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Abstract: Vital signs monitoring in physical activity (PA) is of great significance in daily healthcare.
Impulse Radio Ultra-WideBand (IR-UWB) radar provides a contactless vital signs detection approach
with advantages in range resolution and penetration. Several researches have verified the feasibility
of IR-UWB radar monitoring when the target keeps still. However, various body movements are
induced by PA, which lead to severe signal distortion and interfere vital signs extraction. To address
this challenge, a novel joint chest–abdomen cardiopulmonary signal estimation approach is proposed
to detect breath and heartbeat simultaneously using IR-UWB radars. The movements of target chest
and abdomen are detected by two IR-UWB radars, respectively. Considering the signal overlapping
of vital signs and body motion artifacts, Empirical Wavelet Transform (EWT) is applied on received
radar signals to remove clutter and mitigate movement interference. Moreover, improved EWT
with frequency segmentation refinement is applied on each radar to decompose vital signals of
target chest and abdomen to vital sign-related sub-signals, respectively. After that, based on the
thoracoabdominal movement correlation, cross-correlation functions are calculated among chest
and abdomen sub-signals to estimate breath and heartbeat. The experiments are conducted under
three kinds of PA situations and two general body movements, the results of which indicate the
effectiveness and superiority of the proposed approach.

Keywords: IR-UWB radar; vital signs; physical activity; movement interference alleviation

1. Introduction

Physical activity (PA) is of great significance in daily healthcare; it improves the level
of both mental and physiological health and reduces the risk of several medical illnesses.
It is reported that the ratio of sudden cardiac death is approximately 1 in 50,000 athlete-
years for the young athletes, and even reaches 1 in 5000 for risky groups [1]. Long-term
monitoring of vital signs, e.g., heartbeat and breath, helps to prevent sport injury and
improve the effectiveness of PA.

Conventional vital signs monitoring methods during exercising are based on wearable
devices, such as plethysmography (PPG) sensors [2] and piezoresistive sensors [3]. These
devices are attached to human body directly, which easily lead to body swelling and
discomfort when wearing overtime. Contactless vital signs monitoring is a new research
trend in fitness healthcare. There exist several non-contact solutions in PA scenarios. Vision-
based sensors are applied to obtain remote-plethysmography (rPPG) signal reflected from
human face for heartbeat extraction [4]. Nevertheless, the usage of vision-based sensors
is strictly limited by lighting condition, let alone the inevitable privacy issues. Thermal-
based sensors provide another solution for physiological signal detection and analysis [5].
Furthermore, variation of environment temperature hinders the monitoring performance.
Radar-based methods deal with aforementioned challenges effectively.
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When the target keeps still, many remote sensing solutions are provided based on var-
ious radar systems, mainly consisting of the Continuous Wave (CW) radar [6,7], Frequency
Modulated Continuous Wave (FMCW) radar [8–11], and Impulse Radio Ultra-WideBand
(IR-UWB) radar [12–17]. CW radar is not only hindered by the calibration difficulty caused
by the null point issue, but also lacks ability of range detection, which brings challenge for
vital signs monitoring during PA. Moreover, compared with FMCW radar, IR-UWB radar
has advantages in range resolution and interference-resistance performances [18]. More-
over, the low power consumption of the IR-UWB radar is promising for continues vital signs
monitoring. Besides, compared with existing Multiple-Input Multiple-Output (MIMO)
radar systems [19,20] and self-motion radar systems [21,22], the monostatic IR-UWB radar
deployed at a fixed location has low system complexity without extra self-movement
interference during detection, which is suitable for monitoring weak physiological signals
during PA.

As is demonstrated above, most of the existing radar-based researches estimate vital
signs by detecting chest vibration induced by cardiopulmonary movement [13–17]. Due
to the physical structure of human body, human breath movement leads to relative vi-
brations of both chest and abdomen. It is proved that the abdomen fluctuation is much
stronger than the chest vibration induced by breath [23], so that several researches attempt
to monitor breath for abdomen movement [24,25]. Based on the thoracoabdominal vi-
bration association caused by human breath, there exist researches detecting both chest
and abdominal movement simultaneously to recognize respiration pattern [26], diagnose
sleep apnea–hypopnea syndrome [27], and track tumors based on breathing motions [28].
Nevertheless, these researches analyze physiological signals when the participants keep
still without large motions. During PA, the weak vital signal is distorted and overlapped by
unexpected body movement interference, which severely hinders the vital signs extraction.

