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INTRODUCTION 
 

Neurodegenerative disease is characterized by 

progressive loss of structures and functions in brain and  

 

spinal cord neurons [1]. Common neurodegenerative 

diseases include Alzheimer's disease (AD), Parkinson's 

disease (PD), and Huntington's disease (HD). With the 

increase in global aging, the burden of these diseases 
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ABSTRACT 
 

Considerable evidence suggests that metabolic abnormalities are associated with neurodegenerative 
diseases. This study aimed to conduct a systematic metabolic analysis of Alzheimer’s disease (AD), 
Parkinson’s disease (PD) and Huntington’s disease (HD). Human and mouse model microarray datasets were 
downloaded from the Gene Expression Omnibus database. The metabolic genes and pathways were 
collected from the Recon 3D human metabolic model. Drug and target information was obtained from the 
DrugBank database. This study identified ATP1A1, ATP6V1G2, GOT1, HPRT1, MAP2K1, PCMT1 and PLK2 as 
key metabolic genes that were downregulated in AD, PD and HD. We screened 57 drugs that target these 
genes, such as digoxin, ouabain and diazoxide. This study constructed multigene diagnostic models for AD, 
PD and HD by using metabolic gene expression profiles in blood, all models showed high accuracy (AUC > 
0.8) both in the experimental and validation sets. Furthermore, analysis of animal models showed that 
there was almost no consistency among the metabolic changes between mouse models and human 
diseases. This study systematically revealed the metabolic damage among AD, PD, and HD and uncovered 
the differences between animal models and human diseases. This information may be helpful for 
understanding the metabolic mechanisms and drug development for neurodegenerative diseases. 
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is increasing rapidly worldwide [2]. AD is the most 

serious neurodegenerative disease, affecting approxi-

mately 0.6% of the global population [2]. The 

pathological features of AD include amyloid β and tau 

protein aggregation, mitochondrial dysfunction and 

synaptic injury [3, 4]. PD is the second most common 

neurodegenerative disease characterized by muscle 

stiffness, bradykinesia and uncontrollable tremors, and 

its severity causes gradual deterioration [5]. The main 

pathological anatomy of PD is the loss of large 

numbers of dopaminergic neurons in the substantia 

nigra [6]. HD is an autosomal dominant neuro-

degenerative disease, and the pathological feature is 

gradual degeneration of the striatal neurons, which 

affects muscle coordination and causes mental decline 

and psychopathological problems [7]. Mutations in the 

huntingtin (HTT) gene is the main cause of HD onset 

[8]. 

 

Multiple neurodegenerative diseases show severe 

metabolic abnormalities [9]. Damage from oxidative 

phosphorylation promotes AD, and it has been shown 

that oxidative damage occurs before Aβ deposition in 

APP transgenic mouse. The expression of energy 

metabolism-related genes is also affected in PD and 

HD [10]. Glutamate metabolism plays a crucial role in 

learning and memory, synaptic plasticity and neuronal 

development [11]. Abnormal glutamate metabolism 

causes neuronal dysfunction and degeneration in 

chronic neurodegenerative diseases [12]. Disorders of 

lipid metabolism are associated with AD and other 

neurodegenerative diseases. Impaired cholesterol 

metabolism will promote the processing of Aβ and 

lead to Aβ aggregation [13]. The citric acid cycle is a 

key link between sugar, lipid and amino acid 

metabolism and is an important process in energy 

metabolism. Studies have shown that damage to the 

citric acid cycle correlates with neurodegenerative 

disease pathology [14–16]. Lysosomal metabolic 

abnormalities can lead to decreased energy 

metabolism and a decreased clearance rate of cellular 

macromolecules, and studies have shown that dys-

function of lysosomal metabolism is correlated with 

AD, PD and HD [17]. 

 

The above evidence suggests that neurodegenerative 

diseases may share common metabolic damage. 

Therefore, the purpose of this study was to explore the 

common and differential metabolic damage in different 

brain regions among AD, PD and HD and to screen 

potential drugs that target the identified key metabolic 

genes. Furthermore, this study constructed multigene 

diagnostic models by using the expression profiles of 

metabolic genes in the blood. We also compared the 

metabolic differences between mouse models and 

human diseases. 

RESULTS 
 

Overall metabolic change in AD, PD and HD 
 

Human brain transcriptome datasets of GSE5281 (AD) 

[18], GSE20295 (PD) [19] and GSE3790 (HD) [20] 

were collected for our reanalysis (Supplementary 

Table 1). There were no sex differences in any brain 

regions between cases and controls in these datasets. 

The age distribution in patients and controls showed 

no difference in most brain regions except for the PUT 

and SN in PD (Table 1). We mapped the metabolic 

genes from the Recon 3D human metabolism model 

[21] to the above datasets and performed differential 

expression gene analysis. The ratio of deregulated 

metabolic genes to total deregulated genes was higher 

than the ratio of mapped metabolic genes to all genes 

in most brain regions in the whole cohort, male and 

female groups, and in all brain regions in the elderly 

group (Supplementary Figure 1). This finding suggests 

that deregulated metabolic genes play important roles 

in these diseases. Through unsupervised clustering of 

all metabolic gene expression profiles, female patients 

and controls in the AD and PD datasets were mainly 

divided into two categories, and the other groups did 

not achieve the desired classification effect 

(Supplementary Figures 2–5). Interestingly, three brain 

regions in HD were divided into distinct classes, 

whereas there were no significant differences among 

brain regions in AD or PD in any groups. This 

indicates that the expression of metabolic genes in HD 

is brain-region specific. 
 

