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a b s t r a c t 

Cyclodextrin complexation is a wise strategy to enhance aqueous solubility of water- 

insoluble drugs. However, the aggregation mechanism of drug-cyclodextrin complexes is 

still unclear. This research aimed to investigate the molecular aggregation mechanism 

of glipizide/cyclodextrin complexation by the combination of experimental and model- 

ing methods. Binding free energies between glipizide and cyclodextrins from modeling 

calculations were higher than those by the phase solubility diagram method. Both exper- 

imental and modeling results showed that methylated- β-cyclodextrin exhibited the best 

solubilizing capability to glipizide. Size-measurement results confirmed the aggregation be- 

tween glipizide and all four cyclodextrins in high concentrations. Glipizide/ γ -cyclodextrin 

and glipizide/ β-cyclodextrin complexes showed stronger aggregation trend than HP- 

β-cyclodextrin and methylated- β-cyclodextrin. The substituted groups in the rim of 

HP- β-cyclodextrin and methylated- β-cyclodextrin lead to weak aggregation. This research 

provided us a clear molecular mechanism of glipizide/cyclodextrin complexation and 

aggregation. This research will also benefit the formulation development of cyclodextrin 

solubilization. 

© 2018 Shenyang Pharmaceutical University. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

 

 

 

 

 

1. Introduction 

Cyclodextrins (CDs), as one type of pharmaceutical excipi-
ents, are widely used to improve solubility and dissolution
rate of water-insoluble drugs [1 –3] . CDs can form complexes
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with drugs because of its hydrophobic cavity and hydrophilic
shell [4 –9] . The cavities of CDs could encapsulate unstable
or distasteful drugs and this application has already been
widely used [10] . The aqueous solubility of the natural CDs
(e.g. β-CD) is much lower than that of other acyclic saccharides
because of their strong inter-molecular hydrogen bonding
rsity. 
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n the crystal state. Hydroxyl or methyl substitutions groups 
esult in significant improvement of their aqueous solubility.
he hydroxypropyl- β-CD (HP- β-CD) and the methylated- β- 
D (Me- β-CD) are most commonly used [1,11] . Usually, the 
inding free energy of inclusion complexes is determined 

y phase-solubility diagrams [12,13] . Molecular dynamics 
imulation is also widely used to assess the steric interaction 

f complexes and predict the characteristic of drug-CD in- 
eraction in either vacuum or solutions [14 –18] . However, the 
ndividual drug/CD complex can only exist in ideal dilute so- 
utions [19] . According to the literature reported [20] , CDs were 
ble to form both inclusion and non-inclusion complexes. In 

he real solution, there were many different types of solutes,
uch as free drug molecules, “empty” CD molecules, drug/CD 

nclusion complexes and drug/CD non-inclusion complexes 
21] . Several reports had indicated that two or more CDs and 

D complexes can self-associate to form aggregates [19,22 –
0] . These aggregates were able to enhance the solubility 
f drugs through non-inclusion complexes or “micelle-like”
tructure. The formation of hydrogen bonds between natural 
Ds and water lead to the aggregation, while the substituted 

roups in the rim of HP- β-CD and Me- β-CD hinder the self- 
ggregation [19] . Moreover, the particle of aggregates was too 
mall to be seen. For example, 2,5-Diphenyloxazone- γ -CD was 
ound to form aggregates in its high-concentration solutions 
26] . The formation of γ -CD aggregates in aqueous solution 

nd their critical aggregation concentration were determined 

y both conventional dynamic light scattering (DLS) method 

nd new permeation method for quantitative determination 

f γ -CD [31] . The drug/ γ -CD/HP- γ -CD complex was stabilized 

y poloxamer-407 through the formation of multi-component 
ggregates [32] . However, the importance of CD aggre- 
ates was still underestimated by academic and industrial 
cientists. 

Glipizide (GLI), a second generation sulfonylurea com- 
only prescribing drug [33] , is used to treat type II diabetes 
ellitus. GLI can efficaciously reduce the blood glucose level,
etabolism and delay the occurrence of vascular complica- 

ions in diabetic patients. GLI is a weakly acid drug with 

oor water-solubility at room temperature. Its poor aqueous 
olubility limits its absorption in gastrointestinal (GI) tract 
34 –37] . It has been reported β-CD, HP- β-CD and Me- β-CD have 
he good solubilizing effect on GLI [3,34,38 –45] . For instance,
LI/ β-CD complexes were prepared for controlled release ma- 

rix tablets, which showed better solubility and stability than 

ure GLI [3] . GLI was used as a model drug to evaluate a newly
odified CD and compared with GLI/HP- β-CD complexes, the 

ormation of GLI/CD complexes showed better solubilizing ef- 
ect and the newly modified CD showed better solubility effect 
o GLI than HP- β-CD [41] . GLI/ β-CD complexes were compared 