In order to mitigate the effect of body movement on vital signs estimation performance,
several researches stop monitoring when large body motion is detected [29,30]. Moreover,
there exist researches trying to mitigate motion artifacts and monitor vital signs during
target moving. The work in [31] deals with random body movements artifacts while
driving and detects vital signs by segmenting and reconstructing vital signal based on
the correlation method. The authors of [32–34] monitor heartbeat and breath with the
target swing body back and forth. The work in [32] develops an IR-UWB radar system
with MIMO prototype to detect thorax signals from both target front and the back, and
an iterative adaptive approach is applied to determine respiration and heartbeat rates.
The work in [33] presents a multi-feature alignment two-layer EEMD method to detect
breath and heart rate to alleviate body fluctuation interference in the driving scenario. The
work in [34] introduces a motion-tolerant vital signs detection method using two radars
towards to target chest. In our previous work, a Heartbeat Estimation And Recovery
(HEAR) method using an IR-UWB radar is proposed to alleviate interference caused by
large body movement and estimate vital signs during the target walking [35]. However,
during PA, not only a single type motion artifact mentioned above is induced, such as the
variation of body-to-radar distance or random body movement, but various motions of
different body parts are contained including arm waving, waist twisting, and body moving.
It is challenging to cope with breath and heartbeat detection with such motion interference
using the existing methods.

In this paper, a novel joint chest–abdomen cardiopulmonary signal estimation ap-
proach is proposed to detect breath and heartbeat simultaneously using IR-UWB radars
during PA. The flowchart of the proposed approach is depicted in Figure 1. Two radars are
deployed to monitor the movement of chest and abdomen synchronously to collect target
signals containing vital signs. During PA, the vital signals are overlapped and distorted by
motion artifacts from various body parts. In order to remove clutter and mitigate motion
interference, Empirical Wavelet Transform (EWT) is applied on received radar signals.
Moreover, improved EWT with refined frequency segmentation decomposes target chest
and abdomen vital signals obtained from two radars, respectively, and the breath and
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heartbeat related sub-signals are extracted. After that, cross-correlation functions are calcu-
lated among chest and abdomen sub-signals to extract heartbeat and breath simultaneously.
Experiments are conducted in three different PA scenarios including a set of gentle yoga
movement and two daily exercises, and two general body movements including random
body movement and back-and-forth body movement. The experiment results demonstrate
the effectiveness and robustness of the proposed approach.

The three main contributions of this paper are summarized as follows:

• In order to remove background clutters and alleviate movement interference, EWT
is introduced to decompose received radar signals and reduce motion artifacts from
various body parts.

• In order to further extract breath and heartbeat related signals, improved EWT with
frequency segmentation refinement is applied on each radar to decompose vital signals
of the chest and abdomen, respectively. Thus, vital signs sub-signals are obtained.

• In order to estimate breath and heartbeat under the interference of multi-order har-
monics and residual motion artifacts, the cross-correlation functions are calculated
among chest and abdomen sub-signals. Based on the thoracoabdominal correlation,
the heartbeat and breath are extracted simultaneously.

The rest of this paper is organized as follows. Section 2 describes the experimental
setup. Section 3 introduces the proposed approach. Section 4 presents the experimental
results and discussion, and Section 5 concludes this paper.
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Figure 1. Flowchart of the joint chest–abdomen cardiopulmonary signal estimation approach.

2. Experimental Setup

As is shown in Figure 2, the experiments are conducted indoors to evaluate the pro-
posed approach. Two Novelda X4M03 IR-UWB radars are deployed to collect target signals,
which are based on a complete X4 UWB radar System of Chip (SoC) [36]. The sampling
rate is 23.328 GS/s, resulting in a high range resolution of ~6.5 millimeters. The carrier
frequency is 7.25 GHz with 2.5 GHz working band, which falls in the UWB bandwidth
limitation specified by the Federal Communications Commission (FCC). Moreover, the
radar pulses working in this frequency band are allowed to penetrate clothes and detect
human skin vibrations. A pair of antennas with beamwidth about 60◦ in both azimuth and
elevation are integrated with the radar SoC on the Printed Circuit Board (PCB). Besides,
the transmission power maintains low-power emission below −41.3 dBm/MHz, which
does not harm human health for long-term vital signs monitoring. The maximum detection
range of the radar is set to 2 meters with 20 frames collection per second.

Both radars are placed in front of the human body along the center line of the human
trunk. As is illustrated in Figure 3, the upper IR-UWB radar is placed about the chest
height, while the lower IR-UWB radar is placed about the abdomen height of a normal
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adult. Based on the human body structure, the height difference of these two radars is
set to 25 cm so that it is feasible to detect the vibrations of chest and abdomen in the
effective detection angle range of antennas. Both of them are controlled by a laptop to
collect and transmit the radar data through USB ports synchronously. All the collected data
are processed further on a laptop with an Intel’s Core i5 10th Generation processor.

The Upper

IR-UWB Radar

The Lower

IR-UWB Radar

Oximeter

25 cm

Front View Side View

Figure 2. Experiment setup.