Damaged metabolic pathways in AD, PD and HD 
 

Metabolic pathway enrichment results showed that there 

were more impaired metabolic pathways in multiple 

brain regions in AD, whereas they were relatively less 

affected in PD and HD in the whole cohort (Figure 1). 

Alanine and aspartate metabolism, oxidative 

phosphorylation, extracellular transport and lysosomal 

transport were significantly enriched in multiple brain 

regions in all three diseases. Furthermore, most amino 

acid metabolism pathways and carbohydrate 

metabolism pathways were downregulated in at least 

one brain region in AD and PD (especially in the HIP 

and PC in AD and the SN in PD), whereas only a few of 

these metabolic pathways were affected in HD. We also 

observed a relatively consistent trend of metabolic 

pathway changes in the male, female and elderly groups 

(Supplementary Figures 6–8). Notably, male patients 

showed multiple downregulated metabolic pathways, 

whereas these pathways were nearly unaffected in the 

SN in female patients with PD. Pearson correlation 

analysis showed that there were strong positive 

correlations among pathways in amino acid metabolism, 
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Table 1. Sex and age information of neurodegenerative disease patients and controls. 

Neurodegenerative diseases 
Sex (male/female)  Age (years)1 

Case Control P2  Case Control P3 

Alzheimer's Disease        

Entorhinal Cortex 4/6 10/3 0.102  85.6 ± 6.3 80.3 ± 9.2 0.118 

Hippocampus 6/4 10/3 0.650  77.8 ± 5.7 79.6 ± 9.4 0.574 

Medial Temporal Gyrus 10/6 8/4 1.000  79.1 ± 6.4 80.1 ± 9.8 0.771 

Posterior Cingulate 6/3 9/4 1.000  77.6 ± 6.5 79.8 ± 9.4 0.522 

Superior Frontal Gyrus 13/10 7/4 1.000  79.2 ± 7.5 79.3 ± 10.2 0.977 

Primary Visual Cortex 11/8 9/3 0.452  80.2 ± 6.7 77.9 ± 6.9 0.385 

Parkinson's Disease        

Prefrontal Cortex 8/6 10/5 0.710  77.0 ± 6.3 71.2 ± 11.1 0.095 

Putamen 9/6 15/5 0.467  76.7 ± 6.2 66.4 ± 13.8 0.006 

Substantia Nigra 6/5 13/5 0.432  75.5 ± 5.8 66.8 ± 14.4 0.033 

Huntington's Disease        

Caudate Nucleus 23/15 23/9 0.449  59.0 ± 14.9 58.4 ± 18.1 0.877 

Frontal Cortex 22/15 19/9 0.606  56.6 ± 15.5 56.1 ± 17.5 0.914 

Cerebellum 23/16 16/11 1.000  58.3 ± 15.6 59.1 ± 17.5 0.849 

1 Data are presented as the mean ± standard deviation. 
2 Fisher's exact test was used to compare population sex in the two groups. 
3 Welch two sample t-test was used to compare population age in the two groups. 
 

carbohydrate metabolism, nucleotide metabolism and 

protein metabolism, whereas pathways in energy 

metabolism, glycan biosynthesis and metabolism and 

lipid metabolism showed no or negative correlations 

with the above pathways in all brain regions 

(Supplementary Figure 9). 

 

Deregulated metabolic genes shared by multiple 

brain regions 
 

We compared the commonly and heterogeneous 

deregulated metabolic genes for the three diseases. 

There were hundreds of deregulated metabolic genes 

in AD and relatively few deregulated metabolic genes 

in PD and HD. Most of these genes were 

downregulated in more than one brain region, and few 

upregulated genes were expressed in multiple brain 

regions (Figure 2). Deregulated metabolic genes 

shared by multiple brain regions were mostly enriched 

in amino acid metabolism, signaling transduction, 

carbohydrate metabolism, energy metabolism and 

several neurodegenerative disease-related pathways. 

This finding indicates that deregulated metabolic 

genes shared by multiple brain regions can accurately 

reflect the common characteristics of neuro-

degenerative diseases. Approximately one-third of 

these metabolic genes were deregulated only in one 

brain region, and these genes were enriched in 

relatively specific pathways. Furthermore, there were 

92 heterogeneous deregulated genes (upregulated in 

one brain region and downregulated in another brain 

region), and most of these genes were found in AD 

(Supplementary Figure 10). 

