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Abstract: We extend the operational matrices technique to design a spectral solution of nonlinear
fractional differential equations (FDEs). The derivative is considered in the Caputo sense. The
coupled system of two FDEs is considered, subjected to more generalized integral type conditions.
The basis of our approach is the most simple orthogonal polynomials. Several new matrices are
derived that have strong applications in the development of computational scheme. The scheme
presented in this article is able to convert nonlinear coupled system of FDEs to an equivalent S-lvester
type algebraic equation. The solution of the algebraic structure is constructed by converting the
system into a complex Schur form. After conversion, the solution of the resultant triangular system
is obtained and transformed back to construct the solution of algebraic structure. The solution of
the matrix equation is used to construct the solution of the related nonlinear system of FDEs. The
convergence of the proposed method is investigated analytically and verified experimentally through
a wide variety of test problems.

Keywords: approximation; numerical simulation; iterative methods

1. Introduction

Fractional calculus has a long and rich history. Its wide range of applications made
this field an active area of mathematical research. Frequently investigated properties of
FDEs include existence and uniqueness problems, multiplicity of solutions, stability of
solutions and analytical study of the analytical properties of solution. Parallel to these area
of research, one of the most explored and interested areas of research in this field is the
design of new numerical methods for finding the approximate solutions to problems of
this category. Many scientists and mathematicians are trying to design efficient and reliable
techniques to find possible estimates to solutions of FDEs or their coupled systems.

There are many analytical, semi-analytical, numerical, and spectral approximations
of solution to FDEs and their coupled systems. Among others, one of the easiest method
is the differential transformation method (DTM). In [1], DTM is successfully applied to
solve simple nonlinear FDEs with simple initial conditions. In [2], DTM is designed to
solve the fractional-order counterpart of Korteweg De Vries (KDV) equation. The method
is further improved for the solution of fractional-order boundary value problems in [3].
Solutions to fractional-order boundary value problems are also attempted with analytical
methods such as the homotopy perturbation method; see for example [4–6]. The Adomian
decomposition method is also a powerful analytical method [7–9]. Spectral methods have
gained the attention of scholars in recent decades. Compared to other methods, spectral
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methods are easy to design and implement [10–20]. The availability of a wide range of
orthogonal polynomials makes this method more interesting. They have the ability to solve
fractional order problems, whose solutions are difficult or sometimes impossible to obtain
with other traditional methods. For new readers, we strongly recommend studying the
results obtained in [21–26] for a clear understanding and developing a good base. However,
to the best of our knowledge, the spectral method becomes difficult and sometimes fails to
handle the situation when boundary conditions are given in more complicated forms such
as local conditions, nonlocal m-point terminal conditions, integral type terminal conditions,
and radiation boundary conditions. Such conditions have solid application in various
problems of traveling waves, heat conduction and electromagnetism. One can find a good
example of application of integral type boundary condition to heat conduction phenomena
in a rod of fixed length in a recent article [27].

Nonlocal FDEs arise in mathematical modeling of various problems in physics, en-
gineering, ecology, and biological sciences [28–30]. Some of the numerical investigations
regarding FDEs with nonlocal constrains are discussed in [31–35]. Numerical approaches
such as finite difference and radial base function also remain a focus of interest. Application
of these methods to one-dimensional heat-like equations has been studied in [32,36–38].
Two-dimensional diffusion problems [33,39,40] and Laplace equations with integral con-
straints are explored in [31].

Keeping in view the increasing interest of mathematicians in fractional calculus, we
are strongly motivated to design a new spectral approximation technique for complicated
problems such as

cDσ1 u(t) = f (u, v, u(γ1), v(γ2)),
cDσ2 v(t) = g(u, v, u(γ1), v(γ2)),

u(0) = u0, u(τ) = m1

∫ ω1

0
s(t)u(t)dt, 0 < ω1 ≤ τ,

v(0) = v0, v(τ) = m2

∫ ω2

0
r(t)v(t)dt, 0 < ω2 ≤ τ.

(1)

where 0 < γ1, γ2 ≤ 1, 1 < σ1, σ2 ≤ 2, t ∈ [0, τ]. The scalar functions u(t) and v(t) are the
solution to be determined. f and g are nonlinear functions of u(t), v(t) and its fractional
order derivatives and is assumed to be in such a form that the solution of the problem exists.

We start our discussion by introducing some definitions and preliminary results.

2. Preliminaries

The following definitions and notations are important for our further analysis. More
details and theoretical understanding of these results, see [41–45].

Definition 1. The Riemann–Liouville α−order integral of φ ∈ (L1[a, b], R) is defined by the
following relation.

Iαφ(t) =
1

Γ(α)

∫ t

a
(t− s)α−1φ(s)ds,

Definition 2. For φ(t) ∈ Cn[a, b], the α order Caputo derivative is defined as

cDαφ(t) =
1

Γ(n− α)

∫ t

a

φ(n)(s)
(t− s)α+1−n ds,

n− 1 ≤ α < n , n ∈ N,

where n = [α] + 1.
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From the above definition, it is easy to extract Iαtb = Γ(1+b)
Γ(1+b+α)

tb+α for α > 0, k ≥ 0,
cDαC = 0, and

cDαtb =
Γ(1 + b)

Γ(1 + b− α)
tb−α, for b ≥ [α]. (2)

The Shifted Legendre Polynomials (LP)

These polynomials play a central role in approximation theory. Generally, these
polynomials are defined on the domain [0, τ], which is given by

ρτ
l (t) =

l

∑
b=0

,tb(l,b)ג (3)

where

(l,b)ג =
(−1)l+b(l + b)!
(l − b)!τb(b!)2 . (4)

These polynomials enjoys a very important property of orthogonality on the domain [0, τ],
which is expressed mathematically as

∫ τ

0
ρτ

i (t)ρ
τ
j (t)dt =

{
τ

2j+1 , if i = j,
0, if i 6= j.

(5)

By using Equation (5), any s(t) can be expressed in terms of LP as

s(t) ≈
m

∑
l=0

clρ
τ
l (t), where cl =

(2l + 1)
τ

∫ τ

0
s(t)ρτ

l (t)dt. (6)

The above equation has an equivalent vector representation given as

s(t) ≈ CMΛτ
M(t), (7)

where
Λτ

M(t) =
[

ρτ
0(t) ρτ

1(t) · · · ρτ
i (t) · · · ρτ

m(t)
]T (8)

and
CM =

[
c0 c1 · · · ci · · · cm

]
. (9)

The following useful constant is important in the derivation of the operational matrices.
We only recall the definition of the constant. The detailed derivation of which can be found
in [25].

Lemma 1. The integral of product of any three LP is a constant, represented by, ℘(i,j,k), defined as∫ τ

0
ρτ

i (t)ρ
τ
j (t)ρ

τ
k (t)dt = ℘(i,j,k),

where

℘(i,j,k) =
i

∑
a=0

j

∑
p=0

k

∑
r=0

.Υ(a,p,r)(i,r)ג(i,p)ג(i,a)ג

(.,.)ג are as defined in (4) and

Υ(a,p,r) =
τ(a+p+r+1)

(a + p + r + 1)
.