As is presented in Figure 3, a total of 5 kinds of activities are performed in the
experiment, including three kinds of PA, i.e., a set of gentle yoga and two daily exercises,
and two general body movements, i.e., random body movement and back-and-forth body
movement. The details of body motions are listed in Table 1. During data collection,
the participants are required to stay relax, breath evenly, and keep the corresponding
movement following the guidance. An oximeter with medical device certificate provides
instantaneous heart rates and breath rate as references. The heartbeat is extracted based
on the plethysmogram signal, whereas the continues breath rate is detected based on the
oxygen saturation variation. A total of 8 participants with different genders, ages, and
body shapes are tested on these five kinds of activities. The detailed physical information
of participants is listed in Table 2. A total of 73 records are collected, which are segmented
by a fixed 15 s window with a step of 2 s sliding window. A total of 3869 slices are obtained.

Yoga

Mountain 

Pose

Mountain 

Pose
Warrior ⅡWarrior Ⅰ Warrior Ⅰ

Exercise I Exercise II
Random body 

movement

Back-and-forth 

body movement

Figure 3. Five kinds of activities.
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Table 1. The details of body motions of five kinds of activities.

Activities Description

Yoga
Move gently and switch among three yoga poses, including
the Mountain Pose, the Warrior I, and the Warrior II. Stretch
body and hold a few seconds at each yoga pose.

Exercise I Keep the body upright, wave arms up and down from both
sides of the body repeatedly.

Exercise II Keep the body upright, wave arms up and down from the
front of the body repeatedly.

Random body movement Engage some daily activities in the detection area such as
making a phone call, scratching head, adjusting glasses.

Back-and-forth body movement Waggle the upper body back and forth repeatedly.

Table 2. Physical information of the participants.

Participant 1 2 3 4 5 6 7 8

Gender Female Female Female Female Male Male Male Male
Age (year) 24 22 23 24 23 24 28 23
Height (m) 1.63 1.67 1.60 1.58 1.87 1.70 1.74 1.86
Weight (kg) 54 51 53 52 83 52 68 95

3. Methods
3.1. IR-UWB Signal Model and Preprocessing

Based on the radar time of arrival model, the propagation time of received signal
reflected from distance d is expressed as

τ(t) =
2d(t)

c
, (1)

where τ denotes the signal propagation time regarded as radar fast time, t denotes the
radar observation time regarded as radar slow time, and c denotes the speed of light.

The received IR-UWB radar signal is first preprocessed to remove static background
echoes by subtracting the average along the fast time. Then, the signal reflected from human
body is obtained. Due to target movement during PA and different radar deployment
positions, the target signal is reflected from various body parts such as thorax, limbs, and
abdomen. The signal s(t, τ) reflected from target is obtained, which is modeled as

s(t, τ) =
K

∑
n=1

pn(, τ) + pv(t, τ), (2)

where pv(t, τ) indicates the pulse from the interested part, that is, target chest for the
upper radar or from target abdomen for the lower radar. pn(t, τ) indicates the reflected
signal from the other parts of the human body. K denotes the number of pulse channels.
Considering the multi-order vital signs harmonics, the vibration of chest caused by breath
is modeled as a summation of various sinusoidal waves, whereas the heartbeat is modeled
as a summation of pulses [37]. The chest movement τchest(t) is described as

τchest(t) = τ1 + ∑
i

ai
hρh(t) + ∑

j
aj

b sin
(

j fbt + ϕb1

)
, (3)

where τ1 indicates antenna-to-chest distance. fb denotes the breath frequency, while ϕb1
denotes the phase of breath on target chest. ρh(t) denotes the heart vibration pulse signal.
ai

h and aj
b denote the amplitudes of vibrations.
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Considering that the breath movement leads to vibrations of both chest and abdomen,
the abdomen movement τabdomen(t) is described in the same way as

τabdomen(t) = τ2 + ∑
k

ak
b sin

(
k fbt + ϕb2

)
, (4)

where τ2 indicates antenna-to-abdomen distance, ak
b denotes the vibration amplitude, and

ϕb2 denotes the phase of breath on target abdomen.
In the paper, the two IR-UWB radars are deployed around target chest and abdomen,

respectively. It is clarified that the received signal power attenuates severely along the
increase of target-to-antenna angle [38] so that reflected signals from target chest and
abdomen are relatively stronger, which can be extracted adequately. However, unlike
scenarios where the target keeps still, there are various body motions during PA, which
results in τ1 and τ2 varying along radar slow time. Moreover, the vital-signs-related signals
are distorted and polluted by various body movements. It is infeasible to extract vital
signs on a constant fast time directly. Moreover, the motion artifacts need to be alleviated
to improve the performance of vital signal extraction. In order to obtain the varying
τchest(t) and τabdomen(t) and estimate vital signs, EWT is introduced to mitigate movement
interference. And the vital-signs-related sub-signals are further extracted.

3.2. Movement Interference Alleviation Based on EWT

EWT decomposes non-stationary signal into several sub-signals using a series of
wavelet filters based on Fourier spectrum segments [39], which are applied to remove
noise and extract interested signals in several researches [40–42]. After DC removal, there
still exist clutters reflected from background. Moreover, due to the movement of multiple
body parts during PA, the signals reflected from human body perform various frequency
distribution in the Fourier spectrum so that EWT is applied on radar fast time to remove
clutters and suppressing movement interference by decomposing radar signals.

