodies that have been implicated in the development of  a 
fatal immune complex-mediated glomerulonephritis (2-6). 
Mice of  the parental NZB strain show a modified form of  
autoimmune disease with hemolytic anemia as the lethal 
outcome, due to the production of anti-mouse RBC au- 
toantibodies (7). In contrast, N Z W  mice are phenotypi- 
cally normal until late in life, although it has been shown 
that they have the potential to develop an early severe SLE 
disease either by chronic injection ofpolyclonal B cell acti- 
vators (8) or by mating with nonautoimmune mice bearing 
the Y chromosome from BXSB mice (9). Earlier and more 
recent segregation analyses in reciprocal backcrosses be- 
tween NZB and N Z W  mice as well as studies of recombi- 
nant inbred lines have revealed a complex inheritance of  
the SLE disease in BW mice (10-17). Multiple genes are 
contributed either from the parental NZB or N Z W  ge- 

nome. Their gene products can enhance or suppress the 
disease, and they may be expressed in different cell lineages. 

Since the polyclonal B cell activation is the earliest and 
most common immunological abnormality of NZB, BW, 
and other strains of mice with spontaneous SLE disease, an 
excessive B cell activity has long been thought to be the 
primary immunological abnormality leading to autoim- 
mune disease (18, 19). Most notably, NZB mice exhibit a 
marked increase of  IgM secretion beginning even early in 
life, and precursor B cell development is enhanced and ac- 
celerated (20, 21). An enhanced in vitro responsiveness of  
B cells from BW mice to accessory cell-derived signals has 
also been demonstrated, suggesting that intrinsic abnormal- 
ities affect BW D-lineage cells (22). The similarities of B 
cell abnormalities in NZB and BW hybrid mice suggest 
that genetic defects responsible for spontaneous polyclonal 
B cell activation in BW mice could be inherited from the 
NZB parental strain. By contrast, N Z W  mice do not ex- 
hibit signs of  spontaneous polyclonal B cell activation, and 
their B cells are not as obviously abnormal as those of NZB 
mice (18). Since N Z W  parental genes, which contribute in 
a major way to the disease development in BW mice, are 
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closely l inked to the H-2  locus, the selection o f  the T cell 
repertoire may be one major N Z W  factor contr ibuting to 
disease (12, 14, 16, 17). In fact, in addition to the possible 
abnormality o f  B cells, it has been clearly established that 
CD4 + T cells play a crucial role in the pathogenesis o f  SLE 
in B W  mice (23). Thus, the contr ibut ion o f  the N Z W  pa-  
rental strain to B cell abnormalities o f  B W  mice is less clear. 

The  possibility o f  establishing B lymphocyte  l ineage-  
commit ted  progenitors and precursors in culture and trans- 
ferring them into SCID hosts enabled us to study B W -  
encoded disease-inducing genes that are expressed in the B 
lymphocyte  lineage (24, 25). W e  observed that SCID mice 
populated with pre-B cells of  B W  mice, but  not  those pop-  
ulated with (B6 • DBA/2)F1 pre-B cells, developed many 
o f  the characteristics of  au to immune-prone  mice. Most no-  
tably, injection o f B W  pre-B cells led to hypergammaglob-  
ulinemia o f  IgM, IgG2a, and IgG3 and elevated serum lev- 
els o f  IgM and IgG antinuclear antibodies (ANA) ~ for the 
next 3 to 5 too. Furthermore,  a subset o f  recipient SCID 
mice developed proteinuria associated with IgG deposits in 
their kidneys. These results provided direct evidence that 
genetic defects responsible for the development  of  lupus 
disease in B W  mice are expressed in their B-lineage cells. 
To further investigate the genetics o f  B W  intrinsic B cell 
defects, we used the following experimental  system. Pre-B 
cell lines, derived from the parental N Z B  and N Z W  strains 
and from ( N Z W  • B6)FI  hybrid,  were transferred to re- 
cipient SCID-  and KAG-2-de f i c i en t  mice. Results o f  this 
analysis are discussed as evidence for the polygenic control  
o f  B cell abnormalities in lupus-prone B W  mice and for the 
dual contr ibution of  N Z B  and N Z W  parental strains. 