 

Key metabolic genes in AD, PD and HD 
 

There were 40 deregulated metabolic genes shared by 

the three neurodegenerative diseases, most of which 

were consistently up- or downregulated in multiple 

brain regions (Supplementary Figure 11). The gene 

coexpression network showed that ATP1A1, 

ATP6V1G2, GOT1, HPRT1, MAP2K1, PCMT1 and 

PLK2 were significantly correlated with many other 

metabolic genes in AD, PD and HD (Supplementary 

Figure 12–14). Furthermore, the average degree of these 

metabolic genes was higher than 100 (Supplementary 

Figure 15). Therefore, we defined these genes as key 

metabolic genes. All of these genes were downregulated 

in multiple brain regions in AD and PD and in the CN 

in HD (Figure 3). A brain-specific network showed that 

these genes were mainly involved in nucleotide 

metabolic processes (Supplementary Figure 16). In 

recent years, the anti-aging gene SIRT1 has been 

identified as an important metabolic gene that is critical 

to prevent metabolic diseases [22–25] and 

neurodegenerative diseases [26–28]. In this study, 

SIRT1 was upregulated in the MTG and downregulated 

in the PC in AD whereas no difference in PD or HD 

(Supplementary Figure 17). Furthermore, there were 

strong positive correlations between SIRT1 and key 

metabolic genes in the PVC in AD, and negative 

correlations between SIRT1 and key metabolic genes in 
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the MTG in AD, and the CN and the FC in HD 

(Supplementary Figure 17). 

 

Network of brain regions, metabolic pathways, key 

metabolic genes and drugs 

 

Using the drug and target information from the 

DrugBank database [29], we constructed a composite 

network including brain regions, metabolic pathways, 

key metabolic genes and drugs (Figure 4). In this 

network, ATP1A1 was involved in extracellular 

transport, and there were 27 drugs targeting ATP1A1. 

ATP6V1G2 is involved in lysosomal transport, and there 

were 5 drugs targeting ATP6V1G2. GOT1 is involved in 

multiple amino acid metabolism pathways, and there 

were 6 drugs targeting GOT1. Furthermore, there were 

7 drugs targeting HPRT1, 10 drugs targeting MAP2K1, 

1 drug targeting PCMT1 and 1 drug targeting PLK2. No 

 

 
 

Figure 1. Metabolic pathway enrichment results in three neurodegenerative diseases in the whole cohort. The red box 
represents the metabolic pathway that is upregulated, and the blue box represents the metabolic pathway that is downregulated. The yellow 
circle indicates that the metabolic pathway is significantly enriched. 
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Figure 2. Expression profiles of metabolic genes and their functions. The figure shows metabolic genes with absolute logFC values 
higher than log2(1.5) in 12 brain regions. The figure shows 1164 unique metabolic genes. The orange color indicates that the gene is 
upregulated, and the cyan color indicates that the gene is downregulated. The rainbow color bar shows the commonly deregulated genes in 
multiple brain regions and their correlated metabolic pathways. Enriched metabolic pathways of brain region-specific deregulated genes are 
shown in colored boxes. Deregulated genes in two brain regions and deregulated genes only in the EC and the PC in AD, and the PFC in PD 
showed no significant enriched pathways. 
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Figure 3. Expression patterns of key metabolic genes. Patient samples with different brain regions are represented by different colors, 
and the gray color represents the controls in the corresponding group. Student’s t-test was used to compare the expression differences 
between cases and controls. Statistical significance: * P < 0.05, ** P < 0.01, *** P < 0.001. 
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drug targeted multiple genes. Forty drugs were 

approved, and the others were experimental, investi-

gational or nutraceutical drugs. Among these drugs, 

DB00114 is an activator of GOT1, and most of the other 

drugs are inhibitors of ATP1A1, ATP6V1G2, HPRT1, 

MAP2K1 and PLK2. Many drugs targeting ATP1A1 are 

used for cardiovascular disease treatment, drugs 

targeting ATP6V1G2 are used for the treatment of 

osteoporosis and other bone diseases, drugs targeting 

GOT1 are used for nutritional supplementation, and

 

 
 

Figure 4. Composite network of brain regions, metabolic pathways, key metabolic genes and drugs. The link between brain 
region and metabolic pathway shows a normalized enrichment score of the pathway in the brain region. The red color indicates upregulation, 
and the blue color indicates downregulation. The link between metabolic pathways and genes indicates that the gene is involved in the 
pathway. The link between the gene and drug indicates that the drug can target the protein encoded by the gene. Drug status (approved, 
experimental, investigational nutraceutical, vet_approved, and withdrawn) is shown as colored squares. Drug type (activator, inhibitor, 
inducer, binder, ligand/substrate) is shown as colored circles. 
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several drugs targeting HPRT1 and MAP2K1 are used 

for the treatment of immune-related disease and cancer 

(Supplementary Table 3). 