ith GLI/Me- β-CD complexes in phosphate buffer (pH = 4 and 

H = 8). It suggested the encapsulation of glipizide with β- 
D and its methyl and hydroxypropyl derivatives was a use- 

ul strategy to improve the solubility and dissolution of these 
oorly soluble therapeutic agents and Me- β-CD had the bet- 
er solubility-enhancement ability to glipizide [38] . Previous 
orks mainly emphasized on the formation and properties of 

he inclusion complexes. 
The aim of this study was to investigate the molecular 

ggregation mechanism of the drug/CD complexes by both 
xperimental and modeling approaches. GLI was used as the 
odel drug and four CDs ( β-CD, γ -CD, HP- β-CD, Me- β-CD) 
hich are widely used in the commercial and experimental 
eld were selected. Phase solubility studies, Fourier transform 

nfrared spectroscopy (FTIR) studies, differential scanning 
alorimetry (DSC) studies and molecular dynamic simulation 

f 1:1 GLI/CD complexes were used to investigate binding 
ree energies and complexation mechanisms. Dynamic light 
cattering (DLS) studies and MD simulation of 10:10 GLI/CD 

ggregates were used to investigate aggregation size and 

echanisms. 

. Materials and method 

.1. Materials 

lipizide was purchased from Wuhan Dongkang Technology 
ompany Limited (China). β-CD, γ -CD, HP- β-CD and Me- β- 
D were purchased from Beijing J&K Scientific Company Lim- 

ted (Beijing, China). Methanol was purchased from MerkKGaA 

ompany (China). Ethanol absolute was purchased from Tian- 
in Damao Chemical Reagent Factory (Tianjin, China), China.
ll reagents and solvents were of analytical grade. 

.2. Binding free energy calculation by phase solubility 
tudies 

hase solubility studies were referred to methods of previous 
esearch [13,46] . In brief, excessive amounts of GLI were dis- 
olved in distilled water containing various concentrations of 
Ds and placed in a water bath oscillator for 2 d under dif-

erent temperature. Subsequently, samples were filtered by 
.45 μm filter membrane. The filtered samples were diluted 

uitably and analyzed by DR6000 Ultraviolet–visible (UV–Vis) 
pectrophotometer Hach at 275 nm. Each sample was tested 

hree times. The inclusion constant (Kc) was calculated by the 
ormula: Kc = Slope/S 0 × (1-Slope). S 0 was the intrinsic solubil- 
ty of GLI. 

.3. Preparation of inclusion compound 

he solid inclusion complex was prepared with saturated 

ater solution method. The solid inclusion complexes were 
repared at 1:40 weight ratio of GLI to CDs. 100 mg GLI were 
issolved in 100 ml methanol solution. The GLI methanol 
olution was added to the CD solution (0.015 mmol/ml for 
-CD and 0.05 mmol/ml for other CDs), dropwise with slow 

tirring for 2 h under 60 °C. Then, the mixtures were stirred at
oom temperature for 4 h. The suspension was stored under 
 °C overnight. After filtration, the sediment was washed with 

cetone for 2–3 times. The complexes were dried in the oven 

nd was sieved through 80 mesh for further analysis. 

.4. Characteristic of GLI/CD complexes by FTIR studies 

he GLI/CD complexes prepared by saturated water solution 

ethod were recorded on Thermo Nicoletis 10 IR using KBr 
isc. The FTIR results of GLI/CD complexes were compared 

ith those of GLI, CD, and GLI/CD physical mixture. The data 
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Table 1 – Docking coordinates and center of the search 

space in docking simulation. 

X( ̊A) Y( ̊A) Z( ̊A) Dimensions 

GLI/ β-CD 3.256 0.939 5.477 60 ̊A × 60 ̊A × 60 ̊A 

GLI/ γ -CD −1.624 2.739 5.733 60 ̊A × 60 ̊A × 60 ̊A 

GLI/HP- β-CD 3.048 1.411 4.735 60 ̊A × 60 ̊A × 60 ̊A 

GLI/Me- β-CD 3.327 0.795 5.575 60 ̊A × 60 ̊A × 60 ̊A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

was analyzed under OMINIC program. Physical mixtures were
prepared at the same weight ratio as the complexes. 

2.5. Characteristic of GLI/CD complexes by DSC studies 

The DSC measurement of GLI, CD, GLI/CD physical mixtures,
and GLI/CD complexes was performed using Shimadzu Dif-
ferent Scanning Calorimetry (DSC) −60A Systems (Shimadzu,
Kyoto, Japan) and equipped with Thermal Analysis (TA) −60
workstations. The thermal behaviors were studied by heating
all samples in a sealed aluminum pan with an empty sealed
pan as a reference. The temperature range was 30–250 °C with
a rate of 10 °C/min under a nitrogen gas stream. 