The segmentation strategy based on local maxima and minima is introduced to obtain
several narrow frequency sub-bands. The fast time frequency spectrum is obtained by Fast
Fourier Transform (FFT). After that, all the local maxima are determined. The number of
the Fourier segments N is set as

N = min{M + 1, N0}, (5)

where N0 denotes the expected number of the Fourier segments, and M denotes the total
number of local maxima. The N − 1 largest local maxima are selected. Moreover, the
positions of the lowest minimum are determined among consecutive selected maxima,
which are regarded as the frequency boundaries to segment spectrum. Therefore, a total of
N Fourier segments are obtained.

Based on the obtained frequency boundaries, a set of empirical wavelets is constructed
as
{

φ0(τ),
{

ψq(τ)
}N

i=1

}
, which composes of a scaling function φ0(τ) and a series of empir-

ical wavelets
{

ψq(τ)
}N

i=1. Moreover, the signal is further decomposed as

Ts(q, τ) =
〈
s, ψq

〉
=
∫

s(υ)ψq(υ− τ)dυ, (6)

Ts(0, τ) = 〈s, φ0〉 =
∫

s(υ)φ0(υ− τ)dυ, (7)

where Ts(q, τ) and Ts(0, τ) indicate the detailed coefficient and the approximation coeffi-
cient, respectively. The overlines of ψq and φ0 represent conjugate. Then the sub-signals, s0
and sq, are reconstructed as

s0(τ) = Ts(0, τ) ∗ φ0(τ) (8)
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sq(τ) = Ts(q, τ) ∗ ψq(τ) (9)

After EWT, the sub-signal with maximum spectrum energy is retained as interested
echoes from target chest or abdomen, whereas the other sub-signals correspond to the re-
flection from other body parts and background clutters. Therefore, the signal superposition
caused by body motions and background clutters is alleviated.

Considering that the body shift leads to the variation of τ1 and τ2, the maximum
amplitude along the fast time of each retained signal is extracted as the vital signal. Due
to motion interference, the waveform of obtained vital signal is distorted and polluted in
various degrees. Moreover, the vital signal also contains multi-order harmonics of vital
signs, which are overlapped on the frequency band. It is intractable to extract heart rate
and breath rate by FFT directly. Improved EWT with Fourier segmentation refinement is
proposed to further decompose chest and abdomen vital signals and extract vital signs-
related sub-signals from two radars, respectively.

3.3. Vital Signs Sub-Signals Extraction Based on Improved EWT

The obtained vital signal is first smoothed by a Gaussian filter to mitigate signal dis-
tortion partly. Next, the filtered signal is normalized and subtracted by the signal average.
With the EWT introduced in Section 3.2, the decomposition is guided by spectrum segmen-
tation. It is essential to divide Fourier spectrum with appropriate frequency boundaries to
obtain vital signs sub-signals, so that the refined frequency boundaries are constructed to
tackle this challenge.

Assuming that the frequency band of heart rate is between
[

fh0 , fhh

]
, and the breath

frequency band is between
[

fb0 , fbh

]
, the initial boundaries for the Fourier spectrum are set

as
(

fb0 , fbh
, fh0 , fhh

)
. Moreover, based on the Fourier spectrum, initial boundaries are then

adaptive fine-tuned to the frequencies corresponding to the nearest neighborhood minima,
which are regarded as

(
f
′
h0

, f
′
hh

, f
′
b0

, f
′
bh

)
, respectively. Moreover, the refined frequency

segments related to breath and heartbeat are obtained, which are between
[

f
′
h0

, f
′
hh

]
and

between
[

f
′
b0

, f
′
bh

]
, respectively.

Considering the overlapping of harmonics and residual motion noise in the vi-
tal signs bands, the obtained segments related to heartbeat and breath need to be fur-
ther segmented. The segmentation strategy based on local maxima and minima de-
scribed in Section 3.2 is applied on these segments, respectively. For chest vital signal,
the maximum sub-segment numbers of refined breath and heartbeat segments are set
as Nbc and Nh, respectively, so that the refined frequency boundaries are extended as(

f
′
b0

, f
′
b1

, . . . , f
′
bU−1

, f
′
bh

, f
′
h0

, f
′
h1

, . . . , f
′
hV−1

, f
′
hh

)
, U ≤ Nbc , V ≤ Nh. With the guidance of

these boundaries, the EWT is applied on the chest vital signal. Moreover, a series of chest

sub-signals are extracted, which are indicated as
{{

Ib
j

}U

j=1
,
{

Ih
i

}V

i=1

}
, where Ib

j and Ih
i

denote the sub-signals extracted from breath and heartbeat band, respectively.
As for abdomen vital signal, only the refined breath segment is subdivided to further

extract breath-related sub-signals. The maximum sub-segment number of the breath sub-
spectrum is set as Nba . Moreover, the abdomen boundaries are obtained as(

f
′
b0

, f
′
b1

, . . . , f
′
bW−1

, f
′
bh

, f
′
h0

, f
′
hh

)
, W ≤ Nba . A series of abdomen sub-signals are obtained as{{

Ib
k

}W

k=1
, Io

}
, where Io denotes the sub-signal in the heartbeat band.