 

Multigene diagnostic models for AD, PD and HD 

 

Expression profiles of metabolic genes in human blood 

transcriptome datasets (Supplementary Table 2) were 

used to construct multigene diagnostic models for AD, 

PD and HD. Multigene diagnosis models were built 

using the metabolic genes in the experimental set, and 

tested in the validation set. The optimal model for AD is 

the combination of 20 metabolic genes (Figure 5A), 

which had the highest AUC of 0.997 in the 

experimental set and a high AUC of 0.822 in the 

validation set (Figure 5B). The optimal model for PD is 

the combination of 20 metabolic genes (Figure 5C), 

which had the highest AUC of 0.879 in the 

experimental set and a high AUC of 0.817 in the 

validation set (Figure 5D). The optimal model for HD is 

the combination of 15 metabolic genes (Figure 5E), 

which reached the maximum AUC of 1.000 in both the 

experimental and validation sets (Figure 5F). The MCC 

values were high than 0.9 in AD experimental set, HD 

experimental and validation sets. KEGG enrichment 

results showed that genes in these diagnostic models 

were correlated with multiple neurodegenerative 

disease-related pathways (Figure 5G–5I). These results 

suggest that the expression profiles of metabolic genes 

in blood can be used for the highly accurate diagnosis of 

AD, PD and HD. 

 

Metabolic gene and pathway changes in mouse 

models 
 

There were 720, 1327 and 1024 metabolic genes that 

showed consistent expression trends in all brain regions 

in AD, PD and HD, respectively. We compared the 

metabolic changes between human diseases and mouse 

models (Supplementary Table 4). Deregulated 

metabolic genes were filtered in at least one brain 

region in each disease, and only 102, 14, and 32 

metabolic genes showed the same expression trends in 

APP transgenic mouse, MPTP-treated mouse and Hdh 

CAG knock-in mouse models (Figure 6A–6C). 

However, almost all these genes showed no expression 

changes in mouse models. The functions of these 

metabolic genes were correlated with oxidative 

phosphorylation, GABAergic synapses and other 

neurodegenerative disease-related pathways in PD but 

not in AD or HD (Figure 6D–6F). Furthermore, 

metabolic pathway enrichment results showed that 

amino acid metabolism, carbohydrate metabolism, 

energy metabolism and other metabolic pathways that 

were severely impaired in human patients were only 

slightly affected in mouse models (Supplementary 

Figure 18). The expression of key metabolic genes in 

mouse models also showed no difference 

(Supplementary Figure 19). These results suggest that 

mouse models cannot accurately reflect human 

metabolic characteristics in neurodegenerative diseases. 

 

DISCUSSION 
 

Although there were different degrees of metabolic 

damage in AD, PD and HD, most metabolic genes and 

pathways showed consistent downregulated trends in 

these three diseases, and fewer genes were expressed 

inconsistently in different brain regions. This study 

identified ATP1A1, ATP6V1G2, GOT1, HPRT1, 

MAP2K1, PCMT1 and PLK2 as key metabolic genes in 

AD, PD and HD. ATP1A1 encodes subunit alpha 1 of 

Na+/K+-ATPase, which is crucial for establishing and 

maintaining the electrochemical gradients of Na and K 

ions across the plasma membrane. Decreased levels of 

Na+/K+-ATPase cause energy deficiency in multiple 

neurodegenerative diseases [30]. ATP6V1G2 encodes 

subunit G2 of vacuolar ATPase (V-ATPase), which 

transports protons from the cytoplasm into the lysosome 

and maintains lysosomal acidification. V-ATPase 

deficiency can lead to central nervous system (CNS) 

diseases such as AD and PD [31, 32]. GOT1 encodes 

glutamic oxaloacetic transaminase in the cytoplasm, and 

downregulated GOT1 was found both in the elderly 

population and AD patients [33]. HPRT1 encodes 

hypoxanthine phosphoribosyltransferase 1, and mutated 

HPRT1 affects amyloid precursor protein (APP) gene 

expression in AD and amyotrophic lateral sclerosis 

(ALS) [34]. MAP2K1 regulates a wide variety of extra- 

and intracellular signals. The compromised MAPK 

signaling pathways contribute to the pathology of 

diverse human diseases, including cancer and 

neurodegenerative disorders such as AD, PD and ALS 

[35]. PCMT1 plays a role in protein repair; down-

regulated PCMT1 expression makes it difficult to repair 

proteins involved in apoptosis and could contribute to 

the neuronal cell death observed in PD [36]. PLK2 is a 

homeostatic repressor of neuronal overexcitation, which 

promotes APP β-processing in AD [37] and catalyzes α-

synuclein in PD [38]. 

 

This study identified 57 drugs that target the above key 

metabolic genes. Digoxin (DB00390) is an endogenous 

inhibitor of membrane Na+/K+-ATPase, which is used 

to treat chronic atrial fibrillation and mild to moderate 

heart failure. Molecular docking showed that digoxin 

may regulate metabolic functions in AD by combining 

with G protein-coupled receptors [39]. A previous 

clinical trial showed that digoxin has a good effect on 

the treatment of PD [40]. Furthermore, serum digoxin 

can regulate neutral amino acid transport and 

mitochondrial functions in HD patients [41]. Ouabain 
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(DB01092) is able to inhibit Na+/K+-ATPase activity in 

multiple brain regions [42]. Animal experiments have 

shown that ouabain induces downstream autophagy-

lysosomal gene expression and cellular restorative 

properties and reduces the accumulation of abnormal 

toxic tau protein [43]. Diazoxide (DB01119) is mainly 

used to treat hyperinsulinemic hypoglycemia, and 

animal experiments have shown that diazoxide can also 

be used in the treatment of PD [44]. There was no report 

on the treatment of neurodegenerative diseases for most 

 