2.6. Size measurement of GLI/CD solution by DLS method 

The particle size characteristics were performed by DLS
method under ZETA-SIZER NANO ZSP. An excessive amount of
GLI was dissolved in distilled water containing 0.02 mmol/ml
concentration of CDs (the concentration of β-CD was
0.015 mmol/ml because of its saturated concentration) and
placed in a full temperature shock incubator for 2 d. Sub-
sequently, the samples were filtered. Measurements were
carried out at a scattering angle of 173 ° under ZETA-SIZER
NANO ZSP software system. The size distributions were ob-
tained from intensity autocorrelation function by regulariza-
tion analysis. The selections of filter membranes and other
parameters were the same as previous research [25] . Free CDs
and GLI solutions under same concentration were tested as a
blank control. Each measurement was done in triplicate. 

2.7. Simulation details 

2.7.1. Molecular structures construction 

The structures of β-CD and γ -CD were obtained from the Cam-
bridge Crystallographic Data Center [47] , HP- β-CD and Me- β-
CD were modified from the structure of β-CD by Discovery
Studio 2016 Client. The position of substituent was referred
to previous paper [30,48] . GLI was drowned by Discovery Stu-
dio 2016 Client according to Chinese pharmacopoeia 2015. All
the molecular structures were optimized with a force field by
Discovery Studio 2016 Client. 

2.7.2. The construction of initial structures of 1:1 GLI/CD sim-
ulation by docking 
AutoDock Vina is widely used to predict the affinity of 1:1
ligand-receptor interaction [49,50] . The AutoDock Tools pack-
age and AutoDock Vina were used to perform docking stud-
ies. GLI and CD were combined by the ratio of 1:1 [34,45] . In
docking simulation, the CD was a“receptor” while GLI was
a“ligand”. Semi-flexible docking method was adapted to GLI.
Docking coordinates and center of the search space are shown
in Table 1 . All the other parameters were default values in
AutoDock Vina. The structures with the lowest affinity would
be considered as stable binding models and performed in MD
simulations as initial structures. 

2.7.3. One-to-one molecular dynamics (MD) simulation 

The initial structures of one-to-one (1:1) MD simulation
were obtained from Section 2.7.2 . The MD simulation was
carried out under the AMBER 14 and AMBER Tools 14 software
package. The general AMBER force field was applied in the
antechamber module for all molecules. The transferable in-
termolecular potential with 3 points (TIP3P) water model with
a cube of 20 Å thicknesses was added to solvate each system.
Table 2 showed the system construction. During the MD
simulation of each 1:1 GLI/CD system, the solvent was firstly
subjected 10 000 steps of minimization of solvation energy
and the whole system has conducted a total of 20 000 steps of
the minimization. The system was heated to 37 °C in a total of
10 000 steps MD simulation after energy minimizations. After
heating, 70 ns MD simulation was performed with a time step
of 0.002 ps and a cut-off of 10 Å. 

2.7.4. Binding free energy calculation by molecular
mechanics/Poisson–Boltzmann surface area (MM/PBSA) method
The MM/PBSA method is widely used to calculate the binding
free energy of 1:1 ligand-receptor system [51] . The average
interaction energies of the receptor and the ligand were cal-
culated by the last 5 ns structures from the MD trajectory. The
binding free energy of the GLI/CD inclusion complex ( �G bind )
was calculated by the free energy of complex ( �G complex ) and
the isolated GLI ( �G GLI ) and CDs ( � G CD ) as the following
equation: 

�G bind = � G complex − � G GLI − �G CD 

The absolute molecular mechanical energy changes
( �E MM 

) were calculated with the following equation: 

�E MM ( total gas phase energy ) = �E internal + �E vdw 

+ �E electrostatic 

�E vdw 

and �E electrostatic were the electrostatic and Van
der Waals interaction energy changes, the internal energy
changes ( �E internal ) represented the strain energy changes in
bonds, angles and torsion angles. 

The Gibbs free energy ( � G) was calculated by the enthalpy
( � H) and entropy ( � S) with invariable temperature (T): 

�G = �H − T�S 

2.7.5. Multi-to-multi MD simulation 

In the multi-to-multi (10:10) MD simulation part, the initial
structures of MD simulation were built by “PACKMOL” pack-
age with the tolerance distance 3.0 Å and 100 Å × 100 Å × 100 Å
cube. 10 GLI and 10 CDs were performed. 14 Å thickness TIP3P
water was added in each system. Table 3 showed the system
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Table 2 – 1:1 system constructions and information of molecular number and atom number. 