The constant defined above is important in the solution of FDEs. We recall one more
important result of the Legendre polynomials, which is their application in the study of
convergence and developing of error bounds.
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Theorem 1 ([21]). Let ∏M be the space of M terms Legendre polynomials and let u(t) ∈ Cm[0, 1],
then um(t) is in space ∏M; then, for the m term approximation,

u(t) =
m

∑
i=0

ciρ
τ
i (t),

there exists a constant C such that
ck '

C
λk
|u(m)|.

and

|u(t)−
m

∑
i=0

ciρ
τ
i (t)|2 ≤

∞

∑
k=m+1

λkc2
k ,

where
ck =

λk + 1
τ

∫ τ

0
u(t)ρτ

k (t)dt, λk = k(k + 1).

C is constant and can be chosen in such a way that u(2m) belongs to ∏M, where u(m) is
defined as

u(m) = Z(u(m−1)) = Zm(u(0))

where Z is storm livoliel operator of legendre polynomials with u(0) = u(t).

In the next section, we first recall some of our previously designed operational matrices
and then develop new operational matrices.

3. Operational Matrices (OP)

OP acts as a basic block in developing approximation techniques. The purpose of
operational matrices is to replace a given derivative term with its matrix notation. The
following matrices are important in our further investigation.

Lemma 2 ([24]). Let Λτ
M(t) be the function vector; the α order integration is generalized as

Iα(Λτ
M(t)) ' Hτ,α

M×MΛτ
M(t),

where Hτ,α
M×M is the OP of integration, defined as

Hτ,α
M×M =

[
Θi,j,τ

]
,

where

Θi,j,τ =
i

∑
a=0

s(a,j)ג(i,a)
Γ(a + 1)

Γ(a + α + 1)
.

where

s(a,j) =
(2j + 1)

τ

j

∑
l=0

(−1)j+l(j + l)!(τ)a+l+α+1

(τl)(j− l)(l!)2(a + l + α + 1)
.

Corollary 1. The error |EM| = |Iαu(t)−CMHτ,α
M×MΛτ

M(t)| is bounded by the following relation

|EM| ≤ |
∞

∑
a=m+1

ck{
m

∑
i=0

Θa,j,τ}|.

Proof. Consider

u(t) =
∞

∑
a=0

caρτ
a (t).

Then, using the previous result, we get
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Iαu(t) =
∞

∑
a=0

ca

m

∑
j=0

Θa,j,τρτ
j (t).

Simplifying the above estimate

Iαu(t)−
m

∑
a=0

ca

m

∑
j=0

Θa,j,τρτ
j (t) =

∞

∑
a=m+1

ca

m

∑
j=0

Θa,j,τρτ
j (t).

In matrix notation

Iαu(t)− CMHτ,α
M×MΛτ

M(t) =
∞

∑
a=m+1

ca

m

∑
j=0

Θa,j,τρτ
j (t).

Using the fact |ρτ
j (t)| ≤ 1 for t ∈ [0, τ], therefore, we can write

|Iαu(t)− CMHτ,α
M×MΛτ

M(t)| ≤ |
∞

∑
a=m+1

ca

m

∑
j=0

Θa,j,τ |.

Lemma 3 ([24]). Let Λτ
M(t) be the function vector as defined in (8); then the derivative of order σ

of Λτ
M(t) is generalized as

cDσ(Λτ
M(t)) ' Gτ,σ

M×MΛτ
M(t),

where Gτ,σ
M×M is the operational matrix of derivative of order σ, and Gτ,σ

M×M is defined as

Gτ,σ
M×M =

[
Φi,j,τ

]
where

Φi,j,τ =
i

∑
k=dσe

s(k,j)ג(i,k)
Γ(k + 1)

Γ(k− σ + 1)

with Φi,j,τ = 0 if i < dσe.
Furthermore, (i,k)ג is similar as defined in (4) and

s(k,j) =
(2j + 1)

τ

j

∑
l=0

(−1)j+l(j + l)!(τ)k+l−σ+1

(τl)(j− l)(l!)2(k + l − σ + 1)
.

Corollary 2. The error |EM| = |cDσu(t)− CMGτ,σ
M×MΛτ

M(t)| in approximating Dσu(t) with
operational matrix of derivative is bounded by the following.

|EM| ≤ |
∞

∑
k=m+1

uk{
m

∑
i=dσe

Φi,j,τ}|

Proof. The proof of this corollary is similar as Corollary 1.

Lemma 4 ([24]). Let u(t) and φn(t) be smooth functions that are well-defined on [0, τ]. Then

φn(t) cDσu(t) = WMBσ
φn Λτ

M(t).

where WM is the Legendre coefficients vector of u(t) as defined in (7) and

Bσ
φn = Gτ,σ

M×M Jτ,φn
M×M.
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Bσ
φn =

[ ︷ ︸︸ ︷
Θ(r,j)

]
where ︷ ︸︸ ︷

Θ(i,j) =
m

∑
l=0

Φ(i,l)Ω(l,j)

The matrix Gτ,σ
M×M is the operational matrix of derivative as defined in Lemma 3; the entries of

matrix Jτ,φn
M×M are defined by the following relation

Ω(l,j) =
2j + 1

τ

m

∑
i=0

ci℘
(i,l,j).

and ci =
∫ τ

0 φn(t)ρi(t)dt.

Corollary 3. The error |EM| = |φn(t)cDσu(t)−CMBσ
φn

Λτ
M(t)| in approximating φn(t)cDσu(t)

with operational matrix of fractional derivative with variable coefficient is bounded by the following.

|EM| ≤ |
∞

∑
k=m+1

ck

m

∑
j=0

︷ ︸︸ ︷
Θ(k,j) |.

Proof. Consider

u(t) =
∞

∑
k=0

ckρτ
k (t).

Then, using the relation above, we get

φn(t)cDσu(t) =
∞

∑
k=0

ck

m

∑
j=0

︷ ︸︸ ︷
Θ(k,j) ρτ

j (t)

Truncating the sum and writing in modified form we get

φn(t)cDσu(t)−
m

∑
k=0

ck

m

∑
j=0

︷ ︸︸ ︷
Θ(k,j) ρτ

j (t) =
∞

∑
k=m+1

ck

m

∑
j=0

︷ ︸︸ ︷
Θ(k,j) ρτ

j (t).

We can also write it in matrix form as

φn(t)cDσu(t)− CMBσ
φn Λτ

M(t) =
∞

∑
k=m+1

ck

m

∑
j=0

︷ ︸︸ ︷
Θ(k,j) ρτ

j (t)

Using the fact ρτ
j (t) ≤ 1 for t ∈ [0, τ], therefore, we can write

|φn(t)cDσu(t)− CMBσ
φn Λτ

M(t)| ≤ |
∞

∑
k=m+1

ck

m

∑
j=0

︷ ︸︸ ︷
Θ(k,j) |.

Furthermore, hence the proof is complete.