 
 

Figure 5. Screening of the optimal multigene diagnostic model for three diseases. (A) Stepwise screened multigene prediction 
models in AD. (B) Receiver operating characteristic (ROC) curves of the screened optimal diagnostic model in AD. (C) Stepwise screened 
multigene prediction models in PD. (D) ROC curves of the screened optimal diagnostic model in PD. (E) Stepwise screened multigene 
prediction models in HD. (F) ROC curves of the screened optimal diagnostic model in HD. For panels A, C and E, from left to right on the x-axis 
(stepwise screened genes), each additional gene corresponds to a model (for example, in panel A, NDUFA1 represents model 1, which 
contains one gene, NDUFA1; COX7C represents model 2, which contains two genes including NDUFA1 and COX7C). The red arrow shows the 
optimal model for each disease. Area under the curve (AUC) and Matthews correlation coefficient (MCC) were shown in the ROC curve. 
Details of the experimental set and validation set are provided in Supplementary Table 2. (G) Enriched KEGG pathway analysis of genes in the 
optimal diagnostic model for AD. (H) Enriched KEGG pathway analysis of genes in the optimal diagnostic model for PD. (I) Enriched KEGG 
pathway analysis of genes in the optimal diagnostic model for HD. 
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Figure 6. Deregulated metabolic genes with consistent expression between human patients and mouse models. (A) Heatmap 
of consistently expressed deregulated genes in AD human samples and the APP transgenic mouse model. (B) Heatmap of consistently 
expressed deregulated genes in PD human samples and the MPTP mouse model. (C) Heatmap of consistently expressed deregulated genes in 
HD human samples and the Hdh CAG knock-in mouse model. The orange color indicates that the gene is upregulated, the blue color indicates 
that the gene is downregulated, and black squares indicate statistical significance. (D) Enriched metabolic pathway of consistently expressed 
deregulated genes in AD. (E) Enriched metabolic pathway of consistently expressed deregulated genes in PD. (F) Enriched metabolic pathway 
of consistently expressed deregulated genes in HD. 
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of the drugs screened in this study. Therefore, further 

investigation of these drugs for the treatment of AD, PD 

and HD is worthwhile. 

 

There are still tremendous difficulties in building 

reliable and reproducible diagnostic models for 

neurodegenerative diseases. Increasing research 

suggests that the blood transcriptome signature may 

enable accurate diagnosis of these diseases. A recent 

study showed that the combination of a multitissue 

RNA signature can accurately diagnose AD and other 

aging-related diseases [45]. Many studies have reported 

that blood-based biomarkers could be potential 

predictors for PD, such as α-synuclein, DJ-1, and uric 

acid [46], and blood-based gene signatures also showed 

high accuracy in PD diagnosis [47]. Furthermore, 

previous studies showed that the gene signature in 

peripheral blood can be used for accurate diagnosis of 

HD [48, 49]. This study constructed multigene 

diagnostic models for AD, PD and HD by using 

metabolic gene expression profiles in blood. All models 

showed high accuracy both in the experimental set and 

validation set. Therefore, the diagnosis of neuro-

degenerative diseases using metabolic gene signatures 

in blood may be an effective method. 

 

The mouse model is the most widely used animal model 

in neurodegenerative disease studies and can partially 

reflect the behavioral, pathological and genetic 

characteristics of human diseases [50]. Rodents do not 

develop AD, and the existing AD transgenic mouse 

models can only reflect limited human disease 

characteristics [51]. There are large differences in gene 

expression signatures in neuroimmune and neuro-

degenerative pathways between human and APP 

transgenic mouse models [52]. The gene expression 

profiles of microglial activation states in AD patients 

are not apparent in mouse models [53]. Furthermore, a 

meta-analysis including 33 microarray studies of PD 

shows that consistent features in human datasets are not 

shown in mouse models [54]. Fortunately, the HD 

mouse model is relatively successful and can model 

early-onset states in humans [55]. This study revealed 

almost no consistency of metabolic changes between 

human neurodegenerative disease patients and mouse 

models. Therefore, we speculate that mouse models 

may not be suitable for studying the metabolic 

mechanisms of neurodegenerative diseases. 

 

In conclusion, there was severe metabolic damage in 

AD, PD and HD. Most metabolic damage, such as 

amino acid metabolism, carbohydrate metabolism, 

energy metabolism and multiple transport metabolism, 

is common to all three diseases. We identified 7 key 

metabolic genes that were downregulated in all three 

diseases and screened 57 drugs that target these genes. 

Some drugs have been reported to be effective in the 

treatment of neurodegenerative diseases. Furthermore, 

metabolic gene expression profiles in blood can be used 

for the diagnosis of AD, PD and HD. This study also 

found considerable metabolic differences between 

mouse models and human diseases.  