GLI/ β-CD GLI / γ -CD GLI /HP- β-CD GLI /Me- β-CD 

Molecule number of GLI 1 1 1 1 
Molecule number of CDs 1 1 1 1 
Atom number of GLI 58 58 58 58 
Atom number of CDs 147 168 187 189 
Molecular number of water 4795 5029 5798 5321 
Atom number of the system 14 590 15 307 17 633 16 204 

Table 3 – 10:10 system constructions and information of molecular number and atom number. 

GLI/ β-CD GLI/ γ -CD GLI/HP- β-CD GLI/Me- β-CD 

Molecule number of GLI 10 10 10 10 
Molecule number of CDs 10 10 10 10 
Atom number of GLI 580 580 580 580 
Atom number of CDs 1470 1680 1870 1890 
Molecular number of water 47 580 42 396 41 402 46 018 
Atom number of the system 144 792 129 448 126 656 140 524 
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Fig. 1 – Phase solubility diagrams of GLI with four CDs in 

distilled water at 37 °C. 
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onstructions of 10:10 systems. 10:10 GLI/CD systems were 
imulated by 150 ns. Other settings were the same as Section 

.7.3 . 

.7.6. Multi-to-multi system analysis 
PPTRAJ is the main program in AMBER for processing co- 
rdinate trajectories and data files. Root-mean-squared de- 
iation (RMSD) of mass, the solvent-accessible surface area 
SASA) of GLI and CDs, number of contact points within 3 Å 

etween GLI and CDs, number of water molecules within 3.6 Å 

round GLI and hydrogen bonds information were selected 

s the evaluation parameters. All the parameters referred to 
MBER 2017 manual and previous paper [52] . RMSD coordi- 
ates were calculated by the reference to the initial structures.
he solvent-accessible surface area used the “linear combi- 
ation of pair-wise overlap” (LCPO) algorithm of Weiser et 
l. [53] . Any atoms between GLI and CDs which were closer 
han 3 Å in the specified reference frames were considered as 
ative contact points and these atoms reflected aggregation 

54,55] . Number of water molecules around GLI within 3.6 Å re- 
ected the environment around drugs. All the data were per- 
ormed under CPPTRAJ program and exhibited in XMGRACE 
ackage. 

. Results and discussion 

.1. Results and discussion of 1:1 GLI/CD complexes 

.1.1. Binding free energy calculation by phase solubility 
tudies 
olubility experiments were carried out to investigate interac- 
ions between GLI and CDs. The phase solubility diagrams of 
LI/CD solution under 37 °C are shown in Fig. 1 . 

The phase solubility diagram of GLI/CD could be classi- 
ed as A L type according to Higuchi and Cornnors which 
onfirmed the stoichiometry of 1:1 complex [13] . The intrinsic 
olubility of GLI was 2.70 ± 0.97 × 10 −5 mol/ml under room 

emperature and 3.93 ± 0.86 × 10 −5 mol/ml under 37 °C which 

greed with those of previous paper (2.29 × 10 −5 mol/ml in 

oom temperature and 4.08 × 10 −5 mol/ml in 37 °C) [34,41,45] .
he aqueous solubility of the GLI increased linearly as a func- 

ion of the concentration of CDs. Table 4 showed the binding 
onstant (Kc) under different temperature, enthalpy ( �H),
ntropy ( �S) and binding free energy ( �G) calculated from the 
ormula: �G = -R × T × ln(kc) and �G = �H-T × �S. Negative 
nthalpy indicated the GLI/CD complexation reaction was 
xothermic. It has been reported that �G of GLI/ β-CD and 

LI/Me- β-CD complexes was −17.71 kJ/mol and −18.27 kJ/mol 
nder 37 °C and those of ours were −14.02 kJ/mol and 

15.52 kJ/mol [34,38] . These differences were produced be- 
ause the previous experiments were carried out under 
ifferent pH and CD concentrations. According to the liter- 
ture reported, the Kc of GLI/HP- β-CD complexes was 286 
 

−1 under 30 °C as well as �H and �S was −57.11 kJ/mol and
142.31 J/mol/K under the similar experimental condition as 
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Table 4 – Binding constant (Kc), enthalpy and entropy of GLI in CDs solution under different temperature. 

Temperature ( °C) Kc Enthalpy (kJ/mol) Entropy (J/mol/k) �G(KJ/mol) (37 °C) 

22.5 30 37 45 

β-CD 402.65 249.15 230.56 135.95 −35.39 ± 4.91 −70.01 ± 16.07 −14.02 ± 0.22 
γ -CD 40.78 30.02 25.41 17.88 −27.88 ± 9.19 −63.47 ± 6.74 −8.33 ± 0.54 
HP- β-CD 347.35 261.36 127.54 73.19 −56.53 ± 5.34 −141.71 ± 18.31 −12.50 ± 0.67 
Me- β-CD 674.21 654.25 412.79 181.63 −46.65 ± 6.93 −101.84 ± 23.01 −15.52 ± 0.21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ours. These results were in accordance with our experimental
results. Kc decreased with the increased temperature which
proved that heating was not benefited to the complexation.
GLI/HP- β-CD had the lowest entropy because the intramolec-
ular hydrogen bonds of HP- β-CD limited the free-moving of
GLI in the CD cavity which has been explained in the previous
research [56] . 