According to Equations (3) and (4), the decomposed chest sub-signals consist of breath
signal and its harmonics, heartbeat and its intermodulation signal with breath. Besides,
there exists residual motion artifact related sub-signal. The abdomen sub-signals only
contain breath-related sub-signals and motion artifact-related sub-signal. In order to extract
vital signs under the interference from multi-order harmonics and residual motion artifact,
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cross-correlation functions are calculated among chest and abdomen sub-signals to estimate
heartbeat and breath.

3.4. Cross-Correlation Functions Based Vital Signs Estimation
3.4.1. Breath Estimation

Based on the breath correlation of chest and abdomen signals, the dependency is first
evaluated among different decomposed sub-signals to assist breath signal selection from
chest and abdomen sub-signals. Cross-correlation function provides the relational degrees
of two signals at different times, which is applied to present sub-signals dependency. The
breath cross-correlation function Rjk(n) calculated on Ib

j and Ib
k is expressed as

Rjk(n) =
1
D

∫ D

0
Ib
j (t)Ib

k (t + n)dt,−D < n < D, (10)

where n denotes the time shift on radar slow time, and D denotes the time span of the
two sub-signals. The maximum value of Rjk(n) is extracted as a relevance coefficient to
indicate the degree of sub-signal relevance, which is denoted as rjk. After calculating Rjk(n)
iteratively, the relevance coefficient matrix Cb of breath is obtained and expressed as

Cb =

 r11 . . . r1W
...

. . .
...

rU1 · · · rUW

. (11)

Compared with residual motion artifact and breath harmonics, the fundamental
breath signal presents a stable periodicity so that two breath sub-signals extracted from
target chest and abdomen present stronger relevancy. Therefore, the maximum relevance
coefficient of Cb corresponds to the breath related sub-signals obtained from chest and
abdomen, respectively. Figure 4 shows the waveform and frequency spectrum of selected
breath sub-signals and corresponding cross-correlation function. The real breath rate of
the shown example is 0.25 Hz. As is depicted in Figure 4a,b, two breath sub-signals are
partly distorted under motion interference, resulting in the detected breath frequency with
larger absolute errors, which are all 0.02 Hz. It is notable that the corresponding breath
cross-correlation function in Figure 4c overcomes the effect of signal deformation and
presents obvious periodicity related to breath vibration. Moreover, the absolute error of
estimated breath frequency decreases to zero so that the breath frequency is extracted by
the selected breath cross-correlation function.

3.4.2. Heartbeat Estimation

Considering the limitation of radar detection view, the lower radar barely detects
heartbeat vibration. The decomposed sub-signal working on heartbeat band obtained from
target abdomen indicates residual interference signal, for example, motion artifact signal so
that the heartbeat sub-signal of chest have little correlation with the sub-signal in the same
band extracted from abdomen signal. The heartbeat cross-correlation function Rio(n) is
calculated iteratively on chest heartbeat-related sub-signals Ih

i and corresponding abdomen
sub-signal Io as Equation (10) is described. Moreover, the heartbeat relevance coefficient
matrix Ch is obtained as

Ch = (r1o, r2o, · · · , rVo). (12)

The maximum relevance coefficient of Ch presents the sub-signal containing little
heartbeat-related vibration, which is excluded from the chest sub-signals related to heart-
beat. After that, the sub-signal with maximum signal energy is extracted as heartbeat signal
Ih. Furthermore, the heart rate obtained by applying FFT on Ih.
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(a) (b) (c)

0.27 Hz

(d)

0.23 Hz

(e)

0.25 Hz

(f)

Figure 4. Breath sub-signals of chest and abdomen and corresponding breath cross-correlation
function. Panels (a,b) denote the waveform of breath sub-signals of chest and abdomen, respectively.
Panel (c) denotes the breath cross-correlation function. Panels (d–f) denote the corresponding Fourier
spectrum, respectively.

4. Results and Discussion
4.1. Movement Interference Alleviation Performance Based on EWT

Figure 5 shows a signal obtained from the upper radar as an example of movement
interference alleviation based on EWT. The blue line indicates the signal before EWT.
It is notable that there exists overlapping of target chest and other body parts echoes.
Furthermore, the signal after interference mitigation is depicted by red line. The signal
retained is reflected from target chest. The amplitude of the retained signal after EWT
is decreased partly. It is because the motion artifacts overlapping with the chest signal
are suppressed.

Figure 5. A signal of movement interference alleviation based on EWT.