Materials and Methods  

Mice. NZB and NZW mice were purchased from Bomhol- 
gard Ltd. (Ry, Denmark). C57BL/6 (B6) and DBA/2 mice came 
from IFFA CREDO (L'Arbresle, France). Pregnant female mice 
were obtained by local breeding. CB17-SCID mice were ob- 
tained from IFFA CREDO and were routinely tested for serum 
lg before use. RAG-2T mice were originally obtained from F. 
Alt (Children's Hospital, Boston, MA) and bred in our own ani- 
mal facilities. Blood samples were collected by orbital sinus ponc- 
tion, and the sera were stored at -20~ until use. 

Cell Lines and Tissue Culture Conditions. The stromal cell line 
PA-6 was obtained from Dr. H.A. Kodama (Ohu University, 
Ohu, Japan). PA-6-  and IL-7-dependent pre-B cells were grown 
in Iscove's modified Dulbecco's medium (IMDM) containing 
100 U/ml kanamycin, 5 X 10 -5 M 2-mercaptoethanol, 0.03% 
primaton, and 2% heat-inactivated fetal calf serum. Culture su- 
pernatants of nmrine recombinant 1L-7 cDNA-J558 myeloma 
cell transfectants grown in IMDM containing 5% fetal calf serum 
were added to pre-B cell cultures at 2% final concentration as the 
source of IL-7 (representing "-~100-200 U/ml). 

Preparation and Transfer of Pre-B Cells. Isolation of mouse fetal 
liver pre-B cell lines was previously described in detail (24). Fetal 
liver cells at days 17 and 18 of gestation were directly cloned in 
96-well flat-bottomed microculture plates at a concentration of 

I Abbreviation used in this paper: ANA, Antinuclear antibodies. 
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50 nucleated cells/ml on a serniconfluent layer of 3,000 rad x-irra- 
diated PA-6 stromal cells in the presence of IL-7. In vitro differ- 
entiation to sIg § cells was performed in culture with stromal cells, 
but without IL-7, for 3-4 d. 2-3 too-old CB17 SCID or KAG-2T 
mice were irradiated with 300 or 400 rad, respectively, and, 4-6 h 
after irradiation, injected intravenously with 5 X 10 (' ceils of three 
pooled pre-B cell lines. 

Monoclonal Antibodies and Cytofluorometric Analysis. The follow- 
ing mAbs were used: G5-2 (anti-PB76); 14.8 (anti-B220); Ack4 
(anti-c-kit); $7 (anti-CD43); M41 (anti-mouse Ix); GK1.5 (anti- 
mouse CD4); and 53.6.7 (anti-mouse CD8). For details, see ref- 
erences in Rolink et al. (24). For immunofluorescence analysis, 
mAbs were purified on protein G-Sepharose and coupled to biotin 
as described previously (24). F1TC- and PE-labeled streptavidin 
were purchased from Amersham (Amersham, UK) and Imnmno- 
tech (Marseille, France), respectively. The biotin-conjugated R5- 
240 (anti-mouse K) and 1K26-46 (anti-mouse k) were obtained 
from Pharmingen (San Diego, CA). Double immunofluorescent 
analysis was performed with the help of FlTC-labeled Y3 mAb 
(anti-H-2 K b) (26). Staining of the cells was done as previously 
described (27). Fluorescent intensity was measured with a FACScan | 
(Becton Dickinson & Co., Mountain View, CA). 

Quantification of Ig Levels and Determination of Anti-DNP Anti- 
body Titers. Total levels of sermn lgM and IgG subclasses were 
determined by ELISA as previously described (25), using unla- 
beled and alkaline phosphatase-labeled goat antibodies specific for 
mouse Ig classes and subclasses (purchased from Southern Bio- 
technology Associates Inc., Birmingham, AL). The lg concentra- 
tions were determined by referring to standard curves obtained 
with known concentrations of mouse Ig (Southern Biotechnol- 
ogy Associates Inc., and ICN Biomedicals, Inc, Costa Mesa, CA). 
Serum levels of IgM and lgG anti-DNP antibodies were mea- 
sured by ELISA in which DNPv)-BSA was used as coating anti- 
gen. DNPlv-BSA was a gift from Dr. S. Izui (University of 
Geneva, Geneva, Switzerland). Results are expressed as a per- 
centage of a serum pool of B6 mice injected with LPS for IgM 
class antibodies, and as a percentage of a serum pool of 4-too-old 
MRL-lpr/lpr mice for IgG class antibodies. 