The above matrices have been successfully applied to solve fractional-order differential
equations (FDEs) under the effect of initial conditions. However these matrices do not
have the ability to solve FDEs with integral types of boundary conditions. Therefore, the
invention of new matrices that can easily handle integral types of boundary conditions are
of basic importance. In the forthcoming discussion, we will design two new operational
matrices having the ability to deal with integral type boundary conditions.
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Lemma 5. Let s(t) be a known function well defined on [0, τ] and φn
c (t) = ctn be a polynomial

then, for a function vector Λτ
M(t) as defined in (8), the following result holds

φn
c (t)

∫ τ

0
s(t)Λτ

M(t)dt = Qc,n,s(t)
M×M Λτ

M(t),

where the matrix Qc,n,s(t)
M×M is given as

Qc,n,s(t)
M×M =


Ω(0,0) Ω(0,1) · · · Ω(0,m)

Ω(1,0) Ω(1,1) · · · Ω(1,m)
...

...
. . .

...
Ω(m,0) Ω(m,1) · · · Ω(m,m)

.

where

Ω(i,j) =
j

∑
r=0

τcdiτ
r+n+1ג(j,r)

(2i + 1)(r + n + 1)
,

di is the Legendre coefficients of the function s(t) and (j,r)ג is as defined in (4).

Proof. Let s(t) be approximated with Legendre polynomials, as

s(t) =
m

∑
l=0

dlφ
n
c (t).

We can write the ith term of φn
c (t)

∫ τ
0 s(t)Λτ

M(t)dt as

ctn
∫ τ

0

m

∑
l=0

dlρ
τ
l (t)ρ

τ
i (t)dt = ctn

m

∑
l=0

dl

∫ τ

0
ρτ

l (t)ρ
τ
i (t)dt,

=
τcditn

2i + 1
.

The polynomial τcditn

2i+1 can be expressed as a series of Legendre polynomials as

τcditn

2i + 1
=

m

∑
j=0

Ω(i,j)ρj(t).

where the constant Ω(i,j) is given by

Ω(i,j) =
τcdi

2i + 1

∫ τ

0
ρτ

j (t)t
ndt.

Using the definition of ρτ
j (t) and after simplification, we can write

Ω(i,j) =
τcdi

2i + 1

j

∑
r=0

(j,r)ג

∫ τ

0
tr+ndt,

=
j

∑
r=0

τcdiτ
r+n+1ג(j,r)

(2i + 1)(r + n + 1)
.

Simulating the result for i = 0 : M and j = 0 : M completes the proof of the Lemma.

Lemma 6. Let φn
c (n) = ctn be a polynomial then for a function vector Λτ

M(t) as defined in (8);
the following holds

φn
c (t)Λ

τ
M(τ) = Rc,n,τ

M×MΛτ
M(t)
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The matrix Rc,n,τ
M×M is defined as

Rc,n,τ
M×M =


=(0,0) =(0,1) · · · =(0,m)

=(1,0) =(1,1) · · · =(1,m)
...

...
. . .

...
=(m,0) =(m,1) · · · =(m,m)

.

Furthermore, the entries are defined as

=(i,j) =
i

∑
k=0

j

∑
l=0

cτk+n+l+1ג(i,k)ג(j,l)

n + l + 1
.

Proof. The general term of the equality can be written as

φn
c (t)ρ

τ
i (τ) =

i

∑
k=0

.τkctn(i,k)ג

It can be approximated with Legendre polynomials

i

∑
k=0

τkctn(i,k)ג =
m

∑
j=0
=(i,j)ρ

τ
j (t),

where

=(i,j) =
∫ τ

0

i

∑
k=0

τkctnρτ(i,k)ג
j (t)dt.

Using the definition of Legendre polynomials we can write

=(i,j) =
i

∑
k=0

j

∑
l=0

cτk+n+l+1ג(i,k)ג(j,l)

n + l + 1
.

which completes the proof of the lemma.

4. Application of Operational Matrices

The operational matrix method for the solution of fractional differential equations
is, in fact, a spectral method. The main aim of the spectral method is to convert a typical
differential equation to system of easily solvable algebraic equations, which can be solved
to obtain the solution in the series form of some orthogonal polynomials. The application of
these methods to nonlinear differential equations results in a nonlinear system of algebraic
equations, which can be solved using some iterative algorithms (the Newton–Raphson
method is a frequently used method), see for example [46–53].

In this paper, we implement a different approach. We first use the Taylor series
method to linearize the nonlinear part f and g to convert the nonlinear fractional differ-
ential equation into a recurrence relation of linear fractional differential equations with
variable coefficients.
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4.1. Linear FDEs with Variable Coefficients

We first consider the following coupled system of linear fractional differential equa-
tions with variable coefficients

cDσ1 u(t) = c0(t)u + c1(t)u(γ1) + c2(t)v + c3(t)v(γ1) + h(t),
cDσ2 v(t) = d0(t)u + d1(t)u(γ1) + d2(t)v + d3(t)v(γ1) + k(t),

u(0) = u0, u(τ) = m1

∫ τ

0
s(t)u(t)dt,

v(0) = v0, v(τ) = m2

∫ τ

0
r(t)v(t)dt,

(10)

where m1 and m2 are some real constants. 0 < γ1, γ2 ≤ 1, 1 < σ1, σ2 ≤ 2, t ∈ [0, τ] and
ci(t), di(t), s(t), r(t), h(t) and k(t) are bounded, continuous, and well-defined functions on
the domain [0, τ].

Assume the solution of (10) in terms of shifted Legendre polynomials, such that the
following hold

cDσ1 u(t) = KMΛτ
M(t), cDσ2 v(t) = LMΛτ

M(t). (11)

Applying fractional integral of order σ1 on the first equation of (11) and making use of
Lemma 2, we can write

u(t) = KMHτ,σ1
M×MΛτ

M(t) + e0 + e1t. (12)

By the application of initial conditions, we get e0 = u0, and to get the value of e1, we use
the integral-type boundary conditions, and after simplification it follows that

KMHτ,σ1
M×MΛτ

M(τ) + u0 + e1τ =

m1KMHτ,σ1
M×M

∫ τ

0
s(t)Λτ

M(t)dt

+ m1

∫ τ

0
s(t)u0dt + m1e1

∫ τ

0
s(t)tdt,

e1 =
1
s1
(KMHτ,σ1

M×MΛτ
M(τ)

−m1KMHτ,σ1
M×M

∫ τ

0
s(t)Λτ

M(t)dt− s0),

where s1 = (m1
∫ τ

0 s(t)tdt− τ) and s0 = m1
∫ τ

0 s(t)u0dt− u0.
Now using the values of e0 and e1 in (12), we can write u(t) as

u(t) = KMHτ,σ1
M×MΛτ

M(t) + u0+

t
s1

(
KMHτ,σ1

M×MΛτ
M(τ)−m1KMHτ,σ1

M×M

∫ τ

0
s(t)Λτ

M(t)dt− s0

)
,

(13)