In order to further evaluate the performance of movement interference alleviation
based on EWT, moving average filtering (MAF) [29], and Singular Value Decomposition
(SVD) [43] are introduced as comparisons. Figure 6 presents a motion interference miti-
gation example based on different methods. The shown signals are collected in Exercise
II situation by the upper radar. Figure 6a describes the target signals obtained by DC
removal. It is notable that the signal reflected from target chest are superposed and ob-
structed by echoes from other body parts, which are mainly induced by the arm waving
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while the participant doing exercise. As is shown in Figure 6b,c, there still exists strong
motion superposition after using comparison methods. After applying EWT, as is shown
in Figure 6d, the arm movement interference is effectively suppressed, whereas the chest
echoes are still retained. The effectiveness of movement interference alleviation based on
EWT is demonstrated.

(a) Signals before movement interference alleviation. (b) Signals after MAF.

(c) Signals after SVD. (d) Signals after EWT.

Figure 6. The performance of movement interference alleviation using different methods.

Furthermore, a signal-to-movement-interference ratio (SMIR) is introduced to analyze
the performance of motion artifact reduction quantificationally, which presents an energy
ratio of the signals reflected from target chest or abdomen under movement interference.
SMIR is described as

SMIR =
Eτ1τ2

E0 − Eτ1τ2

, (13)

where Eτ1τ2 denotes the summation of the signal energy between the interested fast time
interval [τ1, τ2], and E0 denotes the total signal energy. Based on the experimental setup, the
distance range of chest-to-antenna distance and abdomen-to-antenna distance are between
0.5 m and 1 m. According to Equation (1), the corresponding fast time τ1 and τ2 are 3.3 ns
and 6.7 ns, respectively. The results of these three methods applying on upper and lower
radars are listed in Table 3.

Table 3. Comparisons on SMIR.

SMIR after MAF SMIR after SVD SMIR after EWT

The upper radar 3.4 20.5 25.3
The lower radar 3.3 14.2 16.6

As is shown in Table 3, the performance of the EWT-based method on SMIR is better
than other two methods, which quantificationally demonstrates the validity of movement
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interference alleviation based on EWT. The SVD-based method obtains higher SMIR than
MAF-based method. This is because the motion interference overlapping with body
chest or abdomen is not suppressed effectively, resulting in larger signal energy in the
interested fast time interval. After mitigating motion artifacts, the vital signals of target
chest and abdomen are extracted from the maximum amplitude along the fast time of each
retained signal.

4.2. Vital Signs Sub-Signals Extraction Results Based on EWT

Figure 7 shows an example of spectrum segmentation refinement based on EWT. The
blue line indicates the spectrum of a chest vital signal extracted from the upper radar. For a
healthy adult, the heartbeat frequency band is set as 1–2 Hz, while the breath frequency
band is set as 0.15–0.4 Hz. So that the initial frequency boundaries are set as 0.15 Hz,
0.4 Hz, 1 Hz, and 2 Hz, respectively, which are marked by the gray lines. Based on the
initial frequency boundaries, the orange lines indicate the refined frequency boundaries
including the adaptive fine-tuned boundaries, i.e, 0.22 Hz, 0.39 Hz, 1.06 Hz, and 2.06 Hz
and sub-divided boundaries, i.e., 1.39 Hz, 1.67 Hz.

Figure 7. The description of chest spectrum segmentation refinement.

After spectrum segmentation refinement, the EWT is applied. As is shown in Figure 8,
the second segment corresponds to the breath-related sub-signal, while the fourth, fifth, and
sixth segments correspond to heartbeat-related sub-signals. The waveforms and spectrums
of decomposed breath-related sub-signals are shown in Figure 8. Considering that only one
breath-related sub-signal is extracted, this sub-signal is regarded as a breath signal detected
from the target chest. The vibration frequency is 0.26 Hz, corresponding to the peak of
Fourier spectrum. Moreover, the waveforms and spectrums of decomposed heartbeat-
related sub-signals are shown in Figure 9. Three sub-signals are obtained regarded as one
heartbeat signal and two intermodulation signals of heartbeat and breath, with vibration
frequency at 1.13 Hz, 0.93 Hz, and 1.49 Hz, respectively.

(a) The waveform of breath sub-signal I.

0.26 Hz

(b) The spectrum of breath sub-signal I.

Figure 8. The breath-related sub-signal of target chest.
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(a) The waveform of heartbeat sub-signal I.

0.93 Hz

(b) The spectrum of heartbeat sub-signal I.

(c) The waveform of heartbeat sub-signal II.

1.13 Hz

(d) The spectrum of heartbeat sub-signal II.

(e) The waveform of heartbeat sub-signal III.

1.49 Hz

(f) The spectrum of heartbeat sub-signal III.

Figure 9. Heartbeat-related sub-signals of target chest.

Figure 10 shows the refined spectrum segmentation result of the abdomen vital signal
corresponding to above chest signal. As is depicted, after refinement, the frequency
boundaries are set as 0.11 Hz, 0.44 Hz, 0.94 Hz, and 2 Hz, respectively. The breath-
related segment can be further segmented if needed, and the segment corresponding to
heartbeat band is not sub-divided anymore. The decomposed sub-signals are illustrated in
Figures 11 and 12. Figure 11 shows the breath sub-signal extracted from target abdomen
with vibration frequency 0.25 Hz, whereas Figure 12 shows the sub-signal working on
heartbeat band.