Detection of Autoantibodies. The presence of anti-DNA anti- 
bodies was assessed by an ELISA as previously described (28). 
Wells were coated with single-stranded calf thymus DNA (Type 
V; Sigma Chemical Co., St. Louis, MO) at a concentration of 10 
txg/ml. The serum levels ofanti-DNA antibodies are expressed as 
relative concentrations in reference to standard curves obtained 
with serial dilutions of a serum pool collected from B6 mice at 
day 8 after injection of LPS for IgM antibodies and of a serum 
pool of 3-4-mo-old lupus-prone MKL-lpr/Ipr mice for IgG anti- 
bodies. 

ANA were detected by indirect immunofluorescence on Hep-2 
cells using FITC-labeled goat anti-mouse Is-specific reagents 
(Southern Biotechnology Associates Inc.) as previously described 
(28). The initial serum dilution was 1:20. 

In vivo bound anti-mouse RBC antibodies were detected by di- 
rect anti-MRBC ILIA as described previously (29). 

Statistical Analysis. Statistical analysis was performed with the 
Mann-Whitney test. Probability values >5% were considered in- 
significant. 

Results  

Population of SCID- and RAG-2-deficient Mice with Fetal 
Liver Pre-B Cell Lines Derived from Normal BDF1, Autoimmune- 
prone B W, or Parental N Z B  and N Z W  Mice. W e  showed pre- 
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Table  1. Levels of Serum Ig and Anti-DNA Antibodies in 3- to 5-mo-old Control and Pre-B Cell-populated Mice 

Ig concentrations* Anti-DNA* 

Group n* IgM IgG3 IGg2a IgG 1 IgG2b IgM IgG 

~g/ml % 

BDF1 5 280 • 50 205 • 75 1150 • 200 670 • 120 1060 • 190 1.5 • 0.5 <0.1 

--+SCID 8 145 • 50 155 • 45 110 • 75 <20 75 • 55 1.5 • 1.2 <0.1 

BW 6 1050 • 140 735 • 295 2880 • 655 1100 • 250 1095 • 145 16.6 • 5.2 8.5 • 4.6 

--+SCID 7 735 • 130 650 • 190 1020 • 560 95 • 110 140 • 100 12.6 • 7.1 4.7 • 5.0 

--+RAG 8 1275 • 490 465 • 225 590 • 285 <20 110 • 30 11.8 • 4.8 3.1 • 2.5 

NZB 8 1290 • 200 670 ~ 220 1680 • 590 1010 • 335 850 • 260 23.6 • 6.5 1.6 • 2.1 

--+SClD 12 790 • 315 305 • 300 125 • 100 135 • 140 140 • 130 24.1 • 17.8 0.1 • 0.1 

--+RAG 8 1575 • 460 670 • 385 275 • 140 <20 115 • 70 29.3 • 13.1 0.2 • 0.1 

NZW 8 205 • 15 100 • 10 1590 • 215 1260 • 285 655 • 90 1.9 • 0.4 0.4 • 0.2 

--+SCID 9 370 • 135 410 • 150 1805 • 1200 230 • 270 150 • 65 7.3 • 1.3 13.5 • 14.0 

--+RAG 9 435 • 315 540 • 340 1270 • 865 25 • 75 74 • 40 4.7 • 1.8 5.6 • 5.5 

( N Z W •  B6)F1 5 295 • 105 190 • 15 960 • 205 2255 • 535 765 • 155 1.8 • 0.2 0.3 • 0.3 

--+RAG 8 900 • 275 485 • 370 <20 <20 130 • 65 9.8 • 6.5 0./ • 0.2 

"Number of mice tested per group. 
*Results are the mean of 5 to 12 mice + SD. Ig concentrations are expressed in I.tg/ml; IgM and IgG anti-DNA antibodies are expressed as relative 
concentration by reference to standard curves obtained with a pool serum of C57BL/6 mice at day 8 after intraperitoneal injection ofS0 ixg Salmo- 
nella Minnesota R595 lipopolysaccharides and with a pool serum of 3-4-mo-old MRL-lpr/lpr mice, respectively. 