In view of Lemma 5 and Lemma 6, we can write Equation (13) as

u(t) =KMHτ,σ1
M×MΛτ

M(t) + KMHτ,σ1
M×MR

1
s1

,1,τ
M×MΛτ

M(t)

−KMHτ,σ1
M×MQ

m1
s1

,1,s(t)
M×M Λτ

M(t) + F1 MΛτ
M(t).

where u0 − s0t
s1

= F1Λτ
M(t). For simplicity of notation, we can write the above equations as

u(t) = KME(1)
M×MΛτ

M(t) + F1 MΛτ
M(t). (14)
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where

E(1)
M×M = Hτ,σ1

M×M

(
IM×M +R

1
s1

,1,τ
M×M −Q

m1
s1

,1,s(t)
M×M

)
Repeating the same procedure for v(t), we can get analogous representation as

v(t) = LME(2)
M×MΛτ

M(t) + F2 MΛτ
M(t). (15)

where

E(2)
M×M = Hτ,σ2

M×M

(
IM×M +R

1
r1

,1,τ
M×M −Q

m2
r1

,1,r(t)
M×M

)
Now, in view of (15), (14), (11), and Lemma 4, the equivalent matrix form for system (10) is
given as

KMΛτ
M(t) =KME(1)

M×M

(
Bc0,0

M×M + Bc1,γ1
M×M

)
Λτ

M(t)+

F1 M

(
Bc0,0

M×M + Bc1,γ1
M×M

)
Λτ

M(t)+

LME(2)
M×M

(
Bc2,0

M×M + Bc3,γ2
M×M

)
Λτ

M(t)+

F2 M

(
Bc2,0

M×M + Bc3,γ2
M×M

)
Λτ

M(t) + Z1 MΛτ
M(t),

LMΛτ
M(t) =KME(1)

M×M

(
Bd0,0

M×M + Bd1,γ1
M×M

)
Λτ

M(t)+

F1 M

(
Bd0,0

M×M + Bd1,γ1
M×M

)
Λτ

M(t)+

LME(2)
M×M

(
Bd2,0

M×M + Bd3,γ2
M×M

)
Λτ

M(t)+

F2 M

(
Bd2,0

M×M + Bd3,γ2
M×M

)
Λτ

M(t) + Z2 MΛτ
M(t)

(16)

Canceling out the common term and after simplification of notation, we can write

KM =KME(1)
M×M

(
Bc0,0

M×M + Bc1,γ1
M×M

)
+

LME(2)
M×M

(
Bc2,0

M×M + Bc3,γ2
M×M

)
+ Y1 M

LM =KME(1)
M×M

(
Bd0,0

M×M + Bd1,γ1
M×M

)
+

LME(2)
M×M

(
Bd2,0

M×M + Bd3,γ2
M×M

)
+ Y2 M,

(17)

where
Y1 M = F2 M

(
Bc2,0

M×M + Bc3,γ2
M×M

)
+

F1 M

(
Bc0,0

M×M + Bc1,γ1
M×M

)
+ Z1 M,

and
Y2 M = F2 M

(
Bd2,0

M×M + Bd3,γ2
M×M

)
+

F1 M

(
Bd0,0

M×M + Bd1,γ1
M×M

)
+ Z2 M.

The above equations can also be written as[
KM LM

]
=
[

KM LM
] E(1)(Bc0,0 + Bc1,γ1

)
E(1)

(
Bd0,0 + Bd1,γ1

)
E(2)(Bc2,0 + Bc3,γ2

)
E(2)

(
Bd2,0 + Bd3,γ2

) 
+
[

Y1 M Y2 M
]

(18)
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We see that (18) is a linear system of matrix equations. By solving (17), we will get
the required coefficients vector KM and LM, which can be used in (14) and (15) to get
approximation to the solution of the main problem.

4.2. Nonlinear FDEs

Nonlinear FDEs cannot be directly solved using the OP method; however, combining
it with the quasilinearization method makes it easy to recursively solve nonlinear FDEs.
The procedure of this technique is as given as follows.

• Approximate the initial solution, the solution of the linear part, by the method pre-
sented in previous section and name it u0(t) and v0(t).

• Linearize the nonlinear part at u0(t) and v0(t). This will convert the system of nonlin-
ear FDEs into a system of linear FDEs that is easily solvable with the method devolved.
Solve it and name the solution as u1(t) and v1(t).

• Repeat step 1.

Consider the following nonlinear FDEs.

cDσ1 u(t) = f (u, v, u(γ1), v(γ2)),
cDσ2 v(t) = g(u, v, u(γ1), v(γ2)),

u(0) = a0, u(τ) =
∫ ω1

0
s(t)u(t)dt, 0 < ω1 ≤ τ,

v(0) = b0, v(τ) =
∫ ω2

0
r(t)v(t)dt, 0 < ω2 ≤ τ.

(19)

separating the linear and nonlinear parts, we get

cDσ1 u(t) = L1(u, v, u(γ1), v(γ2)) + N1(u, v, u(γ1), v(γ2)),
cDσ2 v(t) = L2(u, v, u(γ1), v(γ2)) + N2(u, v, u(γ1), v(γ2)),

(20)

First solve the linear part:

cDσ1 u(t) = L1(u, v, u(γ1), v(γ2)),
cDσ2 v(t) = L2(u, v, u(γ1), v(γ2)),

(21)

Its solution is named u0(t) and v0(t). The next step is to linearize the nonlinear part.

cDσ1 u1(t) = L1(u1, v1, u(γ1)
1 , v(γ2)

1 ) + N1(u0, v0, u(γ1)
0 , v(γ2)

0 )

+ (u1 − u0)
∂N1

∂u0
+ (v1 − v0)

∂N1

∂v0
+

(u(γ1)
1 − u(γ1)

0 )
∂N1

∂u(γ1)
0

+ (v(γ2)
1 − v(γ2)

0 )
∂N1

∂v(γ2)
0

,

cDσ2 v1(t) = L2(u1, v1, u(γ1)
1 , v(γ2)

1 ) + N2(u0, v0, u(γ1)
0 , v(γ2)

0 )

+ (u1 − u0)
∂N2

∂u0
+ (v1 − v0)

∂N2

∂v0
+

(u(γ1)
1 − u(γ1)

0 )
∂N2

∂u(γ1)
0

+ (v(γ2)
1 − v(γ2)

0 )
∂N2

∂v(γ2)
0

.

(22)
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We get a system of FDEs with variable coefficients. The whole process can be expressed as

cDσ1 ur+1(t) = L1(ur+1, vr+1, u(γ1)
r+1 , v(γ2)

r+1 )+

N1(ur, vr, u(γ1)
r , v(γ2)

r )

+ (ur+1 − ur)
∂N1

∂ur
+ (vr+1 − vr)

∂N1

∂vr
+

(u(γ1)
r+1 − u(γ1)

r )
∂N1

∂u(γ1)
r

+ (v(γ2)
r+1 − v(γ2)

r )
∂N1

∂v(γ2)
r

cDσ2 vr+1(t) = L2(ur+1, vr+1, u(γ1)
r+1 , v(γ2)

r+1 )+

N2(ur, vr, u(γ1)
r , v(γ2)

r ) + (ur+1 − ur)
∂N2

∂ur

+ (vr+1 − vr)
∂N2

∂vr
+ (u(γ1)

r+1 − u(γ1)
r )

∂N2

∂u(γ1)
r

+ (v(γ2)
r+1 − v(γ2)

r )
∂N2

∂v(γ2)
r

(23)

The boundary conditions can be written as

ur+1(0) = a0, ur+1(τ) =
∫ ω1

0
s(t)ur+1(t)dt, 0 < ω1 ≤ τ,

vr+1(0) = b0, vr+1(τ) =
∫ ω2

0
r(t)vr+1(t)dt, 0 < ω2 ≤ τ.