Figure 10. The description of abdomen spectrum segmentation refinement.
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(a) The waveform of breath sub-signal I.

0.25 Hz

(b) The spectrum of breath sub-signal I.

Figure 11. Breath-related sub-signal of target abdomen.

(a) The waveform of the sub-signal. (b) The spectrum of the sub-signal.

Figure 12. The sub-signal working on heartbeat band of target abdomen.

4.3. Evaluation on Vital Signs Estimation

The breath rate estimation absolute error Erb is introduced to evaluate the breath
monitoring performance, which is expressed as

Erb = abs(bre − brt), (14)

where bre indicates the estimated breath rate, and brt indicates the collected true breath
rate obtained from the oximeter.

The heart rate estimation accuracy Acch is introduced to evaluate the heartbeat moni-
toring performance, which is expressed as

Acch =

(
1− abs(hre − hrt)

hrt

)
∗ 100%, (15)

where hre indicates the estimated heart rate, whereas hrt indicates the reference heart rate
obtained from the oximeter.

The estimated vital signs of eight participants based on the proposed approach are
listed in Table 4, which presents the performance evaluated on the heart rate accuracy and
the breath rate absolute error. Avg and Std denote the average and the standard deviation
of estimated results, respectively.

Table 4. Vital signs estimation results on different participants using the proposed approach.

Participant
Breath Rate Absolute Error Heart Rate Accuracy

Avg (rpm) Std (rpm) Avg (%) Std (%)

1 2.6 1.7 86.5 11.6
2 2.2 1.8 87.7 8.9
3 2.3 1.8 88.6 8.5
4 2.6 1.7 87.2 8.1
5 2.2 1.8 86.7 9.1
6 2.7 1.9 84.7 11.1
7 1.9 1.7 87.6 9.5
8 2.4 1.7 88.0 7.4

Average 2.3 1.8 86.9 9.8
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As is illustrated in Table 4, based on the proposed approach, the average breath
rate estimation absolute error for eight participants is 2.3 with the standard deviation 1.7
respiration per minute (rpm), whereas the average heart rate estimation accuracy is 86.9%
with the standard deviation 7.4%. The highest average heart rate estimation accuracy
reaches 88.6% with the standard deviation 8.5% for participant 3. The listed results show
the monitor robustness of the proposed approach on different people during PA.

In order to evaluate the performance on various activities, the experiments result of
different activities are also obtained and listed in Table 5.

Table 5. Vital signs estimation results on different activities using the proposed approach.

Activities
Breath Rate

Absolute Error
Heart Rate
Accuracy

Avg (rpm) Std (rpm) Avg (%) Std (%)

Exercise I 2.1 1.8 86.3 9.7

Exercise II 2.2 1.8 86.0 10.8

Yoga 2.4 1.9 86.4 10.8

Random
body movement 2.6 1.7 86.4 9.9

Back-and-forth
body movement 2.6 2.0 88.1 9.0

As is illustrated, the proposed algorithm achieves a good performance on five different
activities. For all the activities, the heart rate estimation accuracy can reach 86.0% and the
highest estimation accuracy is 88.1% for the back-and-forth body movement. The absolute
error of breath rate is less than 2.6 rpm. Besides, during the experiment and signal process-
ing, no extra expert intervention is conducted. The experimental results demonstrate the
effectiveness of the proposed algorithm in practical usage on different activities.

In order to analyze the influence of slow-time duration of a radar sample on monitor-
ing performance, the vital signs estimation performances based on radar samples sliced by
slow-time windows with different lengths are described in Table 6. The average computa-
tion time of one-time radar sample processing are also obtained based on the experimental
laptop with a Intel’s core i5 10th generation processor. By contrast, it is shown that the best
vital signs estimation result is obtained based on the radar samples sliced by the selected
15 s window in this paper. Moreover, the shorter or longer windows are obviously negative
to the performance of the proposed algorithm. Besides, it also have a moderate computing
time when the radar samples are 15 s length.

Table 6. The estimation performances based on radar samples sliced by slow-time windows of
different length.

Breath Rate
Absolute Error (rpm)

Heart Rate
Accuracy (%)

Computation
Time (s)

7-s window 2.8 84.4 0.43
10-s window 2.9 85.6 0.53
15-s window 2.3 86.9 0.79
18-s window 2.5 86.6 0.92

In order to further evaluate the effectiveness of the proposed approach, three vital
signs monitoring approaches are introduced as comparison, including Variational Mode De-
composition (VMD)-based method [44], Ensemble Empirical Mode Decomposition (EEMD)
with Continuous Wavelet Transformation (CWT) method [14], and HEAR method [35].
Besides, the performance of the proposed approach applying on a single radar is also com-
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pared, which estimates vital signs based on the decomposed sub-signals with maximum
signal energy in heartbeat and breath band, respectively.