viously that fetal l iver-der ived pre-B cell lines from B W  
mice can differentiate in SCID mice and produce elevated 
levels o f  serum IgM and IgG as well as high titers o f  ANAs.  
To rule out  the possibility that small numbers o f  SCID-  
derived T cells are responsible for the spontaneous IgG and 
IgG autoantibody production, we also used RAG-2-de f i c i en t  
hosts here. As previously observed, SCID mice injected 
with pre-B cell lines from non-au to immune-p rone  BDF1 
mice developed normal levels o f  serum IgM, very little se- 
rum IgG, and no a n t i - D N A  autoantibodies o f  the IgG class 
(Table 1). In contrast, the transfer o f  B W  pre-B cell lines 
led to the spontaneous product ion o f  increased levels o f  se- 
rum IgM, IgG2a, and IgG3 both in SCID and R A G - 2 T  
hosts (P <0.001).  It should be noted that we observed 
slight differences in the IgM and IgG2a levels in the SCID 
and R A G - 2 T  mice populated with B W  pre-B cells. These 
differences may reflect variations o f  the host environment.  
Both SCID and R A G - 2 T  mice populated with B W  pre-B 
cells developed elevated and similar serum levels o f  IgM 
and IgG a n t i - D N A  antibodies (Table 1), indicating that 
both  phenomena  were indeed T cell independent  and oc-  
curred as result o f  intrinsic B cell defects. 

The  contr ibut ion o f  parental N Z B  and N Z W  strains to 
B cell abnormalities o f  B W  hybrid mice was further inves- 
tigated by using the same experimental  system. Pre-B cell 
lines proliferating for several weeks on stromal cells in the 
presence o f  IL-7 were established from fetal liver o f  N Z B  
and N Z W  mouse embryos at days 17 and 18 o f  gestation. 
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Their  properties were comparable to those described previ-  
ously (24). All cell lines expressed the pre-B cell markers 
PB76, c-kit,  CD43, and B220, indicating that they corre- 
spond to pre-B I cells (30). They  did not  express ~ H  and 
KL chain on the surface, and they were capable o f  differen- 
tiating in vitro to slg + B cells within 3 to 4 d when IL-7 
was removed  from the cultures (data not  shown). Pools o f  
two to three N Z B  or N Z W  pre-B cell lines were trans- 
ferred into immunodef ic ient  SCID and P, A G - 2 T  mice. 
W e  then determined Ig serum levels each month  after their 
injection during a 5 -mo  per iod o f  observation. The  results 
obtained at month 3 posttransfer are shown in Fig. 1. Table 1 
summarizes the results of  SCID and R A G - 2 T  mice repop-  
ulated with pre-B cells and compares these findings to 
those made in normal control  mice. 

Fol lowing the injection o f  N Z B  pre-B cells, a majori ty 
o f  SCID and R A G - 2 T  mice developed levels of  serum 
IgM that were markedly elevated at month  3 posttransfer 
compared to those o f  mice injected with BDF1 pre-B cells 
(P <0.001).  In contrast, in SCID and R.AG-2T mice pop-  
ulated with N Z W  pre-B cells, levels o f  serum IgM were 
slightly, yet significantly, increased (P <0.05).  The serum 
levels o f  IgM remained constant for the next 2 mo. Similar 
to the recipients o f  B W  or BDF1 pre-B cells, recipients o f  
N Z B  pre-B cells developed levels o f  serum IgM that did 
not  differ markedly from those observed in age-matched 
3 - 4 - m o - o l d  control  N Z B  mice (Table 1). In contrast, se- 
rum IgM levels in recipients o f  N Z W  pre-B cells were 
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slightly increased by comparison to age-matched N Z W  
mice, which have concentrations similar to immunologi- 
cally normal mice. 

The analysis of IgG subclasses showed that except for se- 
rum IgG3 (P <0.001), the serum concentrations of  any 
IgG subclasses remained at low levels in hosts receiving 
NZB pre-B cells. Mice injected with N Z W  pre-B cells de- 
veloped increased levels of serum IgG3 both in SCID and 
RAG-2T mice (P <0.01) but in addition produced high 
levels of  serum IgG2a (P <0.001). In the majority of  the 
sera, levels of IgG1 and IgG2b remained at low levels. The 
IgG levels remained constant during the 5-too period of 
observation. Surprisingly, no enhanced IgG2a production 
was apparent in 3-4-mo-old N Z W  control mice as com- 
pared to normal BDF1 mice (Table 1). 