(24)

It can be easily noted that (23) is fractional differential equation with variable coefficients.

5. Error Bound of the Approximate Solution and Convergence

In this section, we calculate a upper bound for error of approximation of solution with
the proposed method.

5.1. Error Bound for Single Differential Equation

Consider the following fractional differential equation.

cDσu(t) = c0(t)u(t) + c1(t)u(t)(γ) + h(t), (25)

subject to the following initial and boundary conditions

u(0) = u0, u(τ) = m1

∫ τ

0
s(t)u(t)dt.

Our aim is to derive an upper bound for the proposed method. We have to calculate RM
defined as

RM = |cDσu(t)−KMGτ,σ
M×MΛτ

M(t)|. (26)

The solution of the above problem can be written in terms of shifted Legendre series
such that

cDσu(t) =
∞

∑
k=0

ukρτ
k (t) = KMΛτ

M(t) +
∞

∑
k=m+1

ukρτ
k (t). (27)

Applying a fractional integral of order σ, using an operational matrix of integration and
using Corollary (1), we can write

u(t)− c0 − c1t = KMHτ,σ
M×MΛτ

M(t) +
∞

∑
k=m+1

ck

m

∑
i=0

Θi,k,τρτ
i (t). (28)
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Which can be simplified as

u(t) = KMHτ,σ
M×MΛτ

M(t) + c0 + c1t +
∞

∑
k=m+1

uk

m

∑
i=0

Θi,k,τρτ
i (t), (29)

We know from (14) and the integral type boundary conditions that we can conclude,

u(t) = KMEM×MΛτ
M(t) + F1 MΛτ

M(t) +
∞

∑
k=m+1

uk

m

∑
i=0

Θi,k,τρτ
i (t),

Assume that X̂ = KMEM×M + F1. Using Lemma (3) and Corollary (2), we can write

cl(t)u(t)(γ) = X̂T
MBγ

cl Λ
τ
M(t) +

∞

∑
k=m+1

uk

m

∑
i=0

m

∑
i′=0

Θi,k,τ

︷ ︸︸ ︷
Θ(l)

k,i′ ,τ ρτ
i′(t). (30)

Approximating h(t) = F2Λτ
M(t) + ∑∞

k′=m+1 fk′ρ
τ
k′(t) and using (30) in (25) we get

KMΛτ
M(t)− X̂T

MB0
c0

Λτ
M(t)− X̂T

MBγ
c1 Λτ

M(t)− F2Λτ
M(t) = RM(t).

where RM(t) is defined by relation

RM(t) =
∞

∑
k=m+1

ukρτ
k (t) +

∞

∑
k=m+1

uk

m

∑
i=0

m

∑
i′=0

Θi,k,τ

︷ ︸︸ ︷
Θ(0)

k,i′ ,τ ρτ
i′(t)+

∞

∑
k=m+1

uk

m

∑
i=0

m

∑
i′=0

Θi,k,τ

︷ ︸︸ ︷
Θ(1)

k,i′ ,τ ρτ
i′(t) +

∞

∑
k′=m+1

fk′ρ
τ
k′(t),

RM(t) =
∞

∑
k=m+1

uk[ρ
τ
k (t) +

m

∑
i=0

m

∑
i′=0

Θi,k,τ

︷ ︸︸ ︷
Θ(0)

k,i′ ,τ ρτ
i′(t)+

m

∑
i=0

m

∑
i′=0

Θi,k,τ

︷ ︸︸ ︷
Θ(1)

k,i′ ,τ ρτ
i′(t)] +

∞

∑
k′=m+1

fk′ρ
τ
k′(t).

Using the bounded property of Legendre polynomail, it follows that

|RM(t)| ≤
∞

∑
k=m+1

|uk||[1 +
m

∑
i=0

m

∑
i′=0

Θi,k,τ

︷ ︸︸ ︷
Θ(0)

k,i′ ,τ +
m

∑
i=0

m

∑
i′=0

Θi,k,τ

︷ ︸︸ ︷
Θ(1)

k,i′ ,τ ]|+
∞

∑
k′=m+1

| fk′ |. (31)

In view of Theorem (1), it is evident that if the function u(t) and f (t) are sufficiently
smooth functions, then the sequence that defines their coefficient is convergent to zero.
Hence, we conclude that as m→ ∞ the coefficients um → 0 and fm → 0. Hence it can be
easily observed that the error |RM(t)| → 0. Equation (31) also establishes an upper bound
of the error between the exact and approximate solution.

5.2. Error Bound for Coupled System of Fractional Differential Equations

Consider the following system of FDEs.

cDσu(t) = c0(t)u(t) + c1(t)v(t) + c2(t)u(t)(γ) + c3(t)v(t)(γ) + h(t),
cDσv(t) = d0(t)u(t) + d1(t)v(t) + d2(t)u(t)(γ) + d3(t)v(t)(γ) + g(t),

(32)
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subject to the following initial and boundary conditions

u(0) = u0, u(τ) = m1

∫ τ

0
s(t)u(t)dt.

v(0) = v0, v(τ) = m2

∫ τ

0
r(t)v(t)dt.

Our aim is to derive an upper bound for the proposed method. We have to calculate Ru
M

and Rv
M, defined as

Ru
M = |cDσu(t)−KMGτ,σ

M×MΛτ
M(t)|,

Rv
M = |cDσv(t)− LMGτ,σ

M×MΛτ
M(t)|.

(33)

We know from (14) that

u(t) = KMEM×MΛτ
M(t) + F1 MΛτ

M(t) +
∞

∑
k=m+1

uk

m

∑
i=0

Θi,k,τρτ
i (t),

v(t) = LMEM×MΛτ
M(t) + F2 MΛτ

M(t) +
∞

∑
k=m+1

vk

m

∑
i=0

Θi,k,τρτ
i (t),

Assume, X̂ = KMEM×M + F1 and Ŷ = LMEM×M + F2. Using Lemma (3) and
Corollary (2), we can write

cl(t)u(t)(γ) = X̂T
MBγ

cl Λ
τ
M(t) +

∞

∑
k=m+1

uk

m

∑
i=0

m

∑
i′=0

Θi,k,τ

︷ ︸︸ ︷
Θ(l)

k,i′ ,τ ρτ
i′(t),

dl(t)v(t)(γ) = ŶT
MBγ

dl
Λτ

M(t) +
∞

∑
k=m+1

vk

m

∑
i=0

m

∑
i′=0

Θi,k,τ

︷ ︸︸ ︷
Θ(l)

k,i′ ,τ ρτ
i′(t).