 

MATERIALS AND METHODS 
 

Neurodegenerative disease data collection 
 

Microarray datasets of AD, PD and HD were downloaded 

from the Gene Expression Omnibus (GEO) database 

(http://www.ncbi.nlm.nih.gov/geo/). We conducted 

rigorous screening of these datasets with the following 

inclusion criteria: (1) the human microarray datasets were 

genome-wide; (2) samples in each study should include 

cases and controls; (3) each dataset should contain 

multiple brain regions; and (4) raw data or expression 

matrixes were available. Because these neurodegenerative 

diseases may be affected by age and sex factors, we tried 

to screen the datasets without age or sex bias between 

patients and controls. According to the above criteria, we 

finally chose GSE5281 (AD) [18], GSE20295 (PD) [19] 

and GSE3790 (HD) [20] for our reanalysis 

(Supplementary Table 1). For details on data pre-

processing, see our previous reports [56, 57]. The brain 

regions in the AD dataset include the entorhinal cortex 

(EC), hippocampus (HIP), medial temporal gyrus (MTG), 

posterior cingulate (PC), superior frontal gyrus (SFG), and 

primary visual cortex (PVC). The brain regions in the PD 

dataset include the prefrontal cortex (PFC), putamen 

(PUT), and substantia nigra (SN). The brain regions in the 

HD dataset include the caudate nucleus (CN), cerebellum 

(CE) and frontal cortex (FC). Considering the potential 

effects of sex and age, we analyzed the metabolic changes 

in the whole cohort, male, female, and elderly (age ≥ 60 

years) groups. 

 

Metabolic gene collection 

 

Human metabolic genes were extracted from the Recon 

3D human metabolism model [21]. This model contains 

3,288 metabolic genes that belong to 105 metabolic 

pathways. Due to the different analysis platforms of the 

datasets we collected, we screened the metabolic genes 

shared by all datasets for analysis. In total, we mapped 

2455 unique metabolic genes in our datasets. 
 

Differential expression gene analysis 
 

Bioinformatics analysis of the microarray data was 

carried out by R statistical software v3.6.1 and 

Bioconductor Library. Differential gene expression 

analysis was performed using the empirical Bayesian 

algorithm in the limma package in R [58]. Up- and 

http://www.ncbi.nlm.nih.gov/geo/
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downregulated genes were defined as a log2 

transformed fold-change (logFC) ≥ log2(1.5) or ≤ 

log2(1/1.5) for patients compared with controls. A false 

discovery rate (FDR)-corrected P value ≤ 0.05 was 

considered significant. The pheatmap package in R was 

used to show the gene expression profiles, and the 

clustering method was chosen as "ward.D2". 

 

Metabolic pathway enrichment analysis 

 

We used javaGSEA desktop application v3.0 to perform 

gene set enrichment analysis (GSEA) of affected 

metabolic pathways for a total of 12 brain regions in AD, 

PD and HD. The extracted metabolic genes and pathways 

from Recon3D were used to construct gene sets for 

enrichment analysis. Gene sets with fewer than 10 genes 

or more than 500 genes were excluded. The t-statistic 

mean of the genes was computed for each metabolic 

pathway using a permutation test with 1000 replications. 

Up- and downregulated metabolic pathways were defined 

as a normalized enrichment score (NES) > 0 or < 0 for 

patients compared with controls. An FDR-corrected P 

value ≤ 0.05 was considered significant. 

 

Coexpression network analysis and key metabolic 

gene screen 
 

Pearson’s correlation coefficient was calculated for each 

gene-gene pair of all metabolic genes in AD, PD and 

HD. Gene-gene pairs with an absolute value of 

correlation coefficient higher than 0.75 and an FDR-

corrected P value ≤ 0.05 were considered significantly 

correlated. Significant gene-gene pairs were used to 

construct the gene coexpression networks. The selection 

criteria for key metabolic genes are as follows: (1) The 

absolute of logFC of metabolic genes is higher than 

log2(1.5) in at least one brain region in each disease. (2) 

The average number of nodes of metabolic genes in 

gene coexpression networks is higher than 100. 

 

Brain-specific gene network analysis 

 

Brain-specific gene network analysis was performed 

using the HumanBase web server (https:// 

hb.flatironinstitute.org/) [59]. The screened key 

metabolic genes were used as input genes to perform 

the gene network analysis. The tissue option in 

parameter settings was chosen as the brain, and the data 

types option included coexpression, interaction, TF 

binding and GSEA perturbations. The minimum 

interaction confidence and the maximum number of 

genes were determined using default settings. The 

server generated a gene network of the queried genes 

and other genes that interacted with these genes, and 

GO biological process enrichment analysis of the genes 

in the network was performed. 

Drug discovery and composite network construction 
 

Drugs that interact with the screened key metabolic 

genes were searched from the DrugBank database 

(https://www.drugbank.ca/) [29]. Information was 

obtained on the ID, name, status, types, and 

indication/associated conditions of the screened drugs. 

Then, we constructed a composite network of 12 brain 

regions in AD, PD and HD, deregulated metabolic 

pathways, key metabolic genes and drugs. 