Development of lgM, but Not IgG, Hypergammaglobulinemia 
in Recipients of ( N Z W  X B6)FI Pre-B Cells. The observa- 
tion that the transfer of NZW,  BW, but not NZB pre-B 
cells leads to the production of high levels of serum IgG2a 
raised the possibility that dominant genes from the N Z W  
genome were responsible for the elevated IgG2a antibody 
production in recipients of pre-B cells of  BW origin. To 
test this, proliferating fetal liver pre-B cell lines were estab- 
lished from (NZW X B6)F1 mouse embryos, according to 
the procedure described in reference 24, and were trans- 
ferred into RAG-2T recipients. Transfer of (NZW X B6)FI 
pre-B cells led to high levels of serum IgM (P <0.001) that 
were even higher than those in recipients of N Z W  pre-B 
cells (Fig. 1). Serum IgG3 was increased in the majority of 
mice (P <0.01); whereas serum lgG2a was undetectable in 
these mice. It should be noted that (NZW • B6)F1 con- 
trol mice have normal levels of serum IgM, lgG3, and 
IgG2a, although their levels of  IgG1 were increased by 
comparison to normal BDF1 mice (P <0.001) (Table 1). 

Spontaneous Production of Anti-DNA Antibodies of D!fferent 
Ig Is�9 in Hosts of NZB  or N Z W  Pre-B Cells. To assess 
the role of NZB and N Z W  B cell defects in the spontane- 
ous autoimmune responses, serum levels of  anti-DNA anti- 
bodies were determined in the SCID and RAG-2T  recipi- 
ents of pre-B cells. R.esults of this analysis at month 3 
posttranst~r (Table 1) showed that by comparison to those 
of  BDF1 pre-B cells, mice injected with NZB pre-B cells 
developed markedly elevated serum levels of  IgM anti- 
DNA antibodies (P <0.001) and no detectable serum levels 
of IgG anti-DNA antibodies. In contrast, in recipients of 
N Z W  pre-B cells, the levels of  IgM anti-DNA antibodies 
were moderately, yet significantly increased (three- to five- 
fold; P <0.01), but their levels of  IgG anti-DNA antibod- 
ies were markedly elevated (P <0.001). Notably, titers of 
IgM and IgG anti-DNA antibodies in mice populated with 
BW pre-B cells were intermediate between those popu- 
lated with NZB or N Z W  pre-B cells. After the transfer of 
pre-B cells derived from (NZW X B6)F1 hybrid mice, 
there was spontaneous production of high titers of  IgM 
anti-DNA antibodies but undetectable levels of  IgG anti- 
DNA antibodies. Sinfilar to the increased levels of  serum 
IgM, the levels of  IgM anti-DNA antibodies were twofold 
higher than after transfer of  N Z W  pre-B cells. 

The IgG subclass distribution of anti-DNA antibodies in 
the sera of mice injected with pre-B cells was further ana- 
lyzed. Fig. 2 shows that the enhanced IgG anti-DNA anti- 
body production in mice populated with N Z W  pre-B cells 
appeared selective for the lgG2a subclass both in SCID and 
R.AG-2T recipients; 16 out of  18 NZW-populated SCID 
and RAG-2T  mice developed significant titers of IgG2a 
anti-DNA antibodies, whereas 10 and 7 mice produced 
anti-DNA antibodies of lgG3 and IgG2b subclasses, respec- 
tively. Only two individual NZW-populated mice had ele- 
vated levels of IgG1 anti-DNA antibodies, which strongly 
argues against the participation of host T cells in the forma- 
tion of IgG anti-DNA antibodies in the group of SCID 
mice. It should be noted that the predominance of the 
IgG2a subclass among anti-DNA antibodies in N Z W - p o p -  
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F i g u r e  2. Subclass distribution of IgG anti-DNA antibodies in the sera 
of 6-8-mo-old BDF1 (A) and BW (&) female mice and in the sera of 
SCID (O) and RAG-2T (0) mice 3 mo after injection of 5 • lff' BDF1, 
BW, NZB, or NZW-derived pre-B cells. (A) IgGl; (B) IgG2a; (C) 
IgG2b; (D) IgG3. All sera were tested at dilution 1:1000. ODs were red 
within the same time after substrate addition. For comparison, OD values 
obtained with a pool serum of 3-4-too-old MRL-Ipr/Ipr mice tested at 
dilution 1:8000 were for IgG1,0.44; IgG2a, 0.90; IgG2b, 0.32; and lgG3, 
0.98. 

ulated mice is similar to that seen in BW-populated mice 
and normal B.W control mice. 