4.3.1. Comparisons on Breath Estimation

In order to verify the superiority of the proposed approach, three comparison methods
mentioned above are applied on both upper and lower radar. Moreover, the average of
estimated breath rates by two radars are also obtained. The results of breath estimation
absolute error are performed in Figure 13.

As is illustrated, the marked points denote the averages of estimation absolute error,
while the corresponding bars on both sides of the points denote the standard deviation
of estimation absolute error for each method. It is notable that the proposed approach
performs best based on the combination of two radar, the average absolute error of which
is 2.3 rpm. The estimation absolute error is 2.6 rpm, 0.5 rpm, and 0.3 rpm less than the
results of the other three methods, respectively. Furthermore, the result of the proposed
approach applied on a single radar present superiority among these four methods. For
upper and lower radar, the average absolute errors are 2.6 rpm and 2.5 rpm, respectively,
both of which promote the performance of other three methods. Besides, the standard
deviation of the proposed approach is smaller compared with other three methods, which
presents the stability and robustness of estimation performance of the proposed approach.

Figure 13. Breath estimation absolute error of different methods.

The estimation errors of the other three methods are relatively large. For the VMD-
based method and the EEWT with CWT method, the detection performances are strongly
affected by untreated movement interference, while the complicated body motions hinder
the breath estimation using HEAR. Moreover, compared with the estimation result based
on two radars, the absolute error increases for each method based on a single radar. It is
demonstrated that the superiority of the proposed approach on breath rate estimation with
body movement by monitoring target chest and abdomen simultaneously.

4.3.2. Comparison Results on Heartbeat Estimation

In order to evaluate the performance of heartbeat estimation based on the proposed
approach, three aforementioned methods are introduced and applied on the upper radar
as comparisons. The heartbeat estimation results of these methods are listed in Table 7.



Sensors 2021, 21, 5503 16 of 18

Table 7. Comparisons on heartbeat estimation among different methods.

Approach Accuracy

HEAR method 79.0%

The upper radar VMD-based method 80.0%
EEMD with CWT method 80.9%
The proposed approach 81.6%

Combinaton The proposed approach 86.9%

As illustrated in Table 7, it is observed that the proposed approach combining two
radar signals presents the best performance on heart rate estimation among all the methods,
the average accuracy of which achieves 86.9%. Compared with the proposed approach
applying on the upper radar, the average accuracy improves 5.3% using two radars si-
multaneously, which illustrates the superiority for heartbeat estimation using two radars
simultaneously. Moreover, the accuracy of estimated heart rate obtained by the proposed
approach is 6%, 6.9%, and 7.9% higher than the comparison methods, respectively. The
performances of the other three methods are affected by various body movement during
PA. Although HEAR method deals with movement interference cause by the variation of
antenna-to-target distance, it is insufficient to handle various types of body movement
interference during PA and extract the signal reflected from target chest. Therefore, the
effectiveness of the proposed approach is verified in heartbeat monitoring.

4.4. Discussions and Future Works

It is feasible to exploit the proposed approach in real cases, such as working in the
office, driving a car, or spinning bike in the gym. In these cases, although various random
body movements happen most of the time, the monitored person always maintain the
upper body straight, and the two radars can be placed facing to the chest and abdomen
of monitored person. In the future works, the proposed approach will be improved and
evaluated in these scenarios.

For some much more complex human activities in real cases, such as continuous
jumping, rapid spinning, and squatting up and down, the induced motion artifacts severely
contaminate and destroy the vital signals detected by the IR-UWB radars. In these complex
scenarios, the proposed approach needs to be improved further to guarantee monitoring
performance. Besides, there exist real scenarios with multiple moving targets in a wide
range. A promising direction for such scenarios with multiple moving targets in a wide
range is extending the proposed approach by using more IR-UWB radars to cover the entire
monitoring area and obtain vital signs of multiple moving targets in the future works.

5. Conclusions

In this paper, a novel joint chest–abdomen cardiopulmonary signal approach is pro-
posed to detect breath and heart rate simultaneously using two IR-UWB radars during
PA. In order to deal with the signal superposition caused by various movement artifacts
during PA, EWT is introduced to remove clutters and alleviate motion interference of
received radar signals. Furthermore, the interested vital signals reflected from target chest
and abdomen are extracted. Moreover, improved EWT with frequency boundaries refine-
ment is applied to decomposed vital signal of each radar as breath and heartbeat related
sub-signals. After that, based on the thoracoabdominal correlation, the cross-correlation
function is calculated among sub-signals of chest and abdomen, and estimate heartbeat
and breath. The proposed approach is evaluated on three kinds of PA and two general
body movements. The average estimation accuracy of heart rate is 86.9%, whereas the
average absolute error of breath rate is 2.3 rpm. The experimental results demonstrate the
effectiveness and superiority of the proposed approach.
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