(34)

Approximating h(t) = D1Λτ
M(t) + ∑∞

k=m+1 dkρτ
k (t) and g(t) = D2Λτ

M(t) + ∑∞
k=m+1

d′kρτ
k (t) and using (30) in (25) we get

KMΛτ
M(t)− X̂T

MB0
c0

Λτ
M(t)− ŶT

MB0
c1

Λτ
M(t)− X̂T

MBγ
c2 Λτ

M(t)− ŶT
MBγ

c3 Λτ
M(t)− D1Λτ

M(t) = Ru
M(t),

LMΛτ
M(t)− X̂T

MB0
d0

Λτ
M(t)− ŶT

MB0
d1

Λτ
M(t)− X̂T

MBγ
d2

Λτ
M(t)− ŶT

MBγ
d3

Λτ
M(t)− D2Λτ

M(t) = Rv
M(t).

where Ru
M(t) and Rv

M(t) is defined by the relation

Ru
M(t) =

∞

∑
k=m+1

ukρτ
k (t) +

∞

∑
k=m+1

uk

m

∑
i=0

m

∑
i′=0

Θi,k,τ

︷ ︸︸ ︷
Θ(0)

k,i′ ,τ ρτ
i′(t) +

∞

∑
k=m+1

vk

m

∑
i=0

m

∑
i′=0

Θi,k,τ

︷ ︸︸ ︷
Θ(0)

k,i′ ,τ ρτ
i′(t)+

∞

∑
k=m+1

uk

m

∑
i=0

m

∑
i′=0

Θi,k,τ

︷ ︸︸ ︷
Θ(1)

k,i′ ,τ ρτ
i′(t) +

∞

∑
k=m+1

vk

m

∑
i=0

m

∑
i′=0

Θi,k,τ

︷ ︸︸ ︷
Θ(1)

k,i′ ,τ ρτ
i′(t) +

∞

∑
k=m+1

dkρτ
k (t),

Rv
M(t) =

∞

∑
k=m+1

vkρτ
k (t) +

∞

∑
k=m+1

uk

m

∑
i=0

m

∑
i′=0

Θi,k,τ

︷ ︸︸ ︷
Θ(0)

k,i′ ,τ ρτ
i′(t) +

∞

∑
k=m+1

vk

m

∑
i=0

m

∑
i′=0

Θi,k,τ

︷ ︸︸ ︷
Θ(0)

k,i′ ,τ ρτ
i′(t)+

∞

∑
k=m+1

uk

m

∑
i=0

m

∑
i′=0

Θi,k,τ

︷ ︸︸ ︷
Θ(1)

k,i′ ,τ ρτ
i′(t) +

∞

∑
k=m+1

vk

m

∑
i=0

m

∑
i′=0

Θi,k,τ

︷ ︸︸ ︷
Θ(1)

k,i′ ,τ ρτ
i′(t) +

∞

∑
k=m+1

d′kρτ
k (t),
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Using the bounded property of the Legendre polynomial, it follows that

|Ru
M(t)| ≤

∞

∑
k=m+1

|uk||[1 +
m

∑
i=0

m

∑
i′=0

Θi,k,τ

︷ ︸︸ ︷
Θ(0)

k,i′ ,τ +
m

∑
i=0

m

∑
i′=0

Θi,k,τ

︷ ︸︸ ︷
Θ(1)

k,i′ ,τ ]|+

∞

∑
k=m+1

|vk||[
m

∑
i=0

m

∑
i′=0

Θi,k,τ

︷ ︸︸ ︷
Θ(0)

k,i′ ,τ +
m

∑
i=0

m

∑
i′=0

Θi,k,τ

︷ ︸︸ ︷
Θ(1)

k,i′ ,τ ]|+
∞

∑
k=m+1

|dk|,

|Rv
M(t)| ≤

∞

∑
k=m+1

|vk||[1 +
m

∑
i=0

m

∑
i′=0

Θi,k,τ

︷ ︸︸ ︷
Θ(0)

k,i′ ,τ +
m

∑
i=0

m

∑
i′=0

Θi,k,τ

︷ ︸︸ ︷
Θ(1)

k,i′ ,τ ]|+

∞

∑
k=m+1

|uk||[
m

∑
i=0

m

∑
i′=0

Θi,k,τ

︷ ︸︸ ︷
Θ(0)

k,i′ ,τ +
m

∑
i=0

m

∑
i′=0

Θi,k,τ

︷ ︸︸ ︷
Θ(1)

k,i′ ,τ ]|+
∞

∑
k=m+1

|d′k|.

(35)

The above equation establishes an error bound for the solution u(t) and v(t). It also ensures
the convergence of the proposed method for the solution of coupled system of FDEs.

6. Test Problems

We solve one single equation, three systems of linear FDEs with variable equations,
and two systems of nonlinear problems, and analyze the convergence of the approximate
solution by measuring the following error norms.

||Eu||2 =
1
τ

∫ τ

0
UM(t)− u(t)dt

and
||Eu||max = maxx∈[0,τ]|UM(t)− u(t)|.

We check the accuracy of the boundary condition by measuring the following error norms.

||Eu||b = |UM(τ)−m1

∫ τ

0
UM(t)|.

In the above bounds, the quantity UM(t) represents the m− term approximation to the
solution u(t).

Test Problem 1.

cD1.2u(t) = (t2 + sin(t))u(t) + (2t− t3)u0.7(t) + f (t),

u(0) = 4, u(1) = 1.1216
∫ 1

0
cos(t)u(t)dt,

where the exact solution u(t) = t3 + t2 + t + 4, and the source term

f (t) =
38683084397149375 t

4
5 (50 t2−35 t+21)

378302368699121664 −
(
sin(t) + t2) (t4 − t3 + t2 + 4

)
−

150543064388819875 t
13
10 (2 t−t3) (400 t2−330 t+253)

22218508761632342016 .
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Test Problem 2.

cDσu(t) = (t + 1)u(t) + (1− t)uσ1(t) + (2t)v(t)

+ (t2)v′(t) + f (t),
cDσv(t) = (t2 + 1)u(t) + (1− t2)uσ1(t) + (3t)v(t)

+ (t3)v′(t) + g(t),

u(0) = 1, u(1) = 2.1270
∫ 1

0
sin(t)u(t)dt,

v(0) = −1, v(1) = −1.8925
∫ 1

0
cos(t)v(t)dt.

where the exact solution u(t) = t2 + t3 + et and v(t) = t2 − t3 − et, and the source term
f (t) = 6 t+ et + 2 t

(
et − t2 + t3)− (t + 1)

(
et + t2 + t3)+(t− 1)

(
2 t + et + 3 t2)+ t2 (et − 2 t + 3 t2)

+2 and g(t) = 3 t
(
et − t2 + t3) − et − 6 t + t3 (et − 2 t + 3 t2) − (t2 + 1

) (
et + t2 + t3) + (t2 − 1

)(
2 t + et + 3 t2)+ 2.