According to phase solubility results, the solubilization ca-
pability of GLI by CDs was as follows: Me- β-CD > β-CD > HP- β-
CD > γ -CD under same experimental conditions. 

3.1.2. Characteristic of GLI/CD complexes by FTIR studies 
The FTIR results gave references to the 1:1 modeling results,
the substituent groups of GLI wrapped in CD could be observed
by combined FT-IR and modeling investigation. 

GLI, CDs, GLI/CD physical mixture and GLI/CD complexes
were analyzed under OMINIC program. The IR spectra of GLI,
CD, physical mixture (pm) and GLI/CD complexes (com) are
shown in Fig. 2 . The variation of the shape, shift, and inten-
sity of the IR absorption peaks of GLI and CDs could provide
enough information for the occurrence of the inclusion. GLI
had a double characteristic peak in 3326 cm 

−1 and 3251 cm 

−1

which represented N 

–H stretching. The double peak in
1690 cm 

−1 and 1651 cm 

−1 represented C = O stretching, the
double peak of 1160 cm 

−1 and 1035 cm 

−1 represented S = O
stretching in GLI. Aromatic vibration had a single peak in
1529 cm 

−1 in GLI and C 

–H of cyclohexane bending had a peak
in 1445 cm 

−1 in GLI. According to FTIR results of β-CD/GLI
complexes, 3382 cm 

−1 was the characteristic peak of –OH,
2926 cm 

−1 was the characteristic peak of anti-symmetric
stretching vibration peak of CH 2 , 1028 cm 

−1 was the charac-
teristic peak of C 

–O 

–C and 1157 cm 

−1 was the characteristic
peak of C 

–O stretching peak. The spike of physical mixture
was the combination of GLI and CDs. The major characteristic
peaks of GLI remained in physical mixture and the intensity
significantly reduced. The disappearance of some GLI charac-
teristic peaks in GLI/ β-CD complexes indicated the existence
of GLI/ β-CD complexes. The similar conclusion could also be
obtained from other FTIR results. 

According to the FTIR results, it could confirm the disap-
peared characteristic peak of GLI in the complexes, which
could confirm the formation of complexes. 

3.1.3. Characteristic of GLI/CD complexes by DSC studies 
DSC results confirm the formation of complexes which could
also be compared with final structures of modeling. 

DSC curves of pure GLI, CDs, GLI/CD physical mixture and
GLI/CD complexes are shown in Fig. 3 . GLI had a single sharp
peak at 208.6 °C which corresponded to the melting point.
β-CD had a broad endothermic peak which indicated the
evaporation of water. The DSC curve of GLI/ β-CD physical
mixture was the superposition of the individual compo-
nents. The thermal characteristic peak of drug was clearly
distinguishable in the physical mixture and its intensity
reduced. These little changes suggested a weak interaction
between GLI and β-CD during the mixing or heating for
DSC scanning. However, the complete disappearance of
the endothermic peak of GLI in the GLI/ β-CD complexes
suggested that GLI was well inserted in the β-CD cavity.
The other DSC curves of GLI/CD showed a similar phe-
nomenon which could also prove the formation of GLI/CD
complexes. 

3.1.4. MD simulations of 1:1 GLI/CD system and the compa-
ration of experimental and modeling results 
MD simulation of 1:1 GLI/CD complexes could mimic the
GLI/CD complexes in ideal dilute solution. 

Initial structures of one-to-one MD simulation were ob-
tained from AutoDock Vina. Fig. 4 showed the final stable
structures after 70 ns MD simulation. β-CD wrapped the cyclo-
hexane and N 

–H characteristic groups of GLI. γ -CD wrapped
cyclohexane, benzene and C = O characteristic groups of GLI.
HP- β-CD and Me- β-CD wrapped the benzene ring, N 

–H and
S = O of GLI. The groups wrapped by CDs were consistent with
the disappeared characteristic peaks in FTIR. 

The phase solubility results and binding free energy cal-
culated by MM/PBSA could be compared. Table 5 showed
the binding free energy results of 1:1 GLI/CD complexes
by MM/PBSA method. GLI was partially entered the cavity
of CD, which limited their thermal motion and resulted in
large changes of enthalpy. The favorable enthalpy fetched up
the unfavorable enthalpy. � G was negative which indicated
that the reactions could proceed spontaneously. Negative
� H, which agreed with experimental results, proved that the
reaction released heat. � S were negative which suggested the
reaction was the process of entropy reducing [57] . The solubi-
lization effect of CDs to GLI investigated by MM/PBSA method
was: Me- β-CD > γ -CD > β-CD > HP- β-CD. 