The analysis of ANA in the sera of SCID mice 3 mo af- 
ter injection o f N Z B  pre-B cells similarly revealed a higher 
incidence of  mice producing ANA of IgM class (6:10) than 
of IgG isotype (2:10), whereas in contrast, the recipients of 
N Z W  pre-B cells demonstrated a higher incidence of  A N A  
of IgG isotype (8:9) than o f l g M  ANA formation (0:9). 
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Figure 3. Titers ofanti-DNP (O) and anti-DNA (D) antibodies in the 
serum of individual SCID mice 3 mo after injection of 5 • 1if' BDF1, 
NZB, NZW, or BW-derived pre-B cells. (A) IgM class; (B) lgG class. 
Twofold serum dilutions were tested starting with lgM and IgG concen- 
trations of 1 btg/ml and 20 ~tg/ml as being 1, respectively. The titers are 
the highest dilutions still giving a positive signal in the ELISA. 

Since a spontaneous production of antibodies reactive 
with erythrocytes is responsible for the development of  an 
auto immune hemolytic anemia in N ZB mice, we have in-  
vestigated the presence of erythrocyte-specific antibodies in 
mice populated with N ZB pre-B cells. We  found no au- 
toantibodies specific for erythrocytes in the mice populated 
with either N ZB or N Z W  pre-B cells, and none of the 
mice manifested signs of anemia during the period of  ob- 
servation (data not  shown). 

Selective Production of Anti-DNA Antibodies in Hosts of Pre- 
B Cells Derived from ,New Zealand but Not Normal BDF1 
Mice. We further investigated whether the high sponta- 
neous production of ant i -DNA antibodies reflects the poly- 
clonal activation of B cells or a selective activation of  anti- 
D N A  autoreactive cells. With  this in mind, the titers of 
IgM and IgG ant i -DNA antibodies were compared to 
those of antibodies against a foreign antigen, namely, the 
hapten DNP.  The titer of  these IgM and IgG antibody re- 
sponses were normalized by using identical amounts of  se- 
rum IgM and IgG. Accordingly, if an t i -DNA autoreactive 
B cells of  N e w  Zealand origin were selectively activated, 
we would expect that the titers of  an t i -DNA antibodies 
would not correlate with concentrations of total serum Ig 
and an t i -DNP antibodies and would be increased by com- 
parison to those of  mice populated with normal BDF1 pre- 



B cells. Results of  this analysis (Fig. 3) indicated that titers 
of IgM and IgG anti-DNP antibodies were comparable in 
all groups of pre-B cell recipients when identical serum 
concentrations were used in the ELISA assay. Thus, levels 
of IgM and IgG anti-DNP antibodies appeared to correlate 
with those of total serum IgM and IgG, respectively. In 
contrast, the titers of  IgM and IgG anti-DNA antibodies in 
mice reconstituted with NZB or N Z W  pre-B cells, respec- 
tively, were markedly elevated when compared to those in 
the group of mice populated with BDF1 pre-B cells. Al- 
though this phenomenon was less apparent in the group of 
mice with BW pre-B cells, their titers of lgM and IgG anti- 
DNA antibodies were also elevated. Similar results were 
obtained when 1KAG-2T mice were used as recipients of  
pre-B cells (data not shown). 

Discuss ion  

The contribution of the NZB and N Z W  parental strains 
to the genetic defects expressed in B lineage ceils of (NZB X 
NZW)F1 mice, (i.e., B cell hyperactiviw, spontaneous IgG 
class-switching, and anti-DNA antibody production) was 
analyzed. IL-7 and stromal cell-dependent pre-B cell lines 
prepared from NZB and N Z W  mice were transferred into 
immunodeficient SCID and P,.AG-2T mice. The develop- 
ment of hypergammaglobulinemia and the spontaneous 
production of anti-DNA antibodies in recipients populated 
with either NZB or N Z W  pre-B cells demonstrate that ge- 
netic defects affect not only B-lineage cells of  the lupus- 
prone NZB strain but also those of the nondiseased N Z W  
mouse strain. This study emphasizes the critical importance 
of intrinsic B cell defects in the development of murine 
SLE and further suggests that the susceptibility of BW mice 
to SLE might be related to the combined expression of sev- 
eral genetic defects in B lymphocytes acting in concert. 