 

Blood transcriptome analysis and multigene 

diagnosis model 
 

To investigate the effects of metabolic gene expression 

profiles in disease diagnosis, we downloaded blood 

transcriptome datasets of AD, PD and HD from the 

GEO database. Each disease contains an experimental 

dataset and a validation dataset (Supplementary Table 

2). Multigene diagnosis models were built using the 

metabolic genes in the experimental set, and the 

validation set was used to test the predictive accuracy of 

the model. A univariate logistic regression model was 

used to calculate the odds ratios of the metabolic genes 

in each disease. The receiver operating characteristic 

(ROC) curve and the area under the curve (AUC) of the 

single metabolic genes were calculated using the pROC 

package in R. The model with the largest AUC was 

defined as the optimal model. A stepwise modeling 

strategy was used to screen the optimal multigene 

combination models for each disease. The maximum 

number of metabolic genes in the model is set to 20. 

First, the gene with the largest AUC was selected. Then, 

we used a multivariate logistic regression model to 

generate the combined effect of the selected gene and 

each of the remaining genes. Next, we selected the best 

two-gene model with the highest AUC and repeated the 

previous steps. Finally, we selected the optimal model 

with the highest AUC in each multigene combination 

model. Matthews correlation coefficient (MCC) [60] 

was calculated for each optimal model. 

 

Mouse model analysis 
 

Since mouse models are widely used in the study of 

neurodegenerative diseases, we analyzed the changes in 

metabolic genes and pathways in three mouse models 

(APP transgenic mouse for AD, MPTP-treated mouse 

for PD and Hdh CAG knock-in mouse for HD) and 

compared them with human disease. Datasets of mouse 

models were downloaded from the GEO database. Each 

mouse model contains transcriptome data for multiple 

brain regions (Supplementary Table 4). We screened 

metabolic genes with consistent expression trends in all 

brain regions in each disease and compared the 

expression changes of these genes in mouse models. 

https://www.drugbank.ca/
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 

 

 

 
 

Supplementary Figure 1. The percentage of deregulated metabolized genes to total deregulated genes in whole cohort. (A), 
male group (B), female group (C) and elderly group (D). The elderly group was defined as the age ≥ 60 years. The dashed line indicates the 
percentage of metabolic genes in total genes. Each color represents a brain region. 
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Supplementary Figure 2. Metabolic genes clustering of three neurodegenerative diseases in whole cohort. A total of 2455 
metabolic genes were included in the heatmap. All gene expression values were z-score converted. The clustering method was chosen as 
“ward.D2”. 

 

 
 

Supplementary Figure 3. Metabolic genes clustering of three neurodegenerative diseases in male group. A total of 2455 
metabolic genes were included in the heatmap. All gene expression values were z-score converted. The clustering method was chosen as 
“ward.D2”. 
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Supplementary Figure 4. Metabolic genes clustering of three neurodegenerative diseases in female group. A total of 2455 
metabolic genes were included in the heatmap. All gene expression values were z-score converted. The clustering method was chosen as 
“ward.D2”. 

 

 
 

Supplementary Figure 5. Metabolic genes clustering of three neurodegenerative diseases in elderly group. The elderly group 
was defined as the age ≥ 60 years. A total of 2455 metabolic genes were included in the heatmap. All gene expression values were z-score 
converted. The clustering method was chosen as “ward.D2”. 
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Supplementary Figure 6. Metabolic pathway enrichment results in three neurodegenerative diseases in male group. The red 
box represents the metabolic pathway is up-regulated and the blue box represents the metabolic pathway is down-regulated. The yellow 
circle indicates the metabolic pathway is significantly enriched. 
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Supplementary Figure 7. Metabolic pathway enrichment results in three neurodegenerative diseases in female group. The 
red box represents the metabolic pathway is up-regulated and the blue box represents the metabolic pathway is down-regulated. The yellow 
circle indicates the metabolic pathway is significantly enriched. 
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Supplementary Figure 8. Metabolic pathway enrichment results in three neurodegenerative diseases in elderly group. The 
elderly group was defined as the age ≥ 60 years. The red box represents the metabolic pathway is up-regulated and the blue box represents 
the metabolic pathway is down-regulated. The yellow circle indicates the metabolic pathway is significantly enriched. 
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Supplementary Figure 9. Correlation of metabolic pathway changes in three neurodegenerative diseases. Pearson's correlation 
coefficient was calculated using normalized enrichment scores of metabolic pathways in all brain regions. The positive correlation indicates 
consistent changes in metabolic pathways and the negative correlation indicates opposite changes in metabolic pathways. 
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Supplementary Figure 10. Expression of heterogeneous deregulated genes in three neurodegenerative diseases. The figure 
showed 92 metabolic genes. Genes that are upregulated in one brain region and downregulated in another brain region are defined as 
heterogeneous deregulated genes. The heatmap showed genes with the absolute value of logFC higher than log2(1.5). Genes with logFC 
below threshold are not shown the expression profiles. 
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Supplementary Figure 11. Expression of deregulated genes shared by three neurodegenerative diseases. The heatmap showed 
genes with the absolute value of logFC higher than log2(1.5) in at least one brain region in each disease. Genes with logFC below threshold 
are not shown the expression profiles. 
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Supplementary Figure 12. Co-expression network of metabolic genes in Alzheimer’s disease. The red circle represents 
deregulated gene shared by three neurodegenerative diseases and the cyan circle represents other metabolic genes. 
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Supplementary Figure 13. Co-expression network of metabolic genes in Parkinson’s disease. The green circle represents 
deregulated gene shared by three neurodegenerative diseases and the cyan circle represents other metabolic genes. 
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Supplementary Figure 14. Co-expression network of metabolic genes in Huntington’s disease. The blue circle represents 
deregulated gene shared by three neurodegenerative diseases and the cyan circle represents other metabolic genes. 
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Supplementary Figure 15. Number of nodes of deregulated genes shared by three neurodegenerative diseases in gene co-
expression networks. (A) Number of nodes of metabolic genes in each disease. (B) Average number of nodes of metabolic genes in AD, PD 
and HD. 
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Supplementary Figure 16. Brain specific network of key metabolic genes. (A) Network of key metabolic genes and correlated genes. 
(B) Enriched GO biological process of genes in the network. 