Test Problem 3.

cDσu(t) =sin(t)u(t) + cos(t)uσ1(t)+

(sin(t) + cos(t))v(t) + sin(2t)v′(t) + f (t),
cDσv(t) =(cos(2t)))u(t) + (tsin(t))uσ1(t)

+ (tcos(t))v(t) + (t2sin(t))v′(t) + g(t),

u(0) = 0, u(1) = 0.8
∫ 1

0
e2tsin(t)u(t)dt,

v(0) = 1, v(1) = 0.71
∫ 1

0
e−2tcos(t)v(t)dt.

where the exact solution u(t) = etsin(t) and v(t) = e−tcos(t), and the source term f (t) =
2 et cos(t) − et sin(t)2 − cos(t)

(
et cos(t) + et sin(t)

)
+ sin(2 t)

(
e−t cos(t) + e−t sin(t)

)
− e−t cos(t)

(cos(t) + sin(t)) and g(t) = 2 e−t sin(t) − t e−t cos(t)2 − t sin(t)
(
et cos(t) + et sin(t)

)
− cos(2 t) et

sin(t) + t2 sin(t)
(
e−t cos(t) + e−t sin(t)

)
.

Test Problem 4.

cDσu(t) = e(t)u(t) + e(−t)uσ1 (t)+

(e(t) + e(−t))v(t) + e(2t)v′(t) + f (t),
cDσv(t) = (e(−2t))u(t) + (te(t))uσ1 (t)

+ (te(t))v(t) + (t2e(t))v′(t) + g(t),

u(0) = 1, u(1) = 0.5
∫ 1

0
(1− t)e2tu(t)dt,

v(0) = 1, v(1) = 10
∫ 1

0
(1− t2)e−2tv(t)dt.

where the exact solution u(t) = t4(2 − t)3 and v(t) = (t3)(3 − t), and the source term f (t) =

e−t
(

4 t3 (t− 2)3 + 3 t4 (t− 2)2
)
− 12 t2 (t− 2)3 − 24 t3 (t− 2)2 − e2 t

(
t3 (2 t− 6) + 3 t2 (t− 3)2

)
−

3 t4 (2 t− 4) + t4 et (t− 2)3 − t3 (e−t + et) (t− 3)2 and g(t) = 6 t (t− 3)2 + 6 t2 (2 t− 6) + 2 t3 −
t4 et (t− 3)2 − t2 sin(t)

(
t3 (2 t− 6) + 3 t2 (t− 3)2

)
+ t4 e−2 t (t− 2)3 + t et (4 t3 (t− 2)3 + 3 t4

(t− 2)2).
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Test Problem 5.

cDσu(t) = u(t) + v(t) + u2(t) + v′(t)u′(t) + f (t),
cDσv(t) = u′(t) + v′(t) + v(t)2 + u(t)u′(t) + g(t),

u(0) = 0, u(1) = 5.4069
∫ 1

0
sin(t)u(t)dt,

v(0) = 1, v(1) = 0.

where the exact solution u(t) = (t2 + 1)t2 and v(t) = t3(1− t), and the source term f (t) = t3 (t− 1)+(
3 t2 (t− 1) + t3) (2 t

(
t2 + 1

)
+ 2 t3)− t2 (t2 + 1

)
− t4 (t2 + 1

)2
+ 12 t2 + 2 and g(t) = 3 t2 (t− 1)−

2 t
(
t2 + 1

)
− t6 (t− 1)2 − 6 t (t− 1)− 6 t2 − t3 − t2 (t2 + 1

) (
2 t
(
t2 + 1

)
+ 2 t3).

Test Problem 6.

cDσu(t) =(t + 1)u(t) + (1− t)u′(t) + 2tv(t)

+ t2v′(t) + u(t)2 + v′(t)u′(t)− v3(t) + f (t),
cDσv(t) =(t2 + 1)u(t) + (1− t2)u′(t) + 3tv(t)

+ t3v′(t) + v(t)2 + u(t)u′(t)− u4(t) + g(t),

u(0) = 0, u(1) = 0.6173
∫ 1

0
(2t + 1)u(t)dt,

v(0) = 1, v(1) = 0.7311
∫ 1

0
(3t + 1)v(t)dt.

where the exact solution u(t) = sin(t) and v(t) = et, and the source term f (t) = e3 t − sin(t) +
cos(t) (t− 1)− t2 et − et cos(t)− sin(t) (t + 1)− sin(t)2 − 2 t et and g(t) = et − e2 t − t3 et − cos(t)
sin(t) + sin(t)4 + cos(t)

(
t2 − 1

)
− sin(t)

(
t2 + 1

)
− 3 t et.

7. Results and Discussion
The first test problem is solved using the proposed method. The problem is linear and is

relatively easy to solve. We compare the approximate solution with the exact solution of the problem.
We observe that by increasing the scale level of approximation, the approximate solution draws
closer to the exact solution as expected; see for example Figure 1a. At M = 8 the approximate
solution (black line) coincides with the exact solution (red dots). In the second part of the same
figure, we plot the absolute difference of the exact and approximate solution considering different
scales. It is observed that at M = 11, the absolute error is less than 10−9. This means accuracy
up to the ninth decimal place is achieved. We also calculate all the three error norms at different
scales. The results are displayed in Table 1. One can easily note that at M = 5, the value of is
||Eu||2 = 0.1314× 10−1, ||Eu||max = 0.6431× 10−1 and ||Eu||b = 8.0032× 10−17. While increasing
the scale levels, these values start to decrease with great speed. At M = 13, these values become
4.5147× 10−10, 2.4318× 10−9 and 2.4362× 10−17, respectively.

Table 1. Error norms of Test Problem 1 at scale level M = 5 : 13.

M ||Eu||2 ||Eu||max ||Eu||b
5 0.1314× 10−1 0.6431× 10−1 8.0032× 10−17

6 1.1355× 10−2 9.3415× 10−1 0.4367× 10−16

7 2.3631× 10−3 8.3640× 10−3 3.0669× 10−16

8 3.9474× 10−5 3.6641× 10−4 9.2291× 10−17

9 1.5963× 10−5 0.5933× 10−5 8.3432× 10−17

10 1.6057× 10−6 0.5364× 10−6 7.7554× 10−17

11 1.5823× 10−7 1.0592× 10−7 6.9857× 10−17

12 7.4855× 10−9 9.0092× 10−8 5.4743× 10−17

13 4.5147× 10−10 2.4318× 10−9 2.4362× 10−17
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Figure 1. (a) Comparison of exact and approximate solution at different scale levels of Test Problem 1.
(b) Absolute difference in the exact and approximate solutions at different scale levels of
Test Problem 1.