According to experiments and 1:1 modeling studies,
structures and binding free energies of GLI/CD complexes
had been investigated. GLI was wrapped within the cavity
of CD molecule. The disappeared FTIR characteristic peaks
and melting point of GLI in the complexes confirmed the
formation of complexes. Both phase solubility and modeling
studies suggested that Me- β-CD had the best solubility en-
hancement capability to GLI. All binding free energies from
1:1 modeling studies showed higher values than those of
experimental data, especially GLI/ γ -CD system. Our previous
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Fig. 2 – FTIR spectra of pure (black) CDs (A. β-CD B. γ-CD C. HP- β-CD D. Me- β-CD), (red) GLI, (blue) GLI/CD physical mixtures 
and (green) GLI/CD complexes. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 

Table 5 – Binding free energy and energy components under MM-PBSA calculation. 

GLI/ β-CD GLI/ γ -CD GLI/HP- β-CD GLI/Me- β-CD 

� E ELE (kcal/mol) −22.40 ± 8.67 −19.44 ± 8.03 −17.34 ± 5.96 −12.81 ± 3.01 
� E VDW 

(kcal/mol) −31.58 ± 4.66 −32.01 ± 4.41 −37.65 ± 3.07 −31.07 ± 3.89 
� E GAS (kcal/mol) −53.98 ± 9.36 −51.44 ± 9.14 −17.34 ± 5.96 −44.00 ± 5.33 
� H(kcal/mol) −20.79 ± 3.66 −20.17 ± 4.28 −22.23 ± 3.49 −20.96 ± 3.24 
T ∗� S(kcal/mol) −16.97 ± 5.05 −16.06 ± 4.95 −18.45 ± 4.95 −16.33 ± 3.92 
� G(kcal/mol) −3.82 ± 0.43 −4.11 ± 0.34 −3.78 ± 0.26 −4.63 ± 0.43 
� G(kJ/mol) −15.98 −17.20 −15.81 −19.37 
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esearch also showed a similar situation [47] . The possible 
eason for the difference was that the experimental data 
ame from high-concentrated solution, but the 1:1 model- 
ng only simulated the ideal dilute solution. Therefore, 1:1 
ystems can’t fully reflect the real experiments of drug/CD 

omplexation well. A better model should be developed to 
hed light on the complexes mechanism involving in both 
nclusion and non-inclusion complexations. a
.2. Results and discussion of GLI/CD aggregates 

.2.1. Size-measurement of GLI/CD solution by DLS method 
he DLS results could be compared with 10:10 modeling re- 
ults to confirm the aggregation capability of CDs. 

According to Table 6 and Fig. 5 , a bimodal distribution is ev-
dent from each result. The DLS measurement couldn’t detect 
 significant peak in the saturated solution of GLI possibly due 
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Fig. 3 – DSC thermograms of pure (black) CDs (A. β-CD B. γ-CD C. HP- β-CD D. Me- β-CD), (red) GLI, (blue) GLI/CD physical 
mixtures and (green) GLI/CD complexes. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 4 – Snapshots of final structure of 1:1 GLI/CD simulation. Carbon elements are indicated in blue bonds, hydrogen 

elements in white, and oxygen elements in red. (A) GLI/ β-CD complexes, (B) GLI/ γ-CD complexes, (C) GLI/HP- β-CD 

complexes, (D) GLI/Me- β-CD complexes. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Table 6 – Mean hydrodynamic radii and polydispersities (in nm) of GLI in different concentration of CDs through 0.22 μm 

filter. 

Peak1(radius/nm) Intensity (%) Peak 2(radius/nm) Intensity (%) 

GLI/ β-CD 0.78 ± 0.14 32.80% 152.10 ± 28.62 67.20% 

GLI/ γ -CD 0.92 ± 0.20 12.30% 118.20 ± 46.43 87.70% 

GLI/HP- β-CD 0.85 ± 0.22 87.00% 76.77 ± 19.25 13.00% 

GLI/Me- β-CD 0.81 ± 0.21 86.10% 66.14 ± 14.35 13.90% 



616 Asian Journal of Pharmaceutical Sciences 14 (2019) 609–620 

Fig. 5 – DLS correlogram regularization analysis for GLI/CD solution. (A)GLI/ β-CD solution, (B) GLI/ γ-CD solution, (C) 
GLI/HP- β-CD solution, (D) GLI/ Me- β-CD solution. 
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o the low intrinsic solubility of GLI. The first peak has a lower 
adius corresponding to monomeric GLI/CD complexes. The 
econd peak however, has a higher radius which is attributed 

o aggregates. From the results, the hydrodynamic radii for 
he monomers are close to the actual dimensions of GLI/CD 