The finding that the recipients of  N Z W  pre-B cells de- 
veloped high levels of  serum IgG2a and IgG anti-DNA an- 
tibodies not present in hosts receiving pre-B cells from im- 
munologically nomlal BDFI mice clearly demonstrates that 
the N Z W  strain contains genetic defects that can be ex- 
pressed in their B-lineage cells. In previous genetic analy- 
ses, the presence of the N Z W  haplotype of the M H C  
(H-2 ~) has been shown to correlate best with autoimmune 
phenomena and disease development of  BW mice (10, 12, 
14). These findings led to the hypothesis that N Z W  class II 
M H C  genes might be major contributors to the autoim- 
nmne disease of BW mice and that CD4 + T cells are in- 
volved in the switch of autoantibodies from the lgM to the 
IgG class. The ability of N Z W  B-lineage cells to produce 
IgG anti-DNA antibodies in the absence o f T  cells suggests 
that the mapping of N Z W  autoimmune predisposition to 
the H-2 locus may not be related to T cell recognition or 
antigen presentation by class II molecules. N Z W  genes that 
have been proposed to contribute to the development of  
autoimmunity in BW mice include TNF-o~ (31), which is 
located within the the H-2 locus and has a unique N Z W  
allele (32). Our present data do not rule out the possibility 

that the IgG anti-dsDNA antibody production in BW mice 
involves T cells such as the nucleosome-specific T cell 
clones described by Mohan et al. (33). Particularly autoan- 
tibodies of  the IgG1 isotype and somatic mutations of  the 
antibodies are likely to occur under T cell dependence. 

The present demonstration that B cells of the N Z W  
strain manifest defects in absence of T cells is compatible 
with the existence of other lupus susceptibility loci in 
N Z W  mice, indicating that other non-MHC loci contrib- 
ute to the development of autoimmune disease (16, 17). 
This notion is also evident from the studies of  Schiffen- 
bauer et al. (34), in which PL/J mice with NZW-identical 
class I1 molecules do not result in autoimnmnity when 
crossed to NZB. In fact, mice of the N Z W  strain are gen- 
erally believed to be unaffected, although females develop, 
late in life, a form of clinically silent glomerulonephritis 
characterized by granular IgG deposits in the kidney capri- 
lary loops resembling those of BW hybrid (35). The possi- 
bili W of inducing an autommmne disease in N Z W  mice by 
polyclonal B cell stimulators and their susceptibility to the 
Yaa-gene-mediated autoinmmnity accelerating effect also 
support the idea that the N Z W  strain contains primary im- 
munological defects (8, 9). 

A striking finding of  this study is that B-lineage cells of  
N Z W  origin manifest abnormalities that are not obviously 
apparent in N Z W  mice (18), since N Z W  control mice 
have levels of serum IgG2a similar to normal controls and 
do not produce elevated levels of lgG anti-DNA antibod- 
ies. It is also significant that the recipients of  (NZW • 
B6)F1 pre-B cells developed high levels of  serum lgM, 
hence demonstrating B cell hyperactivity,, whereas (NZW X 
B6)F1 control mice failed to exhibit a similar increased 
IgM production. The discrepancy between the recipients 
of  pre-B cells and the corresponding control mice is at 
present not clear. It is likely that T cells absent from SCID 
and RAG-2T mice can markedly modulate the spontane- 
ous activation of B lymphocytes. In agreement with this 
hypothesis, we found that (NZW • B6)F1 mice develop 
normal levels of  serum IgM and IgG3; however, their se- 
rum concentrations of  the T ceil-dependent IgG1 isotype 
are significantly enhanced by comparison to normal BDF1 
mice. It should be noted that the balance of lymphokines 
produced by CD4 + T cell subsets is known to regulate IgG 
production (36). We have also recently observed that the 
constitutive expression of IL-4 in lupus-prone mice is able 
to reduce the spontaneous IgG2a and IgG3 production and 
inhibit the development of lupus nephritis, suggesting a 
role for T helper cell subsets in modulating B cell activation 
and influencing the disease outcome (Santiago, M.-L., L. 
Fossati, C. Jacquet, W. Mfiller, S. lzui, and L. 1Keininger, 
unpublished results). 

The development of IgM hypergammaglobulinemia in 
mice populated with NZB pre-B cells is in good agreement 
with previous analyses indicating that B lymphocytes of  
NZB mouse strain are polyclonally activated even early in 
life (18, 20), a trait that could be expected to occur at least 
partly as a result of B cell abnormalities. In the NZB strain, 
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B cell hyperactivity is most pronounced in elevated IgM 
secretion and IgM anti-DNA antibody production. Here 
we show that this feature is shared by mice populated with 
NZB pre-B cells. Since we have not observed the presence 
of autoantibodies against other self-antigens such as eryth- 
rocytes, a type of autoantibody having a major pathogenic 
significance in the development of  autoimmune hemolytic 
anemia of NZB mice (7), one needs to consider the possi- 
bility that B cell defects may not be sufficient to explain the 
formation of all autoantibodies. The absence of these au- 
toantibodies could be interpreted to mean that these au- 
toantibody responses are strictly T cell dependent or that 
they are controled by genes expressed in other cell lineages. 