The analysis of the second problem is given in Table 2. We fix the orders of equation to σ = 1.8
and γ = 0.8 and solve the problem using scale level ranges from M = 5 to M = 13. We observe that
the error norm decreases rapidly with the increase in scale level. For example, the value ||Eu||2 at
M = 5 is 1.1044× 10−1 and at M = 13, this value drops to 4.5177× 10−10, which is very high accuracy.
At the same scale, the value of ||Ev||2 is 1.3237× 10−10. The value of norms ||Eu||max and ||Ev||max
are 1.4501× 10−9 and 2.2449× 10−10, respectively. Similarly the approximate solution satisfy the
boundary condition with high accuracy. The errors in the boundary condition are 9.7194× 10−17 and
6.2399× 10−16. The error in the boundary condition is observed to be constant, that is, we have the
same accuracy at all scale level. The accuracy of the proposed method for all possible values of σ1
and σ2 are analyzed by calculating the error norm ||Ev||2 . The error norm for the solution u(t) and
v(t) are displayed in Figure 2. We observe that the method produces excellent approximation to the
solution at almost all values of parameters.

Table 2. Error norms of Test Problem 2 at scale level M = 5 : 13.

M ||Eu||2 ||Ev||2 ||Eu||max ||Ev||max ||Eu||b ||Ev||b
5 1.1044× 10−1 4.3598× 10−2 3.6499× 10−1 6.5235× 10−2 7.9467× 10−17 6.2402× 10−16

6 1.9005× 10−2 9.3636× 10−3 1.6085× 10−1 1.6796× 10−2 9.7023× 10−16 6.2370× 10−16

7 2.3621× 10−3 7.6605× 10−4 7.5980× 10−3 1.6380× 10−3 9.7237× 10−17 6.2396× 10−16

8 3.9834× 10−5 4.9422× 10−5 1.0331× 10−4 1.0113× 10−4 9.7191× 10−17 6.2400× 10−16

9 1.4293× 10−5 5.3436× 10−6 4.5571× 10−5 8.6999× 10−6 9.7195× 10−17 6.2400× 10−16

10 1.9227× 10−6 5.0884× 10−7 6.1295× 10−6 7.3992× 10−7 9.7194× 10−17 6.2399× 10−16

11 1.2515× 10−7 3.1891× 10−8 4.0112× 10−7 6.2640× 10−8 9.7194× 10−17 6.2399× 10−16

12 7.1330× 10−9 1.9583× 10−9 2.2596× 10−8 3.6441× 10−9 9.7194× 10−17 6.2399× 10−16

13 4.5177× 10−10 1.3237× 10−10 1.4501× 10−9 2.2449× 10−10 9.7194× 10−17 6.2399× 10−16
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Figure 2. Errornorm for different values of σ1 and σ2 in Test Problem 2.

The same analysis is performed for Test Problem 3 and Test Problem 4. The results
are shown in Tables 3 and 4. The same conclusion is reached for these two examples. The
error bounds are shown in Figures 3 and 4. We observe that the method yields an almost
accurate solution for all values of these parameters. In Figure 2, we can easily see that the
error norm is less than 10−3. Note that for these problems we have set M = 5. It is always
possible to get a more accurate solution by selecting the highest choices of scale level.
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Figure 4. Error norm on boundary for different values of σ1 and σ2 in Test Problem 4.

Table 3. Error norms of Test Problem 3 at scale level M = 5 : 13.

N ||Eu||2 ||Ev||2 ||Eu||max ||Ev||max ||Eu||b ||Ev||b
5 6.5505× 10−3 5.1204× 10−4 1.5519× 10−2 8.6002× 10−4 7.0670× 10−17 1.8084× 10−18

6 3.2583× 10−4 2.8746× 10−5 7.7139× 10−4 4.7281× 10−5 7.0336× 10−17 1.6297× 10−18

7 4.6407× 10−6 4.3808× 10−7 1.0949× 10−5 7.1483× 10−7 7.0320× 10−17 1.6203× 10−18

8 4.6870× 10−7 4.6599× 10−8 1.1065× 10−6 7.8519× 10−8 7.0320× 10−17 1.6201× 10−18

9 4.3761× 10−8 3.4302× 10−9 1.0365× 10−7 5.7780× 10−9 7.0320× 10−17 1.6201× 10−18

10 1.3030× 10−9 1.1448× 10−10 3.0748× 10−9 1.8688× 10−10 7.0320× 10−17 1.6201× 10−18

11 1.2252× 10−11 1.1526× 10−12 2.8927× 10−11 1.8785× 10−12 7.0320× 10−17 1.6201× 10−18

12 7.2561× 10−13 7.2734× 10−14 1.7118× 10−12 1.1828× 10−13 7.0320× 10−17 1.6201× 10−18

13 4.6262× 10−14 3.6748× 10−15 1.0959× 10−13 6.1876× 10−15 7.0320× 10−17 1.6201× 10−18

Table 4. Error norms of Test Problem 4 at scale level M = 5 : 13.

N ||Eu||2 ||Ev||2 ||Eu||max ||Ev||max ||Eu||b ||Ev||b
5 0.0108 0.0036249 0.030961 0.0095518 −3.5187× 10−17 3.7849× 10−15

6 0.0048582 0.0020882 0.01299 0.0075678 3.4932× 10−17 3.78× 10−15

7 0.00055459 0.00024661 0.001525 0.00089155 3.4845× 10−17 3.7773× 10−15

8 9.6413 × 10−16 7.5388× 10−16 1.8345× 10−15 1.2652× 10−15 3.486× 10−17 3.7777× 10−15

9 6.8784× 10−16 1.4702× 10−15 1.3601× 10−15 2.8364× 10−15 3.4861× 10−17 3.7777× 10−15

10 4.5115× 10−15 5.6863× 10−16 1.302× 10−14 8.6167× 10−16 3.4861× 10−17 3.7777× 10−15

11 8.4757× 10−17 2.7414× 10−16 1.6027× 10−16 4.7286× 10−16 3.4861× 10−17 3.7777× 10−15

12 1.5906× 10−14 3.1092× 10−15 4.6821× 10−14 6.3783× 10−15 3.4861× 10−17 3.7777× 10−15

13 4.926× 10−15 1.0866× 10−15 1.4378× 10−14 2.0953× 10−15 3.4861× 10−17 3.7777× 10−15

The nonlinear Test Problem 5 is solved with the proposed iterative scheme. We use
three different choices of the parameters σ and γ and calculate the the error norms ||Eu||2
at different iterations. We use seven iterations for the approximation of solution. The
results are displayed in Figures 5 and 6. We observe that the error decreases with respect
to the number of iterations and is highly convergent. Note that for this example, we fix the
scale level M = 10. It is clear form the figure that the proposed method is highly efficient,
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especially in the solution of nonlinear equations. The same phenomenon is observed for
Test Problem 6. The results are displayed in Figure 7.
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Figure 5. Error norm of Test Problem 4.
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8. Conclusions and Future Work

This article presents a new algorithm for the solution of fractional order differential
equations. The Newton Raphson method is combined with the operational matrix method
for the solution of these problems. The convergence of the proposed method is checked
analytically and is confirmed by solving several test problems. It is found that the approxi-
mate solution is highly accurate, and one can get high accuracy by using high scale levels.
The mathematical proof of convergence and error analysis is our future plan of research.
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