omplexes. The sizes of free β-CD and γ -CD aggregates were 
41.70 ± 18.62 nm and 95.89 ± 43.97 nm respectively. Free 
P- β-CD and Me- β-CD aggregates were dominantly 
onomers and had very low intensity. As stated in the 

revious research on this topic, the aggregation size of CDs 
nder certain conditions is usually less than 300 nm. This 
nding concurs with our results [22,25,58,59] . Fig. 5 showed the 
bservation made on the distribution of polydisperse mode,
he mean hydrodynamic radius (percentage of intensity) of 
LI/ β-CD, GLI/ γ -CD, GLI/HP- β-CD and GLI/Me- β-CD aggre- 
ates were 152.10 ± 28.62 (67.2%) nm, 118.20 ± 46.43 (87.7%) 
m, 76.77 ± 19.25 (13%) nm and 66.14 ± 14.35 (13.9%) nm 

espectively. β-CD and γ -CD had bigger aggregation capability 
ecause their -OH groups participated in self-aggregation 

ather than solvation. Our results were somewhat similar to 
he previous publication about the same topic since we found 

hat the aggregation size of 2,5-Diphenyloxazole/ β-CD was 
72.5 nm [26] . β-CD and γ -CD had bigger aggregation capa- 
ility because its -OH groups participated in self-aggregation 

ather than solvation [60] . The γ -CD had stronger aggrega- 
ion capability than β-CD because γ -CD has a high intrinsic 
olubility. The aggregates of HP- β-CD and Me- β-CD were 
c
uite small because the partial substitution of -OH and -CH 3 

roups of CDs prevents the hydrogen-bond formation of the 
ggregation [59–62] . The size measurement results would be 
ompared with the modeling results. The hydrogen bonds is 
mportant to the aggregation mechanism. 

.2.2. MD simulation of 10:10 GLI/CD aggregation systems 
nd the comparison of experimental and modeling results 
he 10:10 simulation of GLI/CD MD simulation was used to 

nvestigate the real state of high-concentration solution. The 
igher concentration in 10:10 modeling was adjusted by added 

ore drugs and reduce water molecules compared to 1:1 MD 

imulation. 
Fig. 6 showed initial structures and final structures of 

0:10 systems. GLI/Me- β-CD aggregated three piles, GLI/HP- 
-CD aggregated two piles while GLI/ γ -CD and GLI/ β-CD ag- 
regated only one big pile. The aggregates of GLI and CDs 
ad no regular shape. The final structures contained free 
rug molecules,“empty” CD molecules, drug/CD inclusion 

omplexes and drug/CD non-inclusion complexes. Our re- 
earch agreed with the previous theory about the existence 
f micelle-like structure [20,21,26,32,58,63] . 

Fig. 7 compared the experimental and simulation results 
f the aggregation particle size of GLI/CD solution. The par- 
icle size of free CD solution was close to those of the 
LI/CD solutions, which proved that aggregates were mainly 
aused by the nature of CDs. The average particle size of 
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Fig. 6 – Snapshots initial and final structures of GLI/CD solution. Carbon elements are indicated in blue bonds, hydrogen 

elements in white, and oxygen elements in red. (A1) initial structure of GLI/ β-CD (A2) final structure of GLI/ β-CD, (B1) initial 
structure of GLI/ γ-CD, (B2) final structure of GLI/ γ-CD. (C1) initial structure of GLI/HP- β-CD, (C2) final structure of GLI/HP- β-CD, 
(D1) initial structure of GLI/Me- β-CD, (D2) final structure of GLI/Me- β-CD. 

Fig. 7 – The comparison of aggregation size measured by 

experimental and modeling method. (Free CD): The 
aggregation size of free CD measured by experimental 
method. (Experiment): The aggregation size of drug/CD 

measured by experimental method. (Modeling): The 
aggregation size of GLI/CD measured by modeling method. 

 

 

 

 

 

 

 

 

 

 

Table 7 – Some of the hydrogen bonds information of 
10:10 system. (BCD: β-CD, GCD: γ-CD, HCD: HP- β-CD, MCD: 
Me- β-CD). 