The observation that anti-DNA antibodies appeared to 
be selectively produced compared to anti-DNP antibodies 
in mice populated with NZB or N Z W  pre-B ceils suggests 
that both strains contain common or similar genetic defects 
in establishing B cell tolerance to this self antigen. It has 
been shown that within individual BW mice, both IgM 
and IgG anti-DNA antibodies may be produced by clonally 
related B cells, strongly arguing that IgM and IgG anti- 
D N A  antibodies are the result of  an antigen-driven selec- 
tion (37). A molecular analysis of  a panel of  anti-DNA hy- 
bridomas obtained from our experimental system indicates 
that B cells from BW mice differentiate and expand to gen- 
erate clonally related IgM and IgG antibodies even in the 
absence o f T  cells (Winkler, T., unpublished results). How-  
ever, the anti-DNA reactive B cells in the SCID and 
R A G - 2 T  mice may be unable to undergo somatic hyper- 
mutation and therefore may not acquire high affinity for 
double-stranded DNA (37, 38). This could explain the fact 
that recipients o f B W  pre-B cells develop only limited signs 
of  glomerulonephritis (25). Our data extend the finding 
that B cells expressing a transgenic anti-DNA autoantibody 
are activated in the context of  the Ml<L-Ipr genetic back- 
ground, although they undergo deletion or anergy in non- 
autoimmune mouse strains (39, 40), and hence, strongly 
support the hypothesis that defects in B cell tolerance play 
an important role in systemic autoimmunity. 

The present demonstration that B-lineage cells of both 
NZB and N Z W  strains manifest abnormalities associated 
with the development of SLE in BW mice is consistent 
with the idea that this lupus-like disease is under polygenic 

control (16, 17). The genetic defects responsible for B cell 
abnormalities of  the NZB and N Z W  strains could contrib- 
ute to the development ofSLE of BW animals as a function 
of the accumulation of independent lupus susceptibility al- 
leles as suggested by a study from Morel et al. (16). Accord- 
ingly, the predominant IgG2a anti-DNA antibody forma- 
tion observed both in mice populated with N Z W  or BW 
pre-B cells is arguing for a role of N Z W  dominant genes 
controlling this autoimmune trait in BW mice. This con- 
clusion is consistent with a study by Kohno et al. (11) on 
the progeny of BW • NZB backcross mice, suggesting 
that two unlinked dominant N Z W  genes were responsible 
for the class conversion of anti-DNA antibodies from IgM 
to IgG1 and IgG2 subclasses in BW naice. Kotzin and 
Palmer (14) found IgG anti-DNA antibodies in 40-50% of 
BW • NZB backcross mice and concluded that a single 
dominant gene of the N Z W  is required for elevated IgG 
anti-DNA antibody production in the BW hybrid. Alter- 
natively, the inheritance of the enhanced isotype switch to 
IgG2a may be dependent on a specific combination of 
genes shared by the NZB and the N Z W  strains (41). In 
such a model, the genetic contribution to a given trait, in 
this case to IgG anti-DNA antibody production, would be 
dependent on specific combinations of  genes. This would 
explain our finding that B cells from (NZW • B6)F1 mice 
do not manifest increased lgG2a class switching and class 
conversion of anti-DNA antibodies. 

In view of the strong association of the spontaneous 
polyclonal activation of B lymphocytes and disease devel- 
opment in the various murine lupus models (19), the ge- 
netic defects responsible for B cell abnormalities of NZB 
and N Z W  are likely to play a major role in the develop- 
ment of  SLE in BW mice. This conclusion is consistent 
with the requirement for B cell abnormalities for the devel- 
opment of hypergammaglobulinemia and anti-DNA au- 
toantibody production observed in mice bearing the au- 
toimmune accelerating lpr gene or the uncharacterized Yaa 
mutant gene present on the Y chromosome of BXSB mice 
(42, 43). Clearly, the present demonstration that genetic 
abnormalities of  NZB and N Z W  mouse strains are ex- 
pressed at the level of  their B cells should help to identify 
genetic factors involved in the susceptibility to lupus disease 
and to elucidate the immunopathogenetic mechanism of SLE. 
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