 

 
 

Supplementary Figure 17. Expression of SIRT1 in different brain regions (A) and its correlation with key metabolic genes (B). The color bar 
indicates the Pearson’s correlation coefficient between SIRT1 and key metabolic genes. Statistical significance: * P < 0.05, ** P < 0.01, ***  
P < 0.001. 
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Supplementary Figure 18. Metabolic pathway enrichment results in three neurodegenerative diseases in mouse models. The 
red box represents the metabolic pathway is up-regulated and the blue box represents the metabolic pathway is down-regulated. The yellow 
circle indicates the metabolic pathway is significantly enriched. 
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Supplementary Figure 19. Expression of key metabolic genes in mouse models. The heatmap showed the logFC of key metabolic 
genes in each brain region in mouse models. No Hrrt1 gene in mouse models datasets. 
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Supplementary Tables 
 

Supplementary Table 1. Information on the human brain transcriptome datasets of AD, PD and HD.1 

GEO ID Samples Brain region Platform Mean PMI 

GSE5281 (AD) 
87 cases 

74 controls 

Entorhinal cortex 
Hippocampus 

Medial temporal gyrus 
Posterior cingulate 

Superior frontal gyrus 
Primary visual cortex 

Affymetrix Human Genome U133 Plus 2.0 
Array 

All: 2.5 h 

GSE20295 (PD) 
40 cases 

53 controls 

Prefrontal cortex 
Putamen 

Substantia nigra 
Affymetrix Human Genome U133A Array 

Case: 14.0 h 
Control: 17.1 h 

GSE3790 (HD) 
114 cases 

87 controls 

Caudate nucleus 
Cerebellum 

Frontal cortex 
Affymetrix Human Genome U133A Array No information 

1 All datasets were conducted whole genome microarray expression test using postmortem brain tissues. 
Abbreviations: AD: Alzheimer’s disease, PD: Parkinson’s disease, HD: Huntington’s disease, PMI: postmortem interval. 

 
Supplementary Table 2. Information on the human blood transcriptome datasets of AD, PD and HD. 

GEO ID Samples Tissue Platform 
Experimental dataset 

GSE63060 (AD) 
145 cases 

104 controls 
Blood Illumina HumanHT-12 V3.0 expression beadchip 

GSE99039 (PD) 
205 cases 

233 controls 
Blood Affymetrix Human Genome U133 Plus 2.0 Array 

GSE51799 (HD) 
91 cases 

33 controls 
Blood 

Illumina Genome Analyzer IIx (Homo sapiens) 
Illumina HiSeq 2000 (Homo sapiens) 

Validation dataset 

GSE63061 (AD) 
140 cases 

134 controls 
Blood Illumina HumanHT-12 V4.0 expression beadchip 

GSE57475 (PD) 
93 cases 

49 controls 
Blood Illumina HumanHT-12 V3.0 expression beadchip 

GSE1751 (HD) 
12 cases 

14 controls 
Blood Affymetrix Human Genome U133A Array 

Abbreviations: AD: Alzheimer’s disease, PD: Parkinson’s disease, HD: Huntington’s disease. 
 

 

Please browse Full Text version to see the data of Supplementary Table 3. 

 

Supplementary Table 3. Name and indication information of the screened 57 drugs. 

 
Supplementary Table 4. Information on the mouse brain transcriptome datasets of AD, PD and HD. 

GEO ID Samples Brain region Platform Animal model 

GSE14499 (AD) 
16 cases 

10 controls 

Entorhinal cortex 

Hippocampus 

Affymetrix Mouse Genome 

430 2.0 Array 
APP transgenic mice 

GSE7707 (PD) 
9 cases 

9 controls 

Frontal cortex 

Midbrain 

Striatum 

Affymetrix Mouse Genome 

430 2.0 Array 
MPTP-treated mice 

GSE9038 (HD) 
12 cases 

12 controls 

Cerebellum 

Striatum 

Affymetrix Mouse Genome 

430 2.0 Array 
Hdh CAG knock-in mice 

Abbreviations: AD: Alzheimer’s disease, PD: Parkinson’s disease, HD: Huntington’s disease. 