Acceptor Donor-H Donor 

BCD_2@O10 BCD_4@H21 BCD_4@O10 
GLI_12@O29 BCD_3@H21 BCD_3@O10 
GLI_20@O17 BCD_10@H39 BCD_10@O19 
GLI_20@O30 BCD_8@H66 BCD_8@O33 
BCD_1@O22 GLI_13@H27 GLI_13@N22 
BCD_4@O11 GLI_17@H15 GLI_17@N20 
BCD_10@O1 GLI_16@H9 GLI_16@N9 
GLI_12@N12 BCD_1@H33 BCD_1@O16 
GLI_19@N15 BCD_4@H39 BCD_4@O19 
HCD_2@O24 HCD_2@H24 HCD_2@O5 
GLI_15@O31 GCD_6@H78 GCD_6@O33 
MCD_9@O21 MCD_9@H52 MCD_9@O22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GLI/ β-CD, GLI/ γ -CD, GLI/HP- β-CD and GLI/Me- β-CD simula-
tion systems was: 35.60 ± 1.45 Å, 34.04 ± 0.6 Å,16.90 ± 0.89 Å
and 11.68 ± 0.92 Å. Our simulated results also showed that β-
CD and γ -CD had stronger aggregation capability than HP- β-
CD and Me- β-CD, which agreed with the experimental results.
However, there were still some differences in the numerical
values between experimental and simulation results. The pos-
sible reason was that there were millions of molecules in real
solutions, which were much larger than our 10:10 simulation
systems. Thus, the simulated particles were much smaller
than that of the experimental measurement. 
The hydrogen bond information in the modeling could
explain the mechanisms of aggregation. The aggregation
capability of GLI/ β-CD and GLI/ γ -CD was stronger than those
of the GLI/CD-derivates, the mechanism of the conclusion
would be investigated by hydrogen bonding analysis. It has
been reported that hydrogen bond plays an important role in
CD aggregates [64] . Table 7 showed acceptor atoms, donor hy-
drogen atoms and donor atoms of hydrogen bonds in MD sim-
ulation. From Table 7 , the sulfonyl group, –C = O and pyrazine
group of GLI could be hydrogen bond acceptors, while the
–NH group of GLI could be hydrogen bond donors. In β-CD
or γ -CD solution, the -OH groups of CDs were able to form
hydrogen bonds with both drugs and CDs. However, the sub-
stituted groups of HP- β-CD and Me- β-CD prevented the hy-
drogen bond formation of aggregates. The simulation results
clearly revealed the molecular mechanism of aggregation. 
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Fig. 8 – CPPTRAJ analysis results of 10:10 system during 150 ns MD simulation. (A) RMSD curves of GLI/CD 10:10 system. (B) 
Surface area of GLI/CD complexes. (C) Native contact points between GLI and CDs within 3 Å. (D) Water molecules around 

GLI within 3.6 Å. 
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Fig. 8 showed some analysis data of 10:10 GLI/CD system.
ig. 8 A showed the RMSD plot of mass calculated through 

50 ns MD simulation to the original structures. RMSD curves 
f four systems showed quite stable after 50 ns, which in- 
icated that all systems reached balance after 50 ns. Fig. 8 B 

howed the solvent-accessible surface area (SASA) of GLI/CD 

olution. The solvent-accessible surface area could reflect the 
egree of aggregation. After about 50 ns, the smaller surface 
rea represented the aggregates. The time dependence of 
ative contact points between GLI and CDs of four systems 
as shown in Fig. 8 C. It suggested that the native contact 
oints of GLI and CDs increased in the process of first 50 ns 
imulation. This behavior reflected a process of aggregation 

ormation. The native contact points changed weakly after 
0 ns which confirmed that all systems had been balanced.
ig. 8 D showed the plot of water molecules around GLI within 

.6 Å. The correlation curves decreased significantly which 

onfirmed that more solvent molecules were squeezed away 
rom drugs when the aggregates were formed. GLI was en- 
apsulated by CD molecules while forming aggregates. The 
ecreasing water molecules around GLI showed the physical 
hielding effect of CDs. All fluctuated curves indicated that the 
rug/CD complexes aggregates were in the process of dynamic 
quilibrium after 50 ns. 

According to MD simulation of 10:10 GLI/CD aggregation,
he experimental and modeling method investigated the ag- 
regation ability of four CDs. The analysis of hydrogen bonds 
xplained the weak aggregation capability of substituent CDs.
he other parameters provided us clearer image to the aggre- 
ation mechanisms of GLI/CD aggregates. 

. Conclusion 

ntegrated experimental and molecular modeling methods re- 
ealed the molecular inclusion and non-inclusion mechanism 

f CDs solubility enhancement. Phase solubility studies and 

imulation results showed that Me- β-CD was the best choice 
o enhance the solubility of GLI. Moreover, both experimental 
nd modeling results suggested the existence of aggregates 
n GLI/CD solution. Hydrogen bond plays an important role in 

rug/CD aggregation. β-CD and γ -CD had strong aggregation 

apability than HP- β-CD and Me- β-CD. MD simulation pro- 
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vided us a clear image of the molecular mechanism of GLI/CD
inclusion complexation and aggregation. 

Our integrated experimental and modeling methodology
could fit other drugs and CDs. The systems under various con-
ditions (e.g. pH, salt and temperature) could also be mimic in
the simulations. Our results will benefit the future formula-
tion development of CD systems. 
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